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NOTATION

Q@ Let V C R™ be a finite set which represents the pixels/voxels at
which we observe imaging data.
Let X ={g:V — R}.
Let Y ={g:V — {0,1}}
Suppose that we observe a calibration dataset (X;, Y;)" ; of

random images, where X; : V — R represents the th observed
calibration image and Y; : V — {0, 1} outputs labels at each v € V
giving 1s at the true location of the objects in the image X; that
we wish to identify and Os elsewhere.

Given a function f: X — X, we shall write f(X,v) to denote
f(X)(v) for all v € V.




FURTHER NOTATION

Q Let s: X — X be a score function such that given an image pair
(X,Y) e X x)Y, s(X) is a score image in which s(X,v) is intended
to be higher at the v € V for which Y (v) = 1.

© The score function can for instance be the logit scores obtained

from a deep neural network image segmentation method to the
image X.

@ Given X € X, let M(X) € Y be the predicted mask.
@ Let P(V) be the set of subsets of V.




CONFIDENCE SETS

In what follows we will use the calibration dataset to construct a
confidence functions 7,0 : X — P(V) such that for a new image pair
(X,Y) ~ D, given error rates oy, as € (0,1) we have

PI(X)C{veV:Y(v)=1})>1-—ay,

and P{veV:Y(v)=1} COX)) > 1— as.







Assumption 1. Given a new random image pair, (X, 11, Y,+1), suppose that (X;,Y;)" ' is an

1=
exchangeable sequence of random 1mage pairs in the sense that

{(le Yl)a SR (Xn—}—l': 1/’;‘1—}—1)} —d {(Xﬂr(l}:l Ya‘(l))? vy (Xﬂ'(ﬂ-l-l]liyﬂ‘(ﬂ'l‘l))}

for any permutation o € 5,,+1. Here =; denotes equality in distribution and .S,, 1 is the group of
permutations of the integers {1,...,n + 1}.

Assumption 2. (Independence of scores) (X, Y;)"",' is independent of the functions s, fg, fr.
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Theorem 2.1. (Marginal inner set) Under Assumprionsami given a1 € (0,1), let
Ar(aq) = inf{ - Z 1[r; <\ > (1 —ap)(n+1)] } |

A n
1=1

and define [(X) ={v eV : fi(s(X),v) > Ar(az2)}. Then,
]P(I(X.n+1) C {’U ceV: Yn_|_1('U) = ].}) > 1 — 1.




l\; MARGINAL OUTER SET

9 om0

Theorem 2.2. (Marginal outer set) Under Asswnprions!and given as € (0,1), let
(a—agm+1ﬂ}

n

Mo(ag) = mf{A —Zl[%i:)\]>

1=1
and define O(X) ={v € V: fo(—s(X),v) < Ao(asz)}. Then,
P ({’U cV: }’;1,4_1(‘1)) = ].} C O(.Xn_|_1)) > 11— Q9.
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b /1 (5(X).v) = fo(s(X).v) = dp(M(X), v)

d,(A,v) = sign(A, v) min{p(v,e) : e € E(A)},










1 100 100+ .

-100 -100 4

0.24 |
;] .il"... ‘III‘L._.__.

-150 -150 4

2/10/2012
Oh Z20>
CVPN '
&N WAS |







Original scores Distance transformed scores Bounding box scores
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5 VERIFYI

Inner coverage Outer coverage

=o=Qriginal scores =o=Qriginal scores
—BB scores = BB scores
|—DT scores | |==DT scores
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Inner Ratio Outer Ratio

=== Qriginal scores === Qriginal scores
= BB scores = BB scores
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© DETERMINING THE PROPORTION CAPTURED

Inner proportion Outer proportion

=== Qriginal scores
== BB scores
-=== DT scores

===Qriginal scores
= BB scores
-|==DT scores
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or meaningful

® Preprint availab al confidence sets for
biomedical image segmentation." arXiv preprint arxiv:2410.03406 (2024).
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Theorem 2.8. Foreachv € V, let fo(s(X),v) = d,(M(X),v) and define O(X) as in Secti()n
Suppose that H,(M(X;),Y;) < k, some k € R, forall i € J, for some J C {1,...,n} such that

ﬂ > 1 — ag. Then Hp(J\[(XnH) X ) & Inpamcular ngp(J\»[(XnH),YnH) el
then it follows that H,(O(X,+1), Ynt1) < 2k.
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-\ Corollary 2.5. (Joint from marginal) Assume Assumptions|l|and hold and given o € (0,1) and
a1, € (0,1) such that oy + ao < a, define I(X) and O(X) as in Theorems|2.1\and|2.2| Then
(I—a)(n+1)]

P(I(Xns1) Clo €V :Visi(v) =1} CO(Xpsr)) > . . (5)
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A.6.5 JOINT 90% CONFIDENCE REGIONS
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