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Struture of the Leture

Background and Motivation

I. Wireless Birth-Death Processes
with A. Sankararaman, IEEE Tr. IT, 2017
1. Stability, 2. Clustering, 3. Quantitative results

II. Interference Queuing Networks
with S. Foss & A. Sankararaman, Annals AP 2019
1. Stability, 2. Minimal solution, 3. Initial condition

III. Cellular Birth-Death Processes
with A. AlAmmouri & J. Andrews, arXiv 1906.04683
1. Stability, 2. Metastability, 3. Quantitative results
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Motivations in Wireless Networks

Lack of understanding and analysis of

Space-time interactions

– Static spatial setting well understood: Stochastic Geometry
[FB, Blaszczyszyn 01]

– Churn taken into account in flow-based queuing
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]
[Jiang, Walrand 09]

Contents of this lecture:

Models with such dynamics in stochastic geometry
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I. Wireless Birth-Death Proesses

Setting: Infrastructureless Wireless Network:
Ad-hoc Networks, D2D Networks, IoT

Statistical assumptions: Markov Models:
Poisson, Exponential

Mathematical tools:
Point processes, Fluid, Mean-field approximation
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Stohasti Network Model

S = [−Q,Q]× [−Q,Q]: torus where the wireless links live

Links: (Tx-Rx pairs)

Links: arrive as a PPP on IR× S with intensity λ:
Prob. of a point arriving in space dx and time dt: λdxdt

Each Tx has an i.i.d. exponential file size
of mean L bits to transmit to its Rx

A point exits after the Tx finishes transmitting its file

Φt: set of locations of links present at time t:

Φt = {x1, . . . ,xNt}, xi ∈ S
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Interferene and Servie Rate

Interference seen at point x due to configuration Φ

I(x,Φ) =
∑

xi∈Φ6=x

l(||x− xi||)

– Distance on the torus

– l(·): IR+ → IR+: path loss function

The speed of file transfer by link at x in configuration Φ is

R(x,Φ) = B log2

(

1 +
1

N + I(x,Φ)

)

B,N Positive constants
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B& D Master Equation

A point born at xp and time bp with file-size Lp dies at time

dp = inf











t > bp :

t
∫

u=bp

R(xp,Φu)du ≥ Lp











Spatial Birth-Death Process

– Arrivals from the Poisson Rain

– Departures happen at file transfer completion
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Properties of the Dynamis

The statistical assumptions imply that Φt is a Markov Pro-
cess on the set of simple counting measures on S

Euclidean extension of the flow-level models of
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]
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Questions

Existence and uniqueness of the stationary regimes of Φt

Characterization of the stationary regime(s) if existence
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Main Stability Results

a :=

∫

x∈S

l(||x||)dx

Theorem

– If λ > B
ln(2)La, then Φt admits no stationary regime.

– If λ < B
ln(2)La

, and r → l(r) bounded and monotone,

then Φt admits a unique stationary regime

Necessary condition by Palm calculus, Stochastic intensity

Sufficient condition by fluid limit

Corollary
For the path-loss model l(r) = r−α, α ≥ 2, for all λ > 0, and all
mean file sizes, the process Φt admits no stationary-regime
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Main Qualitative Result

Φ stationary point-process on S with Palm distribution P
0

Clustering
Φ is clustered if for all bounded, positive, non-increasing
functions f(·) : R+ → R

+, the shot-noise

F(x,Φ) :=
∑

y∈Φ\{x}

f(||y − x||)

satisfies
E
0[F(0,Φ)] ≥ E[F(0,Φ)]
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Main Qualitative Result (continued)

Theorem
The steady-state point process, when it exists, is clustered

Follows from Palm calculus + association inequalities

Interpretation of the result
The steady-state interference measured at a uniformly ran-
domly chosen point of is larger in mean than that at a uni-
formly random location of space.

Key Observation

– Dynamics Shapes Geometry

– Geometry Shapes Dynamics
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A sample of Φ when λ = 0.99 and l(r) = (r + 1)−4.
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Proof of Instability in the Low SINR Case

L = 1, B = 1, N = 1 to simplify notation

If dynamics stationary, it must satisfy Rate-Conservation

On average, what comes in is what goes out

Apply RCP to population

λ|S| = E

∑

x∈Φ0

R(Φ0,x)

mean birth rate = mean death rate

Apply RCP to total interference
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Proof of Instability in the Low SINR Case (continued)

PASTA and Campbell Papangelou’s Theorem
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Proof of Instability in the Low SINR Case (continued)
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Proof of Stability

Discretization Define a path loss function lǫ s.t.

lǫ(x,y) ≥ l(x,y), ∀x,y ∈ S

lǫ(x,y) = lǫ(ai, aj), ∀x ∈ Ai,y ∈ Aj

Φǫ(t): associated SBD

Xi(t) = Φǫ(t,Ai)

Lemma When coupling arrivals
and potential departures in Φ
and Φǫ appropriately,

Φt(S) ≤ ||X(t)||1, ∀t

X(t) stable implies Φ(t) stable
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Quantitative Results

Heuristics for the intensity of the steady-state process

1. Poisson or first order heuristic βf
Derived by neglecting clustering and assuming Poisson
Mean-field interpretation like in Aloha analysis

2. Cavity of second-order heuristic βs based on a second-
order cavity approximation of the dynamics
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Poisson Heuristi

Exact Rate Conservation Law:

λL = βE0
Φ

[

log2

(

1 +
1

N + I(0)

)]

.

Poisson Heur.: Largest solution to the fixed point equation:

λL =
βf

ln(2)

∞
∫

z=0

e−Nz(1− e−z)

z
e−βf

∫

x∈S(1−e−zl(||x||))dxdz

Ignores the Palm effect and uses the fact that if X,Y are non-
negative and independent,

E

[

ln

(

1 +
X

Y + a

)]

=

∞
∫

z=0

e−az

z
(1− E[e−zX])E[e−zY]dz.

The Poisson heuristic is tight in heavy and light traffic
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Seond Order Heuristi

The intensity βs is given by

βs =
λL

B log2

(

1 + 1
N+Is

)

where Is is the smallest solution of the fixed-point equation

Is = λL

∫

x∈S

l(||x||)

B log2

(

1 + 1
N+Is+l(||x||)

)dx
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Second Order Heuristic (continued)

Rationale based on ρ2(x,y): second moment measure of Φ

Rate Conservation for ρ2: when considering Is as a constant

ρ2(x,y)
1

L
B log2

(

1 +
1

N + Is + l(||x− y||)

)

= λβs

From the definition of second moment measure,

Is =

∫

x∈S

l(||x||)
ρ2(0,x)

βs
dx

which gives the fixed point equation for Is

The formula for βs follows from Rate Conservation for ρ1 = βs
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Simulations

Second−Order Heuristic

Poisson Heuristic

95% confidence interval when l(r) = (r + 1)−4
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II. Interferene Queuing Networks

Aim: extension of dynamics to R
2 (scalability)

Setting

– Discretization: queuing dynamics on a grid

– Low SINR: linearization of the log

Mathematical Tools

– Interacting particle systems

– Coupling from the past

– Rate conservation principle
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Assumptions, Notation

Queue i at i ∈ Z
d has state xi(t) ∈ N at time t

Arrivals to queues:
i.i.d. Poisson processes of rate λ > 0

Interference sequence: {ai}i∈Zd

non-negative, a0 = 1, symmetric (ai = a−i), irreducible
and with finite support.

Service discipline:
generalized processor-sharing with rate of queue i at time t:

xi(t)
∑

j∈Zd ajxi−j(t)
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Constrution

(Ai,Di), i ∈ Z
d, i.i.d.

Ai and Di independent
Ai, PPP intensity λ

Di, PPP intensity 1

For all finite t, construction of {xi(t)}i as a factor of {Ai,Di}i
Boolean percolation argument

decomposition of [0, t] in small enough intervals
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Stability, Minimal Stationary Regime

Stability: when starting the system empty at time 0, weak
convergence of the state of any finite set of queues as t → ∞

Theorem If

λ <
1

∑

i∈Zd ai

– The network is stable

– The weak limit is the minimal stationary regime

Proof: CFP

The stability condition λ < 1
∑

i∈Zd
ai

is sharp

(current proof in special cases only)
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Idea of Proof

Intuition

Monotonicity

Infinite space, Torus, and Cube

Coupling from the Past
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Idea of Proof (continued)

Monotonicity
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Idea of Proof (continued)

Backward Construction
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Idea of Proof (continued)

Infinite, Finite, Torus
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Idea of Proof (continued)

Torus
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Idea of Proof (continued)

Mean Queue Length in Torus
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Idea of Proof (continued)

Cube
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Idea of Proof (continued)
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Quantitative Properties of Minimal Stationary Regime

Lemma The weak limit, when it exists, satisfies

E[x0] =
λa0

1− λ
∑

i∈Zd ai

In addition its coordinates (xi)i∈Zd are associated

Association: analogue of of clustering in the continuum

Remarkable fact: closed form for the mean for this
infinite-dimensional, non-reversible, non-asymptotically in-
dependent particle system
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Uniqueness

Below, assume that λ < 1
∑

i∈Zd
ai

Proposition If E[x2
0] < ∞, then the minimal solution is the

unique stationary solution with finite second moment

Proposition If

λ <
2

3

1 + c
∑

j∈Zd aj
where c =

√

a20 + a0
∑

j∈Zd\{0} aj − a0
∑

j∈Zd\{0} aj

then E[x2
0] < ∞
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Domain of Attration of the Minimal Solution

Theorem If λ < 2
3

1+c
∑

j∈Zd
aj

and the initial condition satisfies

sup
i∈Zd

xi(0) < ∞

then {xi(·)}i∈Zd converges weakly to the minimal stationary
solution

Theorem For d = 1, for all λ > 0, there exists

1. A deterministic sequence (αi)i∈Z such that if xi(0) ≥ αi for
all i ∈ Z, then limt→∞ x0(t) = ∞ a.s.

2. A distribution ξ on N s.t. if {xi(0)}i∈Z is i.i.d. with marginal
distr. ξ, then limt→∞ x0(t) = ∞ a.s.
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Divergene Examples
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Divergence Examples (continued)
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III. Cellular Birth-Death Proesses

Aim: extend the dynamics of I. to cellular

Setting

– Single Cell: uplink

– Low SINR: linearization of the log

Mathematical Tools

– Stability, metastability

– Rate conservation principle

– First and second order heuristics
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System Model

A single BS at the origin with association

– D compact e.g. ball of fixed radius centered at the BS

– Users arrive in D according to a Poisson rain of intensity λ

– Each user transmits a file to the BS

– Once the file is transmitted, the user leaves the system

– Files are exponential of mean length L = 1
µ
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Dynamis

Markov Spatial Birth-Death Process Φt

with state space counting measures Φ on D

Interference seen at BS for point x in configuration Φ

I(x,Φ) =
∑

xi∈Φ6=x

Pxil(||xi||)

– Attenuation l: continuous, non-increasing and bounded

– Power control: Px = l(||x||)−β, β ∈ [0, 1]

The speed of file transfer on link between x and BS in Φ

R(x,Φ) = B log2

(

1 +
Pxl(||x||

N + I(x,Φ)

)

Death rate of x proportional to R(x,Φ)
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Stability Condition

λc =
B

ln(2)L

Theorem Under assumptions on l,

– If λ > λc, then Φt is transient

– If λ < λc, then Φt is ergodic (unique stationary regime)

Stability condition oblivious of

– thermal noise

– attenuation function and power control
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Steady State Distribution

For all λ such that the system is stable, let γ(x) be the
density of the steady state point process Φ

From RCP, for all x ∈ D, in the low SINR case

λL = γ(x)
B

ln(2)
E
0
x

[

l(||x||)1−β

∑

y∈Φ, y 6=x l(||y||)
1−β

]
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Poisson Heuristi

Under the Poisson heuristic, if the system is stable, then

γf(x) =
Z∗

l(||x||)1−β

with Z∗ solution of the consistency equation

λL ln(2)

B
= Z

∞
∫

0

e−tN exp



−Z

∫

D

(

1− e−tl(||y||)1−β
)

l(||y||)1−βdy



dt
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Consisteny Equations: Numerial Results

l(r) = 1
(1+r)η

L = 100 bits

B = 1 MHz

N = −50 dBm

For λ < λc

unique solution

For λc < λ < λm

two solutions
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Metastability through Mean-Field
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Metastability through Dynamis
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First and Seond Order Heuristis

First order heuristic by consistency equation
Second order heuristic by cavity method
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Conlusions

Representation of space-time interactions in wireless netw.

No reversibility, no asymptotic independence

Dynamic notion of capacity involving both queuing and IT

Generative model for clustering

Good Mean-field heuristics in general

Exact analytical results in the low SINR case

Metastability in the cellular extension.

Particle system version of dynamics with closed forms
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