Generalized Robin-Neumann explicit coupling schemes

for fluid-structure interaction
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We deal with the coupled problem describing the interaction between a viscous incompressible fuid and a vis-
coelastic structure. For this kind of problem, the main strategies that are usually referred to in the literature
are:

e Standard explicit coupling schemes based on Dirichlet-Neumann interface conditions, which are known
to be unconditionally unstable whenever the amount of added-mass effect is large.

e Implicit or semi-implicit coupling schemes, which require a higher computational effort.

e Explicit schemes based on Robin-Robin interface coupling derived from Nitsche's method, whose accuracy
demands restrictive CFL conditions or corrective iterations.

Here we present a family of Robin-Neumann explicit coupling schemes, involving a Robin interface con-
dition for the fluid, which is intrinsically consistent when dealing with thin-walled structures [1]. The implicit
treatment of the sole solid inertia ensures added-mass free stability and the explicit treatment of the solid
viscoelastic contributions enables full fluid-solid splitting. We show that the resulting scheme with first-order
extrapolation provides unconditional stability and optimal first-order accuracy.

In the case of the coupling with a thick-walled structure [2], we show that a consistent generalized-Robin
interface condition can be recovered at the space semi-discrete level through a mass-lumping approximation
in the solid. The methods preserve the stability properties of the thin-walled case. As regards accuracy, the

e . . r—1
splitting introduces an error perturbation whose leading term scales as O(72  /v/h), where 7 stands for the

extrapolation order. The h=1/2 |oss is related to the non-uniformity of the discrete solid viscoelastic operator
and not to the mass-lumping approximation.
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For simplicity, we consider the following linear coupled prob-
lem:

e find the fluid velocity w : O x RT — R,

e the fluid pressure p : Of x RT 5 R,

e the structure displacement d : ° x RT — R4

e and the structure velocity d: xRt = Rd, such that

(f . . f .
(Fluid) < pou —dive (u,p) =0 in A 1) (Coupling)
dvu=0 in ),
\ u=d on X,
(Solid) < poid — dive(d, d) + O‘PSd =0 in o"(d, d)’ns = O'f(’u, p)nf on X
\ d=0d in O 3)
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Numerical investigations also include the non-linear case (e.g., Navier-Stokes, non-linear elastodynamics).

We introduce some functional spaces, linear and bilinear forms:

Y a(u,v) < 2p(elu). €(v))

0% def L2, b(p, v') def —(p, divo) o, 1(v) Gt (f', o),
Ve S (vt e [HY(O)! ) vl = 0}, a“(d, ) < ( (d), (v"))
W E {009 e VI Vi /olln=o'ls), af(do’) € Ba(d), e(v")) g + ap'(d, o)

The coupled problem (1)-(3) admits the following variational formulation, including a mass-lumping approxi-
mation in the structure inertia: for ¢t > 0, find (u(t),d(t)) € W, p(t) € @ and d(t) € V® such that d = 0;d
and, for all (fvf v°) € W and q € Q,

o (O, vf) of T alu, v') + b(p, v') — b(g, u) + p° (0¢d, v°) s+ a’(d,v®) + a'(d,v%) = l(v")  (4)

Piecewise affine finite element spaces are denoted by V% c v Qp C Q, V; C V*, where the subscript
h > 0 indicates the level of spatial refinement. We will consider the standard solid- and fluid-sided discrete

lifting operators, £} and Ef and the interface operator defined by Bj, = def (ﬁs) 1, Where (C%)* stands for
the adjoint operator of L'S W|th respect to the lumped-mass inner product in VS, denoted by (-, -)Qs’h. In the
specific case of the coupling with a thin solid (i.e. (2° =), we simply have B;, = Ids.

The notation 2* denotes the r-th order extrapolation of x, namely z* = 0 if r = 0, 2* = 2" 1 if r = 1 and
o* =2a" L g2 =9

ALGORITHM 1: EXPLICIT GENERALIZED-ROBIN-NEUMANN SCHEME

For n > r,

1. Fluid step (generalized Robin): find (u}, p}) € V% X @}, such that, for all (fv%, qr) € V% X Qy,

r p°
< o (Orul, v) o + a(u};, o)+ blpf, 0}) — blan wh) + sn(pfsan) + = (Buuf o))
IOS . —
\ — ?(Bh(dh —|— 70 dh) )Z +p (aTuha [’hvh)Qf + CL(uh? thh) + b<ph7 [’hvh> l(vg)

2. Solid step (Neumann): find (dj, d}) € V5 x V5 such that dj, = 9-d} and, for all v € V¥,

ps((%dz, vy )os p +at(dy), vy) + ay(dy, v}) = pf(é?Tuh, Ehvh)Q — a(uy, cl 1v7) — b(py, thh)

The main features of these schemes are:

e The so-called Robin consistency of the generalized- Robln mterface condition for the fluid, since it can
formally be interpreted as the discrete counterpart of o (u, p)n! + p*B,8iu = p°Bydid — o(d, d)n’®
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e A full fluid-solid splitting obtain through appropriate extrapolations of the solid velocity and stress on the
interface and mass-lumping approximation in the structure inertia. The implicit treatment of the solid inertia
ensures added-mass free stability.

e A standard solid Neumann step.

Theorem 1. Assume that f' = 0 (free system) and let {(uf, p},
by Algorithm 1. Suppose, if r = 2, that the following condition hold:

T (a+5 (%)2> <0,
PG (06 <

Cinv/Be/p°, 0 <6 <1 and 7y < 1. Then the schemes are energy stable.

Theorem 2. Let (u, p, d, d) be the solution of the coupled problem (4) and {(uy, py, dy, dZ)}n>7~ be the
discrete solution given by Algorithm 1 with appropriate initial data. We assume that the exact solution
has enough reqularity. Then, we have the following error estimates, for n > r such as nt < 1':

Z,d}i)}nw be the sequence given

def
where we =

r—1
2 coupling with thin-walled structures,

5;; < cth 4+ coT + ¢3 or-1 ‘ ' .
T/ Vh coupling with thick-walled structures.
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The left hand side figure reports the convergence history for a thick-walled solid and for 7 = O(h) whereas the
right hand side figure uses the scaling 7 = O(h?) with an undamped solid (i.e. o = 3 = 0).
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In this simulation of a flow around an elastic structure (using 3D Navier-Stokes equation in ALE formulation

for the fluid), the solution given by our scheme with » = 1 remains very close to the one given by the implicit
scheme (7 = 1073).
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In this 3D-"baloon-type” example, where a parabolic velocity is enforced at both boundaries, we have reported
the interface mid-point displacement magnitude of the bottom structure (7 = 0.025).
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This is the well-known example of the flow within a straight damped elastic tube (o =1, § = 10_3), showing
the propagation of a pressure-wave. Left: snapshot, center: 7 = 1074, right: damped solid 7 = 4.5 - 107°.
The scheme retrieves the overall dynamics of the solution provided by implicit method.

References

[1] M. Fernandez, J. Mullaert, M. Vidrascu, Explicit Robin-Neumann schemes for the coupling of incompressible
fluids with thin-walled structures, Comput. Methods Appl. Mech. Engrg. 267 (2013) 566-593.

2] M. Fernandez, J. Mullaert, M. Vidrascu, Generalized Robin-Neumann explicit coupling schemes for in-
compressible fluid-structure interaction: stability analysis and numerics, Research Report RR-8384, Inria,
http://hal.inria.fr/hal-00875819 (2013).




