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Summary

A computational framework for evaluating the role of mobility on the

propagation of epidemics on point processes

Joint ongoing work with N. Ramesan, Arxiv 2009.08515

— SIS on point processes with motion

— Structural results

— Moment measure equations

— Functional and polynomial heuristics → steady state densities

— Tentative phase diagram → survival and extinction

— First simulation validation steps
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SIS Dynami
s on a PPP with spatial migration

Individuals

— Form a spatial configuration Ξt of Rd

— Have a state either I or S

SIS evolution

— Transition from S to I in function of the local infection rate

— Transition from I to S with constant recovery rate

Spatial evolution

— Migration with constant rate (keeping the SIS state)

— Independent (i.i.d.) random displacements on R
d
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Basi
 Model - Ground Point Pro
ess

Initial location of individuals :

Ξ0 Poisson point process of intensity λ on R
2

Random waypoint motion

— points jump from current location to another location with rate γ ;

— the displacements are random, i.i.d., independent,

with symmetric distribution D on R
2

This leads to a ground point process Ξt at time t

Ξt is Poisson λ for all t thanks to the displacement theorem
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Basi
 Model

Interaction function f : R+ → R
+

f(r) = α1r≤a

The points of Ξt can be in one of the two states :

— 1 (Infected) : Φt : point process of infected individuals

— 0 (Susceptible) : Ψt : point process of susceptible individuals

Ξt = Φt +Ψt

Neither Φt nor Ψt are Poisson
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Basic Model (continued)

SIS Dynamics

— Transition rate of the state of X ∈ Ψt to state 1 :

IΦt
(X) =

∑

Y∈Φt

f(||X−Y||)

— Transition rate of X ∈ Φt to state 0 : β > 0

Migration Dynamics Far Random Waypoint :

— Migration rate of each point : γ

— Very large i.i.d. symmetrical displacements on R
2
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Illustration
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Questions

Parameters

— α : rate of infection

— β : rate of recovery

— γ : rate of motion

— µ = λπa2 : average degree of nodes

Questions

— Is this dynamic well defined on the whole of R2 ?

— For what values of (α, β, γ, µ) does the epidemic/infection survive ?

— While holding all else constant,

how does varying γ act on the epidemic’s survival ?

— When the epidemic does survive,

what fraction of the population is infected in the steady state ?
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Mathemati
al Framework

Phase space

— Steady state on compact phase spaces is degenerate :

extinction is a.s. certain

— Focus on dynamics on the whole of Rd which are space-time invariant

Mathematical tools

— Contact process mathematics developed in particle systems

— Moment measure RCP methods

similar to those developed for wireless and peer-to-peer

Contact Processes on Point Processes
F. Baccelli✫ ✪



✬ ✩
9

Properties of the Dynami
s

The pair (Ψt,Φt) is Markov on the space of counting measures

Construction on a compact of time

Extension of basic properties of contact processes

— Monotonicity : Φ0 ⊂ Φ̃0 ⇒ Φt ⊂ Φ̃t for all t

— Additivity : ΦA∪B
t = ΦA

t ∪ΦB
t for all A,B, t

— Duality P
A(Φt ∩B 6= ∅) = P

B(Φt ∩A 6= ∅) for all A,B, t

Liggett
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Graphi
al Representation
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Extin
tion or Survival ?

Extinction : P
{x}[Φt 6= ∅ ∀t] = 0

Survival : non-extinction

These probabilities do not depend on x

Theorem

Fixing all parameters other than β, there exists 0 ≤ βc ≤ ∞ :

— For β < βc : survival

— For β > βc : extinction
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Maximal Invariant Measure

There exists a maximal stationary prob. measure ν

Take Φ0 = Ξ and uses that Φt is stoch. decreasing

Relation between survival prob. and maximal invariant measure

P
{0}(Φt 6= ∅ ∀t) = p

with

— p the probability that the typical node is infected in the maximal

invariant measure

— P
{0} the law of the dynamics starting with the point at the origin

being the only one infected under Palm of the initial PPP
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First Moment RCP (RCP1)

Assume that there exists a time-space stationary regime

Notation

— Φ has spatial intensity λp
— Ψ has intensity λ(1− p)

Infection rate of locus x ∈ R
2 :

IΦ(x) =
∑

X∈Φ̃

f(||X− x||)

From Campbell’s formula

E[IΦ(x)] = λpαπa2
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First Moment RCP (RCP1) (continued)

Spatial infection rate

i = E[
∑

Y∈Ψ∩D
IΦ(Y)] = λ(1− p)E0

Ψ[IΦ(0)]

with D ⊂ R
2 of volume 1 and E

0
Ψ the Palm distribution of Ψ

Spatial recovery rate (proportional to first moment)

r = E[
∑

X∈Φ∩D
β] = λpβ

Lemma [RCP : i = r]

pβ = (1− p)E0
Ψ[IΦ(0)]
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Impli
ations of RCP1

A natural conjecture is that there is repulsion between Φ and Ψ :

E
0
Ψ[IΦ(0)] ≤ E[IΦ(0)]

Let µ = λπa2

Lemma Under the (Φ,Ψ) repulsion conjecture,

— If αµ ≤ β, then extinction

— If αµ > β, then one may have a non-degenerate stationary regime
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Implications of RCP1 (continued)

In the last case, the fraction of infected nodes satisfies

0 < p ≤ 1− β

αµ

The last bound is conjectured to be reached in the

high motion mean-field regime (simulation and discrete time evidence)
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Pair-Correlation Fun
tion Representation of RCP1

E
0
Ψ[IΦ(0)] = λp

∫

R2

f(x)ξΦ,Ψ(x)dx

with ξΦ,Ψ(x) the pair correlation function of processes Φ and Ψ

RCP 1 in integral form :

β = (1− p)λ

∫

R2

ξΨ,Φ(x)f(||x||)dx

Makes the relation between first and second moment explicit
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Se
ond Moment RCP (RCP2)

Setting : any space time invariant measure

Integral equations on unknown (isotropic) pair correlation functions :

ξΦ,Φ(r), ξΨ,Ψ(r), ξΦ,Ψ(r)

Related by

p2ξΦ,Φ(r) + (1− p)2ξΨ,Ψ(r) + 2p(1− p)ξΨ,Φ(r) = ξΞ,Ξ(r) = 1
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Second Moment RCP (RCP2) (continued)

Three point conditional densities :

— µ(Φ)0,rΨ,Φ(x) conditional density of Φ at x

given that Ψ has a points at (0,0) and Φ a point at (r, 0)
— µ(Φ)0,rΨ,Ψ(x) conditional density of Φ at x

given that Ψ has a points at (0,0) and Ψ a point at (r, 0)

Theorem

pξΦ,Φ(r)(β + γ) = pγ+(1− p)ξΨ,Φ(r)


f(r) +

∫

R2

µ(Φ)0,rΨ,Φ(x)f(||x||)dx




pξΨ,Φ(r)β + (1− p)γ = (1− p)ξΨ,Ψ(r)


γ +

∫

R2

µ(Φ)0,rΨ,Ψ(x)f(||x||)dx



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Second Moment RCP (RCP2) (continued)
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RCP2 Heuristi
 Fa
torizations

Heuristic computational track

Closure of the integral relations on moment measure of order 1 and 2

by a factorization of moment measures of order 3 based on

— either Bayes’ rule and conditional independence heuristic

— or Mean value heuristic

Contact Processes on Point Processes
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Mean Value Heuristi
s

The Geometric Mean heuristic of parameter 0 ≤ η ≤ 1

µ(Φ)0,rΨ,Ψ(x) = λpξΨ,Φ(||x||)ηξΨ,Φ(||x− r||)1−η

and

µ(Φ)0,rΨ,Φ(x) = λpξΨ,Φ(||x||)ηξΦ,Φ(||x− r||)1−η

Example G1 : η = 1
2

The theorem and e.g. G1 lead to an integral equation

satisfied by the 3 pair correlation functions
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Bayes and Conditional Independen
e Heuristi
s

Bayes’ rule rewritten in three different ways

µ(Φ)0,rΨ,Ψ(x)ξΨ,Ψ(r)λ
2(1− p)2 =

µ(Ψ,Ψ)xΦ(0, r)λp = µ(Ψ,Φ)rΨ(0,x)λ(1− p) = µ(Ψ,Φ)0Ψ(r,x)λ(1− p)

Hence
(
µ(Φ)0,rΨ,Ψ(x)ξΨ,Ψ(r)λ

2(1− p)2
)3

=

(µ(Ψ,Ψ)xΦ(0, r)λp)(µ(Ψ,Φ)rΨ(0,x)λ(1− p))
(
µ(Ψ,Φ)0Ψ(r,x)λ(1− p)

)

Conditional independence heuristic e.g.

(µ(Ψ,Ψ)xΦ(0, r)) = ξΨ,Φ(||x||)λ(1− p)ξΨ,Φ(||x− (r,0)||)λ(1− p)
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Bayes Independent BI1 Example

Hence
(
µ(Φ)0,rΨ,Ψ(x)ξΨ,Ψ(r)λ

2(1− p)2
)3

=

= (ξΨ,Φ(||x||)λ(1− p)ξΨ,Φ(||x− (r,0)||)λ(1− p)λp)

(ξΨ,Ψ(r)λ(1− p)ξΨ,Φ(||x− (r,0)||)λpλ(1− p))

(ξΨ,Ψ(r)λ(1− p)ξΨ,Φ(||x||)λpλ(1− p))

Example Heuristic B1I :

µ(Φ)0,rΨ,Ψ(x) = λp
ξΨ,Φ(||x||)

2
3ξΨ,Φ(||x− (r, 0)||)23
ξΨ,Ψ(r)

1
3

µ(Φ)0,rΨ,Φ(x) = λp
ξΨ,Φ(||x||)

2
3ξΦ,Φ(||x− (r,0)||)23
ξΨ,Φ(r)

1
3

+ a collection of other heuristics : b1g1, m2bi, . . .
Contact Processes on Point Processes
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RCP2 Integral Equations - B1I

(β + γ)pξΦ,Φ(r) = pγ + (1− p)ξΨ,Φ(r)f(r)

+λ (1− p)pξΨ,Φ(r)
2
3

∫

R2

ξΨ,Φ(||x||)
2
3ξΦ,Φ(||x− (r,0)||)23f(||x||)dx

βpξΨ,Φ(r) = (1− p)γ (ξΨ,Ψ(r)− 1)

+λ (1− p)pξΨ,Ψ(r)
2
3

∫

R2

ξΨ,Φ(||x||)
2
3ξΨ,Φ(||x− (r,0)||)23f(||x||)dx

p = 1− β

λ2π
∫
R+ ξΨ,Φ(r)f(r)rdr

ξΨ,Ψ(r) =
1

(1− p)2

(
1− (p)2 ξΦ,Φ(r)− 2p (1− p) ξΨ,Φ(r)

)

Contact Processes on Point Processes
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RCP2 Integral Equations

Numerical Illustration

Left : ξΨ,Φ(r) ; Center : the ξΦ,Φ(r) ; Right : ξΨ,Ψ(r)
β = 1, a = 1, λ = 1, γ = 1, and α = 1
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Polynomial Heuristi
 - B1I

Assume that

— ξΨ,Φ(.) is almost constant on (0, a) and equal to w < 1

— ξΦ,Φ(.) is almost constant on (0, a) and equal to v > 1

— ξΨ,Ψ(.) is almost constant on (0, a) and equal to z

B1I Polynomial System

(γ + β)pv = γp + α(1− p)w + βpv
2
3w

1
3

βpw = (1− p)γ(z− 1) + βpz
2
3w

1
3

β = (1− p)αµw

1 = (1− p)2z + 2p(1− p)w + p2v

Contact Processes on Point Processes
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Polynomial Heuristi
 - B1I - Numeri
al Example

Boolean supercritical : µ = 12.56

γ .2 1 5 ∞
psim 0.28 0.29 0.33

pp−bli 0.32 0.32 0.34 0.36

Fraction of infected nodes for β = 8, a = 2, λ = 1 and α = 1

Boolean subcritical : µ = 3

γ .5 1 2 5 ∞
psim 0.14 0.20 0.23 0.28

pp−m2bi 0.21 0.22 0.25 0.28 0.33

Fraction of infected nodes for β = 2, a = 1, λ ∼ 0.955 and α = 1
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Fa
torization Heuristi
s Predi
t p Reasonably Well
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Criti
ality by Polynomial Heuristi
 - B1I

p ∼ 0 only possible if

2(µα− β)γ2 + (2β(µα− β) + β2(ρ− 1)− βα)γ + β3(ρ− 1) = 0

with ρ =
(
αµ
β

)2
3
> 1

There are real roots, which are both positive iff

∆ := (2β(µα− β) + β2(ρ− 1)− βα)2 − 8(µα− β)β3(ρ− 1) > 0

Contact Processes on Point Processes
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Criticality by Polynomial Heuristic - B1I (continued)

In this case, there exist

γ+c =
β(α− 2(µα− β))− β2(ρ− 1) +

√
∆

4(µα− β)

γ−c =
β(α− 2(µα− β))− β2(ρ− 1)−

√
∆

4(µα− β)

For γ < γ−c or γ > γ+c , survival

For γ−c < γ < γ+c , extinction

+ a collection of similar results based on other heuristics : b1g1, m2bi,

. . .
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Tentative Phase Diagram obtained by Polynomial Systems

Based on analysis of the roots of the polynomials around p = 0

Similar results with numerical variations across heuristics

Small variations depending on the chosen heuristic
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The Phase Diagram : Safe - Unsafe

Safe region

Extinction regardless of γ
Wedge β > αµ

Unsafe region

∃γ with survival

Contact Processes on Point Processes
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The Phase Diagram : Sensitive - Insensitive

Partition of Unsafe region

— UMI

motion insensitive

— UMS

motion sensitive

Contact Processes on Point Processes
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The Phase Diagram : Thresholds on µ

Yellow segment

motion subcritical

Red semi-line

Boolean supercritical

Blue segment

motion supercrical

and

Boolean subcritical
µ0 ∼ 0.343 (m2bi), µ∗ ∼ 4.5

Contact Processes on Point Processes
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UMS-Boolean Sub
riti
al Region

{0 < µ < µ0} ∩ {0 < β < αµ}
{µ0 < µ < µ∗} ∩ {β0 < β < αµ}
⊂ UMS

∃ non-degenerate critical

functions γ−,+
c (µ, β) s.t.

— γ < γ−c : survival

— γ−c < γ < γ+c : extinction

— γ > γ+c : survival

for no motion, extinction ; for small motions, survival

for intermediate motion, extinction

for high motions, survival

Contact Processes on Point Processes
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M2BI Example : γc

α = 1, µ = 3.2416 α = 1, µ = 0.25

8(µα− β)γ2 + 2β(3(µα− β)− 2α)γ + β2(µα− β) = 0

β0 = µα− µ0, µ0 = α
2

3 +
√
8

Contact Processes on Point Processes
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M2BI Example : βc

α = 1, µ = 3.2416 α = 1, µ = 0.25

β3 + β2(6γ − αµ) + β2γ(2α− 3µα + 4γ)− 8µαγ2 = 0

Contact Processes on Point Processes
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UMI Region

Motion Insensitive region ∩
Boolean-supercritical case

— no-motion, survival

since β0 < αµ
— motion, survival

Motion Insensitive region ∩
Boolean-subcritical case

— no-motion, extinction

— motion, survival

no impact of motion on survival

no, low and high motion are all equivalent

Contact Processes on Point Processes
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Simulation Validation of Phase Diagram

Simulation close to criticality is computationally challenging

Methodology : mean time till absorption MTTA

— Method 1 : inflection point w.r.t. β for fixed L
— Method 2 : dependency on the torus side L for fixed β

Partial validation at this stage
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Example 1 : βc for γ = 1, α = 1, µ = 3.14

M1 : x axis : β ;

y axis : mean MTTA

M2 : x : L ; y : mean MTTA,

β = 3, 2.8, 2.4, 2.3

p-b1i, βc = β0 ∼ 2.94 , p-b1g1, βc = β0 ∼ 2.93
p-m2bi, βc = β0 ∼ 2.82, MTTA βc ∼ 2.6
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Example 2 : γc for β = 1/5, α = 1, µ = 1/4

M1 estimate of γ−c : MTTA(γ) M1 estimate of γ+c : MTTA(γ)

p-b1i : γ+c ∼ 1.73, γ−c ∼ 0.007 ; p-m2bi, γ+c ∼ 1.84, γ−c ∼ 0.003
MTTA γ+c ∼ 2.5, γ−c ∼ 0.01
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More on Method 1

Fair prediction of parameter regions where the MTTA decreases (res.

increases) with motion rate
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To be Done

Prove repulsion conjecture

Prove high mobility mean-field conjecture

Assess monotonicity in γ

Justify-prove the phase diagram

Study more systematically the heuristics

Extend the analysis to more SIS realistic variants

Study other types of motions than far random waypoint
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