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Abstract

We deal with the coupled problem describing the interaction between a viscous incompressible fuid and a vis-
coelastic structure. For this kind of problem, the main strategies that are usually referred to in the literature
are:

• Standard explicit coupling schemes based on Dirichlet-Neumann interface conditions, which are known
to be unconditionally unstable whenever the amount of added-mass effect is large.

• Implicit or semi-implicit coupling schemes, which require a higher computational effort.

• Explicit schemes based on Robin-Robin interface coupling derived from Nitsche’s method, whose accuracy
demands restrictive CFL conditions or corrective iterations.

Here we present a family of Robin-Neumann explicit coupling schemes, involving a Robin interface con-
dition for the fluid, which is intrinsically consistent when dealing with thin-walled structures [1]. The implicit
treatment of the sole solid inertia ensures added-mass free stability and the explicit treatment of the solid
viscoelastic contributions enables full fluid-solid splitting. We show that the resulting scheme with first-order
extrapolation provides unconditional stability and optimal first-order accuracy.

In the case of the coupling with a thick-walled structure [2], we show that a consistent generalized-Robin
interface condition can be recovered at the space semi-discrete level through a mass-lumping approximation

in the solid. The methods preserve the stability properties of the thin-walled case. As regards accuracy, the

splitting introduces an error perturbation whose leading term scales as O(τ2
r−1

/
√
h), where r stands for the

extrapolation order. The h−1/2 loss is related to the non-uniformity of the discrete solid viscoelastic operator
and not to the mass-lumping approximation.
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The linear model problem

For simplicity, we consider the following linear coupled prob-
lem:

• find the fluid velocity u : Ωf × R
+ → R

d,

• the fluid pressure p : Ωf × R
+ → R,

• the structure displacement d : Ωs × R
+ → R

d

• and the structure velocity ḋ : Ωs × R
+ → R

d, such that

(Fluid)

{

ρf∂tu− divσf(u, p) = 0 in Ωf,

div u = 0 in Ωf,
(1)

(Solid)

{

ρs∂tḋ− divσs(d, ḋ) + αρsḋ = 0 in Ωs,

ḋ = ∂td in Ωs,

(2)

(Coupling)

{

u = ḋ on Σ,

σs(d, ḋ)ns = −σf(u, p)nf on Σ

(3)

Numerical investigations also include the non-linear case (e.g., Navier-Stokes, non-linear elastodynamics).

Variational formulation

We introduce some functional spaces, linear and bilinear forms:

V f def= [H1(Ωf)]d,

Q
def
= L2(Ωf),

V s def=
{

vs ∈ [H1(Ωs)]d /vs|Γd = 0
}

,

W
def
=

{

(vf,vs) ∈ V f × V s /vf|Σ = vs|Σ
}

,

a(u,vf)
def
= 2µ

(

ǫ(u), ǫ(vf)
)

Ωf,

b(p,vf)
def
= −(p, divvf)Ωf, l(vf)

def
= (fΓ,vf)Γ,

ae(d,vs)
def
=

(

σ(d), ǫ(vs)
)

Ωs,

avh(ḋ,v
s)

def
= β

(

σ(ḋ), ǫ(vs)
)

Ωs + αρs(ḋ,vs)Ωs,h.

The coupled problem (1)-(3) admits the following variational formulation, including a mass-lumping approxi-
mation in the structure inertia: for t > 0, find (u(t), ḋ(t)) ∈ W , p(t) ∈ Q and d(t) ∈ V s such that ḋ = ∂td
and, for all (vf,vs) ∈ W and q ∈ Q,

ρf
(

∂tu,v
f)

Ωf + a(u,vf) + b(p,vf)− b(q,u) + ρs
(

∂tḋ,v
s)

Ωs,h + ae(d,vs) + av(ḋ,vs) = l(vf) (4)

Generalized Robin-Neumann schemes

Piecewise affine finite element spaces are denoted by V f
h ⊂ V f, Qh ⊂ Q, V s

h ⊂ V s, where the subscript
h > 0 indicates the level of spatial refinement. We will consider the standard solid- and fluid-sided discrete

lifting operators, Ls
h and Lf

h and the interface operator defined by Bh
def
=

(

Ls
h

)∗Ls
h, where

(

Ls
h

)∗
stands for

the adjoint operator of Ls
h with respect to the lumped-mass inner product in V s

h, denoted by (·, ·)Ωs,h. In the
specific case of the coupling with a thin solid (i.e. Ωs = Σ), we simply have Bh = IdΣ.
The notation x⋆ denotes the r-th order extrapolation of x, namely x⋆ = 0 if r = 0, x⋆ = xn−1 if r = 1 and
x⋆ = 2xn−1 − xn−2 if r = 2.

Algorithm 1: Explicit Generalized-Robin-Neumann scheme

For n > r,

1. Fluid step (generalized Robin): find (un
h, p

n
h) ∈ V f

h ×Qh such that, for all (vfh, qh) ∈ V f
h ×Qh,











ρf
(

∂τu
n
h,v

f
h

)

Ωf + a(un
h,v

f
h) + b(pnh,v

f
h)− b(qh,u

n
h) + sh(p

n
h, qh) +

ρs

τ

(

Bhu
n
h,v

f
h

)

Σ

=
ρs

τ

(

Bh(ḋ
n−1
h + τ∂τ ḋ

⋆
h),v

f
h

)

Σ + ρf
(

∂τu
⋆
h,Lf

hv
f
h

)

Ωf + a(u⋆
h,Lf

hv
f
h) + b(p⋆h,Lf

hv
f
h) + l(vfh)

2. Solid step (Neumann): find (ḋ
n
h,d

n
h) ∈ V s

h × V s
h such that ḋ

n
h = ∂τd

n
h and, for all vsh ∈ V s

h,

ρs
(

∂τ ḋ
n
h,v

s
h)Ωs,h + ae(dnh,v

s
h) + avh(ḋ

n
h,v

s
h) = −ρf

(

∂τu
n
h,Lf

hv
s
h

)

Ωf − a(un
h,Lf

hv
s
h)− b(pnh,Lf

hv
s
h)

The main features of these schemes are:

• The so-called Robin consistency of the generalized-Robin interface condition for the fluid, since it can
formally be interpreted as the discrete counterpart of σf(u, p)nf + ρsBh∂tu = ρsBh∂tḋ− σs(d, ḋ)ns.

• A full fluid-solid splitting obtain through appropriate extrapolations of the solid velocity and stress on the
interface and mass-lumping approximation in the structure inertia. The implicit treatment of the solid inertia
ensures added-mass free stability.

• A standard solid Neumann step.

Stability and convergence analysis

Theorem 1.Assume that fΓ = 0 (free system) and let
{

(un
h, p

n
h,d

n
h, ḋ

n
h)
}

n>r be the sequence given
by Algorithm 1. Suppose, if r = 2, that the following condition hold:















τ

(

α + β
(ωe
h

)2
)

< δ,

τ5
(ωe
h

)6
+ τ2

(ωe
h

)2
(

α + β
(ωe
h

)2
)

< γ,

where ωe
def
= Cinv

√

βe/ρs, 0 ≤ δ ≤ 1 and τγ < 1. Then the schemes are energy stable.

Theorem 2.Let (u, p,d, ḋ) be the solution of the coupled problem (4) and {(un
h, p

n
h,d

n
h, ḋ

n
h)}n>r be the

discrete solution given by Algorithm 1 with appropriate initial data. We assume that the exact solution
has enough regularity. Then, we have the following error estimates, for n > r such as nτ < T :

Enh . c1h + c2τ + c3

{

τ2
r−1

coupling with thin-walled structures,

τ2
r−1

/
√
h coupling with thick-walled structures.

Numerical results

The left hand side figure reports the convergence history for a thick-walled solid and for τ = O(h) whereas the
right hand side figure uses the scaling τ = O(h2) with an undamped solid (i.e. α = β = 0).

In this simulation of a flow around an elastic structure (using 3D Navier-Stokes equation in ALE formulation
for the fluid), the solution given by our scheme with r = 1 remains very close to the one given by the implicit
scheme (τ = 10−3).

In this 3D-”baloon-type” example, where a parabolic velocity is enforced at both boundaries, we have reported
the interface mid-point displacement magnitude of the bottom structure (τ = 0.025).

This is the well-known example of the flow within a straight damped elastic tube (α = 1, β = 10−3), showing
the propagation of a pressure-wave. Left: snapshot, center: τ = 10−4, right: damped solid τ = 4.5 · 10−5.
The scheme retrieves the overall dynamics of the solution provided by implicit method.

References

[1] M. Fernández, J. Mullaert, M. Vidrascu, Explicit Robin-Neumann schemes for the coupling of incompressible
fluids with thin-walled structures, Comput. Methods Appl. Mech. Engrg. 267 (2013) 566–593.

[2] M. Fernández, J. Mullaert, M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for in-
compressible fluid-structure interaction: stability analysis and numerics, Research Report RR-8384, Inria,
http://hal.inria.fr/hal-00875819 (2013).


