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PEER-TO-PEER CONTENT DISTRIBUTION
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PEER-TO-PEER CONTENT DISTRIBUTION (continued)

P2P Principles

– Peers join and leave aiming each at downloading a very large file

– The file is cut in smaller chunks

– Peers exchange chunks on a Tit for Tat basis

– The swarm of peers solves the initialization problem

– The bit rate between two peers is determined by their distance

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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I. SPATIAL BIRTH AND DEATH STOCHASTIC MODEL

Nodes live in a subset D of the Euclidean space IRd or on a torus

Dynamics: arrivals

– Poisson rain: new nodes arrive according to a Poisson process with

time space intensity λdxdt on D× IR

Service requirement: each node p is born with an individual service

requirement Fp > 0 i.i.d. exponential with mean F

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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INTERACTION

Dynamics: service rate

– Bit rate function: two nodes at locations x and y serve each other at

rate f(||x− y||) ≥ 0

– Service rate: the service rate of a node at x in configuration φ is

µ(x, φ) =
∑

y∈φ\{x}
f(||x− y||)

– Service completion: for a system with state history {φt}t, a node p

born at point xp at time tp leaves at time

τp = inf{t > tp :

t
∫

tp

µ(xp, φs)ds ≥ Fp}

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
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SPATIAL BIRTH AND DEATH PROCESS

N (D): the space of counting measures in (D,D)

In the finite domain case, the state φt at time t is a Markov process

living in the space N (D):

– a node has birth intensity λ at x

– a node located at x has death intensity µ(x, φt)/F

Spatial birth-and-death process with a death rate defined as a shot-

noise of the configuration

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
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CONSTRUCTION: FINITE CASE

Lemma

If D is compact and f is bounded from below by a positive constant

on some non-degenerate interval, then the Markov process {φt}t is

ergodic for any birth rate λ > 0

Proof

– stochastic domination: M/M/p2p queue that is modified so that a

lone customer cannot leave

– Harris-recurrence techniques

Remarks: in general

– non monotonic dynamical system

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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THE M/M/p2p SYSTEM

Consider the following queueing system:

– customers (‘peers’) arrive according to a Poisson process with pa-

rameter λ

– every peer has an independent Exp(1) distributed service require-

ment, and each peer serves every other peer at rate µ; that is, if

there are n peers in the system, each of them has stochastic intensity

(n− 1)µ to leave

After arrival of first peer, the system is never empty

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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THE M/M/p2p SYSTEM (continued)

The system is a birth-death process with balance equations

πnλ = πn+1µ(n + 1)n,

whose solution is the queue’s stationary probability measure

P[Q = n] = πn =

(λ/µ)n−1

n!(n− 1)!
∞
∑

k=1

(λ/µ)k−1

k!(k− 1)!

, n ≥ 1

The infinite sums are expansions of Bessel functions:
∞
∑

n=0

xn

n!n!
= I0(2

√
x),

∞
∑

n=0

xn

(n + 1)!n!
=

1√
x
I1(2

√
x)

In particular, the mean number of peers in system is

EQ =
I0(2

√

λ/µ)

I1(2
√

λ/µ)

√

λ

µ

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
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CONSTRUCTION: INFINITE CASE

Definition over finite time?

Assume F = 1

Proposition

If D = IRd and ∞
∫

1

f(r)rd−1 dr < ∞

then the spatial birth and death point process is uniquely defined on

all finite time intervals [t0, t]

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: A�GRAPHICAL REPRESENTATION

u fixed, t0 < u

Ψt0: space-time arrival P.P.P. in [t0,u]

Point p = (xp, tp) of Ψt0

Graphical representation of Shot-Noise

For all pairs p 6= q ∈ Ψt0

Killing times Tpq

Tpq = Tqp ∼ (tp ∨ tq) + Exp(2f(||xp − xq||))
Bernoulli directions of killing Ipq

Ipq = 1− Iqp ∼ Bernoulli (
1

2
)

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪



✬ ✩
12

PROOF: A–GRAPHICAL REPRESENTATION (continued)

Local finiteness in graphical construction

Lemma If ∞
∫

1

f(r)rd−1 dr < ∞,

almost surely, none of the sets

Np = {Tpq : q ∈ Φt0}
has accumulation points

Proof based on degree properties of the random connection model

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: A–GRAPHICAL REPRESENTATION (continued)

Let p = (x, t) ∈ Ψt0

E
p|Np ∩ (t0,u]| = E

∫

Rd×(t0,∞)

1Tpq≤u(Ψt0 − δp)( dq)

= E

∫

Rd×(t0,u]

1Tpq≤u(Ψt0)( dq)

= λ

∫

Rd

u
∫

t0

P[Exp(f(‖x− y‖)) ≤ u− (t ∨ v)] dv dy

≤ λ(u− t0)

∫

Rd

(

1− e−(u−t0)f(‖y‖)
)

dy

≤ λ(u− t0)






νd + (u− t0)

∫

Rd\B(0,1)

f(‖y‖) dy






< ∞

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
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PROOF: B�CONSTRUCTION ALGORITHM

Not all killing epochs lead to death: only living peers matter

Death times solution of the infinite recursive equation

δp = inf {Tpq : q ∈ Ψt0, δq ≥ Tpq, Ipq = 1}

The Construction Algorithm

gives the solution of this recursive equation on compacts of time

Principle

pick a node, check its earliest killing time;

determine whether the killer’s death time is earlier or later than this

time...

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: B–CONSTRUCTION ALGORITHM (continued)

Algorithm : construction of death process on (t0,∞)

1. Initialization:

– each peer has a stack of ordered death sentences

(peer, time, killer) - earliest on top

– there is a global investigation stack, initially empty

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: B–CONSTRUCTION ALGORITHM (continued)

2. If investigation stack empty:

pick first peer with top sentence with time < u and no certificate;

move this sentence to the investigation stack;

if no such sentence exists, stop;

3. Look at the top of investigation stack, say (x, s,y), and do

– If y’s stack has on top a death sentence or certificate later than

s, then death happens: change the sentence (x, s,y) into death

certificate with same date and return it to the top of x’s stack;

– If y has death certificate earlier than s, the sentence (x, s,y) is

removed from investigation stack and deleted;

– Otherwise move top sentence of y’s stack to investigation stack;

4. Go to 2.

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: B–CONSTRUCTION ALGORITHM (continued)

Lemma If ∞
∫

0

f(r)rd−1 dr < ∞,

for each sentence, the sequence of peers p1,p2, . . . produced by its

investigation is such that (Tpnpn+1
) is decreasing and a.s. finite

Proof For u− t0 small enough, an upper-bound random connection

model with connection function f does not percolate. For more general

u, decompose [t0,u] in small intervals and apply the last observation

Theorem For every peer p born in (t0,∞) the construction algorithm

determines a unique death time δp ≤ t

Corollary Almost surely, the death process is defined uniquely as a

factor of Ψt0

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: B–CONSTRUCTION ALGORITHM (continued)

Graphical Representation State Construction

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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PROOF: C�CONSTRUCTION PROPERTIES

When the process is a.s. well-defined, each peer p is a.s. killed by a

uniquely determined peer κ(p)

Since κ is non-cyclic, its graph is a forest of infinite trees

Conjecture

When D = R
2, the directed graph (Ψt0, {(p, κ(p)) : p ∈ Ψt0}) is al-

most surely a tree

Proposition

For any peer p, the conditional distribution of the number of peers it

kills, given the history of the process up to time tp, is Geom(1
2
)

Observation

This does not show yet that the death process is well-defined when

t0 = −∞
Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths

F. B.✫ ✪
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II. CONSTRUCTION OF THE STATIONARY REGIME

Existence/uniqueness of stationary regimes

Theorem Under the assumptions

(i) a :=
∫

IRd f(||x||)dx < ∞
(ii) f is non-increasing and bounded

there exists a unique stationary regime holding for all initial conditions

made of a homogeneous Poisson point process of initial nodes.

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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II. CONSTRUCTION OF THE STATIONARY REGIME (continued)

Proof Structure: 2 coupling steps

– Coupling 1: couple the two process defined on (0,∞) with and with-

out the addition of a P.P. of initial nodes at time 0 and show that the

effect of this addition vanishes at infinity

– Coupling 2: Coupling from the past: (0,∞) → (−∞), 0)

Class of additional point processes Z:

motion-invariant P.P. with a few additional properties, e.g.

– homogeneous P.P.P.

– dependent thinning of homogeneous P.P.P.

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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COUPLING 1

Two parallel histories

– Black + Green

without add. point

– Black + Red

with add. point

Built by a variant of

the graphical represen-

tation and construction

algorithm

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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COUPLING 1 (continued)

Effect of the addition of an independent homogeneous P.P.P. of peers at

time 0 on the two coupled histories on (0,∞)

Lemma

Under the assumptions of the theorem, the number of special points

(red and green) created by any single point of the additional P.P.P. is

a.s. finite.

Proof supermartingale argument on cardinality of special progeny of

this point

Lemma

Under the assumptions of the theorem, the intensity of special points

(red and green) created by the additional P.P.P. decreases exponen-

tially fast with time

Proof Abel & Cain argument

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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COUPLING 1 (continued)

Proof of First Lemma (Sketch)

Sn(z) set of special points stemming from z at n-th duel concerning

this population

If duel between regular and special:

card(Sn(z)) := card(Sn(z)) + Jn

with Jn ∼ +1 w.p. 1/2 and -1 w.p. 1/2, cond. independent on the past

If duel between special and special:

– either card(Sn(z)) is unchanged (specials of the same kind)

– or it evolves as above (different kinds and same progeny)

– or its evolution is bounded above by the last equation

(different kind and different progeny)

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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COUPLING 1 (continued)

C

A

Future

Poisson

Protected space−time box Proof of Second Lemma (Sketch)

uniformly over time and space,

the offspring cardinality of a

special point (here red) has a

strictly negative drift through

the Cain kills Abel scheme

– This requires proving the

Palm expectation of the

death pressure on specials

is uniformly bounded;

– This implies exponential

decrease of the density of

special points.

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪



✬ ✩
26

COUPLING 2: FROM THE PAST

ΨZ
s,t: configuration at t built by Coupling 1 when initial time is s

and initial condition is Z

Corollary of second Lemma

For all compacts K of space, there is a finite expectation time TK(s)
such that for all t > TK(s), Ψ

Z
s,t has no special points in K

Ψs,t: configuration at t when initial time is s and initial condition is ∅
From Lemma, for all t

∃ lim
s→−∞

Ψs,t = Φt

with Φt translation invariant w.r.t. space and time

Theorem 1 follows

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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3. f-REPULSION

Theorem

For all f such that there exists a non degenerate translation invariant

stationary regime Φ = Φ0, in the stationary regime,

E[
∑

xi∈Φ
f(||xi||)] ≥ E0[

∑

xi∈Φ\0
f(||xi||)]

where IP0 is the Palm probability w.r.t. Φ

Proof: rate conservation principle + Papangelou theorem for point

processes with stochastic intensity

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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SKETCH OF PROOF - TORUS

Φt: state of the SBD at time t.

At: total rate

At =
∑

X∈Φt

At(X),

with, for all X ∈ Φt:

At(X) =
∑

Y∈Φt,Y 6=X

f(||X−Y||))

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪



✬ ✩
29

SKETCH OF PROOF - TORUS (continued)

Rate conservation principle applied to At:

– E
↑: (time) Palm probability of the SBD at birth epochs

– E
↓ at death epochs

r↑E+(I) = r↓E↓(|D|)
with

– I = A0+ − A0 the total rate increase, r↑ the inc. intensity

– D = A0+ − A0 the total rate decrease, r↓ the dec. intensity

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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SKETCH OF PROOF - TORUS (continued)

Since r↑ = r↓,
E
↑(I) = E

↓(D)

From PASTA

E
↑(I) = 2E(n0)

a

|D|
with n0 the total population and

a =

∫

T

f(||x||)m( dx)

with T the torus of area |D|

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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SKETCH OF PROOF - TORUS (continued)

The (total) death point process admits a stochastic intensity w.r.t. the

filtration Ft = σ(Φs, s ≤ t) equal to At

From Papangelou’s theorem dP↓
dP

|F0−=
A0

E(A0)

Since the decrease (in state Φ0−) is of magnitude A0(X) (w.r.t. Φ0−)

with probability
A0(X)
A0

(w.r.t. Φ0−),

E
↓(|D|) = 2E





A0

E(A0)

∑

X∈Φ0

A0(X)

A0

A0(X)



 = 2

E

(

∑

X∈Φ0

(A0(X))2

)

E

(

∑

X∈Φ0

A0(X)

)

= 2
E0

(

(A0(0))
2
)

E0 (A0(0))

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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SKETCH OF PROOF - TORUS (continued)

Rate conservation principle for total rate:

E(n0)
a

|D| =
E0

(

(A0(0))
2
)

E0 (A0(0))

Using the fact that

E0

(

(A0(0))
2
)

≥ E0 (A0(0))
2,

we get

E(n0)
a

|D| ≥ E0 (A0(0))

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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4. BIRTH AND DEATH EQUATIONS

FOR MOMENT MEASURES

Factorial moment measure densities e.g.

E
0
Φ[Φ

!(B)] =
1

β

∫

B

m
[2]
mi(‖x‖)dx

Theorem

The time stationary SBD satisfies the following balance relations:
∫

IRd

m
[2]
mi(‖x‖)f(||x||)dx = λ

RCP for first moment measure

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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4. BIRTH AND DEATH EQUATIONSFOR MOMENT MEASURES (continued)

RCP Hierarchy of Equations for Moment Measures

For all k ≥ 2, for all x1, . . . ,xk in IRd,

m[k](x1, . . . ,xk)





∑

i=1,k

∑

j=1,k, j6=i

f(‖xi − xj‖)





+

∫

IRd

m[k+1](x1, . . . ,xk, z)





∑

i=1,k

f(‖xi − z‖)



dz

= λ
∑

i=1,k

m[k−1](x1, . . . ,xi−1,xi+1, . . . ,xk)

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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II. TCP EXAMPLE

TCP model: D is the Euclidean plane IR2

f(r) =
C

r
1r≤R

[Mathis, Semke, Mahdavi & Ott, 97]

Most results extend to the general f case

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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1. DIMENSIONAL ANALYSIS

4 basic parameters:

– R in meters (m),

– C in bit·m·s−1,

– λ in m−2·s−1,

– F in bits.

π-Theorem

In the TCP case, all system properties only depend on the dimension-

less parameter

ρ =
λFR3

C

Extension for more general f s.t.
∫

f(r)rdr < ∞
Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths

F. B.✫ ✪
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1. DIMENSIONAL ANALYSIS (continued)

Sketch of proof

– choose R as a new distance unit, then

∗ the arrival intensity becomes l = λR2

∗ the download speed constant becomes c = C/R

– now define F as an information unit, then

∗ the download speed constant becomes c = C/(RF)

– take a time unit such that the download speed constant is 1, then

∗ all parameters are equal to 1

∗ the arrival intensity becomes l = λFR3

C

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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1. DIMENSIONAL ANALYSIS (continued)

Terminology: Three cases

– ρ ≫ 1 is called fluid

– ρ ≪ 1 is called hard core

– ρ inbetween is called intermediate

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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NOTATION

In the steady state regime of the P2P dynamics:

– βo the density of the node point process

– µo the mean rate of a typical node

– Wo the mean latency of a typical node

– No the mean number of nodes in a ball of radius R around a typical

node

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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2. FIRST ORDER APPROXIMATION

Fluid, or Poisson heuristic: obtained when ignoring the Palm expec-

tation of the rate, and using the mean rate at a typical location instead:

µf = βf2π

R
∫

r=0

(C/r)rdr = βf2πCR

with βf the density of nodes in this heuristic

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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FIRST ORDER APPROXIMATION AS AN

ASYMPTOTIC

Theorem

When ρ tends to infinity:

– The fluid heuristic is asymptotically tight:

βo → βf , Wo → Wf , µo → µf · · ·
– The law of the latency of a typical node converges weakly to an ex-

ponential random variable of parameter Wf =
F
µf

Proof: fluid limit techniques extended to spatial processes

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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FIRST ORDER APPROXIMATION AS AN ASYMPTOTIC (continued)

In this heuristic/limit

βf =

√

λF

2πCR
,

µf =
√
λF2πCR,

Wf =

√

F

λ2πCR
,

Nf =

√

π

2

√

λFR3

C
=

√

π

2

√
ρ

Proof: Wf = F/µf and βf = λWf (Little’s law) and µf = βf2πCR

Hence

βfµf = λF ⇔ βfβf2πCR = λF

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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COMMENTS

ρ is large when

– either the arrival intensity, or the file size, or the range are large

– or if the download speed constant C is small

The time scale of a peer is Wf =
√

F/(λ2πCR)
If two nodes are at a distance r0 such that

F
C
r0

≪ Wf =

√

F

λ2πCR
⇔ r0 ≪

√

C

2πλFR
=

R√
2πρ

then there is little chance to see these too nodes in the steady state:

hard exclusion below that scale.

r0 tends to 0 in configurations where ρ tends to infinity and R is fixed

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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FIRST ORDER APPROXIMATION AS A BOUND

In the TCP case, the repulsion theorem is equivalent to saying that

βo2πCR ≥ µo

It follows from the relations Wo ≥ F/µo and βo = λWo that

βo ≥ λ
F

βo2πCR

Corollary

βo ≥
√

λF

2πCR
= βf and Wo ≥ Wf

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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HARD CORE REGIME

A stationary point process is hard–core for balls of radius R if there

are no other points in a ball of radius R centered on any point

Conjecture When ρ tends to 0,

– the stationary node point process tends to a hard–core point process

for balls of radius R with intensity βh and latency Wh:

βh =
1

πR2
, Wh =

1

λπR2

– the cdf of the latency converges weakly to

1− e
− t

2Wh

2
, t > 0

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
F. B.✫ ✪
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HARD CORE REGIME (continued)

Rationale

Nf ≪ 1

⇓
√

λFR3

C
≪ 1

⇓
√

λRCF2R2

FC2
≪ 1

⇓
RF

C
≪
√

F

2πλRC
= Wf ≤ Wo

The latency of two nodes within range is negligible w.r.t. the mean latency

Spatial Birth and Death Processes with Poisson Births and Shot-Noise Deaths
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SECOND ORDER APPROXIMATION

Second order heuristic:

– considers µ̂, the unique solution of

µ̂2 = µ2
f

(

1− C

µ̂R
ln

(

1 +
µ̂R

C

))

– then defines

β̂ = λF/µ̂, Ŵh = F/µ̂
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SECOND ORDER APPROXIMATION (continued)

Factorization of the factorial moment measure of order 3

Balance equation for the second order factorial moment density,

which reads

2βoλ = 2m[2](x,y)
C

F

1||x−y||≤R

||x− y||
+
C

F

∫

D

m[3](x,y, z)

(

1||x−z||≤R

||x− z|| +
1||y−z||≤R

||y − z||

)

dz

for all x and y.

Approximations:

m[3](x,y, z) ≈ m[2](x,y)m[2](x, z)

βo

m[3](x,y, z) ≈ m[2](x,y)m[2](y, z)

βo
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SECOND ORDER APPROXIMATION (continued)

Then

βoλ ≈ m[2](x,y)
C

F

1||x−y||≤R

||x− y||
+m[2](x,y)

C

F

1

2

∫

D

1||x−z||≤R

||x− z||
m[2](x, z)

βo
dz

+m[2](x,y)
C

F

1

2

∫

D

1||y−z||≤R

||y − z||
m[2](y, z)

βo
dz

that is

m[2](x,y) ≈ λF
βo

C1||x−y||≤R

||x−y|| + µo

with µo =: C
∫

B(0,R)

m[2](0,z)

βo
1

||z||dz
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SECOND ORDER APPROXIMATION (continued)

So

µo ≈ λF2πC

R
∫

0

1

µo +
C
r

dr

= λF2πC

(

R

µo

− C

µ2
o

ln(1 +
µoR

C
)

)

and

µ̂2 = µ2
f

(

1− C

µ̂R
ln

(

1 +
µ̂R

C

))
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3. SIMULATION

Fix 3 independent parameters and use the 4-rth one to run through

all possible scenarios.

The two first fixed parameters are R = .1 and C = 1

Set Wf to 100. This implies that for all simulations, the fluid model

will predict the same mean latency.

Then, we use Nf as the variable parameter: We use Nf instead of ρ
as main dimensionless parameter

The remaining input parameters of the system are then completely

defined:

λ =
Nf

πR2Wf

, F =
2NfCWf

R
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✶�
✲✁

✶�
✵

✶�
✁

✶�
✷

✶�
✸

◆

❆
✂
✄
☎✆
✝
✄
✞✆
✟✄
✠
✡
☛

❋☞✌✍ ✎✏✍✑✒✓✔✏✌✕

❍✓☞✖ ✗✌☞✘

❍✘✑☞✏✎✔✏✗

❋✒✑✏✖

Latency in function of Nf .
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4. SUPER-SCALABILITY

Dimensional analysis tells us that

Wo(λ,F,C,R) = M

(
√

πλFR3

2C

)

Wf(λ,F,C,R)

= M

(
√

πλFR3

2C

)
√

F

λ2πCR

where M only depends on Nf =
√

πλFR3

2C
and is decreasing.

λ and R are both win-win parameters. As they increase, both terms in

the RHS decrease and the mean latency hence tends towards 0, while

the behavior of the system becomes more and more fluid.
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SCALABILITY & SUPER SCALABILITY

Single Server

M/M/1 Queue

Does not scale

W =
1

µ− λ
, λ < µ

Infinite Server

M/M/∞ Queue

Scales

W =
1

µ

Network Limited P2P

Spatial B & D P2P

Super Scales

W =
m(λ)√

λ
,m(·) ↓
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ADAPTING THE PEERING RADIUS

Mean Constant Number of Nearest Nodes: take as neighbors the

nodes in a ball with a radius R such that the mean number of other

nodes in the ball is L i.e. πR2βo = L, where βo is the (unknown) steady

state intensity of the point process φt. Then

f(r) =
C

r
1r≤R, R =

√

L

πβo

General Case

f(r) =
C

r
1r≤R, R = κβ−α

o

(DA) All system properties only depend on the parameter

ρ =
λF

C
κ

3
1−2α
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ASYMPTOTIC BEHAVIOR

General α case: R = κβ−α

think of all parameters fixed and let λ tend to infinity

– β is of the order λb with b = 1
2−α the density exponent

– W is of the order λw with l = α−1
2−α the latency exponent

– R is of the order λr with r = α
α−2

the radius exponent

– N is of the order λn with n = 1−2α
2−α

the swarm exponent

2 regimes, both compatible with fluid:

– For α > 2, we get a node density and a latency which both tend to 0

when λ tends to ∞: Heaven’s–flash

– For α < 1, we get a density and swarm that tend to infinity and a

latency which tends to zero when λ tends to ∞: Swarm–flash
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EXTENSIONS & OPEN QUESTIONS

Extensions (P2P version to be presented at IEEE Infocom 13)

– Seeders

– Wireless

Challenges (Applied Probability Journal Paper in preparation)

– Hard core regime

– Higher order approximations based on moment measures

– Chunks
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CONCLUSION

A new point process dynamics for handling P2P and CDN

Has a unique stationary regime which exhibits a form of repulsion

Satisfies a hierarchy of birth and death type integral relations which

lead to good approximations
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