F. Baccelli

Weierstrass Institute, Berlin

November 2-4, 2020

European Research Council Established by the European Commission

Individuals

2

- Form a spatial configuration $\boldsymbol{\Xi}_t$ of \mathbb{R}^d
- Have a state either ${\bf I}$ or ${\bf S}$
- SIS evolution
- Transition from S to I in function of the local infection rate
- Transition from I to S with constant recovery rate
- **Spatial evolution**
- Migration with constant rate (keeping the SIS state)
- Independent (i.i.d.) random displacements on \mathbb{R}^d

Pair-Correlation Function Representation of RCP1

$$\mathbb{E}_{\Psi}^{\mathbf{0}}[\mathbf{I}_{\Phi(\mathbf{0})}] = \lambda \mathbf{p} \int_{\mathbb{R}^{2}} \mathbf{f}(\mathbf{x}) \xi_{\Phi,\Psi}(\mathbf{x}) \mathbf{d}\mathbf{x}$$

with $\xi_{\Phi,\Psi}(\mathbf{x})$ the pair correlation function of processes Φ and Ψ

RCP 1 in integral form :

17

$$\beta = (\mathbf{1} - \mathbf{p})\lambda \int_{\mathbb{R}^2} \xi_{\Psi, \Phi}(\mathbf{x}) \mathbf{f}(||\mathbf{x}||) d\mathbf{x}$$

Makes the relation between first and second moment explicit

Contact Processes on Point Processes

18 Second Moment RCP (RCP2) ■ Setting : any space time invariant measure ■ Integral equations on unknown (isotropic) pair correlation functions : $\xi_{\Phi,\Phi}(\mathbf{r}), \quad \xi_{\Psi,\Psi}(\mathbf{r}), \quad \xi_{\Phi,\Psi}(\mathbf{r})$ **Related by** $\mathbf{p}^{2}\xi_{\Phi,\Phi}(\mathbf{r}) + (\mathbf{1}-\mathbf{p})^{2}\xi_{\Psi,\Psi}(\mathbf{r}) + 2\mathbf{p}(\mathbf{1}-\mathbf{p})\xi_{\Psi,\Phi}(\mathbf{r}) = \xi_{\Xi,\Xi}(\mathbf{r}) = \mathbf{1}$ Contact Processes on Point Processes F. Baccelli

Mean Value Heuristics

■ The Geometric Mean heuristic of parameter $0 \le \eta \le 1$ $\mu(\mathbf{\Phi})^{\mathbf{0},\mathbf{r}}_{\Psi,\Psi}(\mathbf{x}) = \lambda \mathbf{p}\xi_{\Psi,\Phi}(||\mathbf{x}||)^{\eta}\xi_{\Psi,\Phi}(||\mathbf{x}-\mathbf{r}||)^{1-\eta}$

and

22

$$\mu(\mathbf{\Phi})^{\mathbf{0},\mathbf{r}}_{\Psi,\mathbf{\Phi}}(\mathbf{x}) = \lambda \mathbf{p}\xi_{\Psi,\mathbf{\Phi}}(||\mathbf{x}||)^{\eta}\xi_{\mathbf{\Phi},\mathbf{\Phi}}(||\mathbf{x}-\mathbf{r}||)^{1-\eta}$$

- **Example G1 :** $\eta = \frac{1}{2}$
- The theorem and e.g. G1 lead to an integral equation satisfied by the 3 pair correlation functions

Contact Processes on Point Processes

Bayes and Conditional Independence Heuristics
Bayes' rule rewritten in three different ways

$$\mu(\Phi)_{\Psi,\Psi}^{0,\mathbf{r}}(\mathbf{x})\xi_{\Psi,\Psi}(\mathbf{r})\lambda^{2}(1-\mathbf{p})^{2} =$$

$$\mu(\Psi,\Psi)_{\Phi}^{\mathbf{x}}(0,\mathbf{r})\lambda\mathbf{p} = \mu(\Psi,\Phi)_{\Psi}^{\mathbf{r}}(0,\mathbf{x})\lambda(1-\mathbf{p}) = \mu(\Psi,\Phi)_{\Psi}^{0}(\mathbf{r},\mathbf{x})\lambda(1-\mathbf{p})$$
Hence

$$\left(\mu(\Phi)_{\Psi,\Psi}^{0,\mathbf{r}}(\mathbf{x})\xi_{\Psi,\Psi}(\mathbf{r})\lambda^{2}(1-\mathbf{p})^{2}\right)^{3} =$$

$$(\mu(\Psi,\Psi)_{\Phi}^{\mathbf{x}}(0,\mathbf{r})\lambda\mathbf{p})(\mu(\Psi,\Phi)_{\Psi}^{\mathbf{r}}(0,\mathbf{x})\lambda(1-\mathbf{p}))(\mu(\Psi,\Phi)_{\Psi}^{0}(\mathbf{r},\mathbf{x})\lambda(1-\mathbf{p}))$$
Conditional independence heuristic e.g.

$$(\mu(\Psi,\Psi)_{\Phi}^{\mathbf{x}}(0,\mathbf{r})) = \xi_{\Psi,\Phi}(||\mathbf{x}||)\lambda(1-\mathbf{p})\xi_{\Psi,\Phi}(||\mathbf{x}-(\mathbf{r},0)||)\lambda(1-\mathbf{p})$$

RCP2 Integral Equations - B1I

$$\begin{split} (\beta + \gamma) \mathbf{p} \xi_{\Phi,\Phi}(\mathbf{r}) &= \mathbf{p} \gamma + (\mathbf{1} - \mathbf{p}) \xi_{\Psi,\Phi}(\mathbf{r}) \mathbf{f}(\mathbf{r}) \\ &+ \lambda \left(\mathbf{1} - \mathbf{p} \right) \mathbf{p} \xi_{\Psi,\Phi}(\mathbf{r})^{\frac{2}{3}} \int \xi_{\Psi,\Phi}(||\mathbf{x}||)^{\frac{2}{3}} \xi_{\Phi,\Phi}(||\mathbf{x} - (\mathbf{r}, \mathbf{0})||)^{\frac{2}{3}} \mathbf{f}(||\mathbf{x}||) d\mathbf{x} \\ &\beta \mathbf{p} \xi_{\Psi,\Phi}(\mathbf{r}) = (\mathbf{1} - \mathbf{p}) \gamma \left(\xi_{\Psi,\Psi}(\mathbf{r}) - \mathbf{1} \right) \\ &+ \lambda \left(\mathbf{1} - \mathbf{p} \right) \mathbf{p} \xi_{\Psi,\Psi}(\mathbf{r})^{\frac{2}{3}} \int \xi_{\Psi,\Phi}(||\mathbf{x}||)^{\frac{2}{3}} \xi_{\Psi,\Phi}(||\mathbf{x} - (\mathbf{r}, \mathbf{0})||)^{\frac{2}{3}} \mathbf{f}(||\mathbf{x}||) d\mathbf{x} \\ &\mathbf{p} = \mathbf{1} - \frac{\beta}{\lambda 2\pi \int_{\mathbb{R}^{+}} \xi_{\Psi,\Phi}(\mathbf{r}) \mathbf{f}(\mathbf{r}) \mathbf{r} d\mathbf{r}} \\ &\xi_{\Psi,\Psi}(\mathbf{r}) = \frac{\mathbf{1}}{(\mathbf{1} - \mathbf{p})^{2}} \left(\mathbf{1} - (\mathbf{p})^{2} \xi_{\Phi,\Phi}(\mathbf{r}) - \mathbf{2}\mathbf{p} \left(\mathbf{1} - \mathbf{p} \right) \xi_{\Psi,\Phi}(\mathbf{r}) \right) \end{split}$$

Contact Processes on Point Processes

25

Factorization Heuristics Predict \mathbf{p} Reasonably Well

γ	0	.2	1	5	∞
$p_{ m sim}$	0.26	0.28	0.29	0.33	0.36
$p_{ m p-b1i}$	0.313	0.315	0.323	0.341	0.363
$p_{\mathrm{p-b1g1}}$	0.325	0.326	0.331	0.343	0.363
$p_{ m p-m2bi}$	0.328	0.328	0.329	0.341	0.363
$p_{\mathrm{p-m\infty}}\mathrm{bi}$	0.33	0.33	0.33	0.34	0.36
$p_{ m f-h0}$	0.23	0.28	0.29	0.32	0.36
$p_{\mathrm{p-h0}}$	0.23	0.25	0.27	0.32	0.36

Figure:
$$\beta = 8, a = 2, \lambda = 1, \alpha = 1$$

γ	0+	0.01	0.1	.2	1	5	100
$p_{ m sim}$				0.54	0.61	0.66	0.68
$p_{\mathrm{p-b1i}}$	0.478		0.503	0.523	0.599	0.657	0.680
$p_{\mathrm{p-b1g1}}$	0.530		0.544	0.557	0.609	0.658	0.680
$p_{ m p-m2bi}$	0.523		0.538	0.551	0.605	0.656	0.680
$p_{\mathrm{p-m\infty bi}}$		0.54	0.55	0.56	0.61	0.66	0.68

Figure: $\beta = 1, a = 1, \lambda = 1, \alpha = 1$

Contact Processes on Point Processes

30
Criticality by Polynomial Heuristic - B1I
a
$$\mathbf{p} \sim \mathbf{0}$$
 only possible if
 $2(\mu\alpha - \beta)\gamma^2 + (2\beta(\mu\alpha - \beta) + \beta^2(\rho - 1) - \beta\alpha)\gamma + \beta^3(\rho - 1) = \mathbf{0}$
with $\rho = \left(\frac{\alpha\mu}{\beta}\right)^{\frac{2}{3}} > 1$
a There are real roots, which are both positive iff
 $\Delta := (2\beta(\mu\alpha - \beta) + \beta^2(\rho - 1) - \beta\alpha)^2 - 8(\mu\alpha - \beta)\beta^3(\rho - 1) > \mathbf{0}$

31 Criticality by Polynomial Heuristic - B1I (continued) In this case, there exist $\gamma_{\mathbf{c}}^{+} = \frac{\beta(\alpha - \mathbf{2}(\mu\alpha - \beta)) - \beta^{2}(\rho - 1) + \sqrt{\Delta}}{4(\mu\alpha - \beta)}$ $\gamma_{\mathbf{c}}^{-} = \frac{\beta(\alpha - \mathbf{2}(\mu\alpha - \beta)) - \beta^{2}(\rho - 1) - \sqrt{\Delta}}{4(\mu\alpha - \beta)}$ **For** $\gamma < \gamma_c^-$ or $\gamma > \gamma_c^+$, survival **For** $\gamma_c^- < \gamma < \gamma_c^+$, extinction ■ + a collection of similar results based on other heuristics : b1g1, m2bi, . . .

Contact Processes on Point Processes

- Partition of Unsafe region
 UMI motion insensitive
 UMS
 - motion sensitive

34

Contact Processes on Point Processes

The Phase Diagram : Thresholds on μ

Yellow segment motion subcritical

35

- Red semi-line Boolean supercritical
- Blue segment motion supercrical and Boolean subcritical

 $\mu_0\sim 0.343$ (m2bi), $\mu_*\sim 4.5$

Contact Processes on Point Processes

for high motions, survival

Contact Processes on Point Processes

Simulation Validation of Phase Diagram Simulation close to criticality is computationally challenging **Methodology : mean time till absorption MTTA** — Method 1 : inflection point w.r.t. β for fixed L — Method 2 : dependency on the torus side L for fixed β Partial validation at this stage

Contact Processes on Point Processes

40

