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A leading example

In real data analysis, researchers face many choices:

� variable transformation (log, sqrt, splines, etc.)

� inclusion of covariates and interactions

� outlier deletion

� ...

Example

� one over 4 possible predictors X1,X2,X3,X4

� gender + (a subset of) other 4 covariates/mediators

� possible interaction between X1/X2 and gender

−→ We easily get lost in the forest of possible models!
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p-hacking and the replicability crisis

p-hacking (data snooping or data dredging)

Performing many statistical tests on the same data and only

reporting those that give significant results

Consequences

Dramatically increases and understates the risk of false positives

This is a main reason of the replicability crisis in psychology,

neuroscience, biology, economics, etc.1

1Ioannidis. Why most published research findings are false. PLoS Med., 2005.
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Multiverse analysis1 solves the problem!

‘Don’t hide what you tried, report all p-values and discuss’

A philosophy of reporting the outcomes of many different analyses

to explore:

� robustness of results

� key choices that are most consequential in their fluctuation

Main tool: histogram of p-values

−→ discussed in terms of % of significant p-values

1Steegen et al. Increasing transparency through a multiverse analysis.

Perspect. Psychol. Sci., 2016.
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Results: p-values in the example
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Multiverse analysis solves the problem! Really?

Ok, let’s go multiverse!

43% of the tested coefficients have p ≤ 0.05.

Quite a strong evidence, isn’t it?

No! We don’t get any inferential clue from it.

Multiverse analysis is important to make data analysis transparent,

but a formal inferential approach is missing.

p-hacking is an informal selective inference problem.

Make it formal and get p-values that account for this multiplicity!
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Valid p-hacking via PIMA1

PIMA constructs permutation-based test statistics/p-values,

combining information from all plausible models

? Is there any non-null effect among the tested models?

! Global p-value (weak FWER control)

similarly to Specification Curve2, but valid for all GLMs

? Which models are significant?

! Adjusted p-values for each model (strong FWER control)

using the maxT algorithm → choose the model you like best!

? How many models are significant? (How many for a given

predictor/transformation/model-choice)

! Confidence interval for the proportion (TDP) via closed

testing

using pARI, SumSome.. or NOTIP!

2Simonsohn et al. Specification curve analysis. Nat. Hum. Behav, 2020.
1Girardi et al. Post-selection Inference in Multiverse Analysis (PIMA): An

inferential framework based on the sign flipping score test. Psychometrika,

2024.
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PIMA



The models, the tested hypotheses

Consider K plausible general linear models (GLM):

gk(E(yki )) = βkxki + γkzki (i = 1, . . . , n)

� yki : response −→ outlier deletion, transformation

� xki and zki : transformed predictors −→ leverage point

removal, selection, combination and transformation

Hypothesis testing

Model k : H0k : βk = 0, Global null: H0 :
K⋂

k=1

H0k
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Sign flip score test (univariate)1

Single model: n independent observations with density fβ,γ,xi ,zi (yi )

Score test: T 1 = T obs =
n∑

i=1

νi , νi =
∂

∂β
log fβ,γ,xi ,zi (yi ) |γ̂,β=0

Random sign flips: T b =
n∑

i=1

±νi (b = 2, . . . ,B)

Under H0 : β = 0: T obs d
= T b asymptotically

p-value =
#b(T

b ≥ T obs)

B
1Hemerik et al. Robust testing in generalized linear models by sign flipping

score contributions. JRSS-B, 2020.
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Sign flip score test (univariate+multivariate)

Two refinements:

� effective score (more powerful) 1

� standardized effective score

(’almost’ exact type I error in finite sample)2

Extension to Multivariate responses

� Fit a model for each response (each model possbily with

different predictors and/or responses), joint distribution is

dealt simply3
1Hemerik, Goeman and Finos (2020) JRSS-B
2De Santis et al. Inference in generalized linear models with robustness to

misspecified variances. ArXiv, 2024.
3De Santis, Goeman, Davenport, Hemerik, Finos (2024) Permutation-based

multiple testing when fitting many generalized linear models, arXiv
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Joint sign flip scores test

K models:

K score test statistics: (T obs
1 , . . . ,T obs

K )

Random sign flips: (T b
1 , . . . ,T

b
K ) (b = 2, . . . ,B)

obtained by jointly flipping the signs of ± (ν1i , . . . , νKi )

Under H0 : β1 = . . . = βK = 0:

(T obs
1 , . . . ,T obs

K )
d
= (T b

1 , . . . ,T
b
K ) asymptotically

A multiverse p-value is obtained combining the single tests

(e.g., T b = max{T b
1 , . . . ,T

b
K})
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Joint sign flips of the score contributions
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Properties

� Can be used whenever we can write a score test (GLMs and

much more)

� Asymptotically exact (exact, in practice1)

� Very robust to model - variance - misspecification, if the link

function is correctly specified

� Can be extended to the case of multiple parameters of interest

1De Santis et al. Inference in generalized linear models with robustness to

misspecified variances. ArXiv, 2024.
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Simulation Study



Specification Curve, a good competitor?

Simonsohn, Simmons and Nelson (2020) in Nature Human

Behaviour

� First Paper with inference in Multiverse!

� it proposes a solution via Bootstrap.

� Computationally very intensive: refit the multiverse ×
bootstrap

� Asymptotically ok in LM, but Very problematic in GLM

� It provides only the overall combination

(i.e. no model selection, Weak FWER control)

� we don’t discuss the alternative solution which is restricted to

orthogonal designs and it has low power.

13



Simulation setting 1/2

Unobserved variable U

� Real: g(µ) = Uβ + Zγ + γ0

� (U,Z ) ∼ Multivariate Normal, ρU,Z = 0.6.

Observed variables Xk (proxy of U):

� Fitted: g(µ) = Xkβk + Zγ + γ0

� (Xk ,U) ∼ Multivariate Normal, ρXk ,U = 0.85.

Multiverse analysis with five models:

� H0 : βk = 0, k = 1, . . . , 5

(5000 MC)
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Simulation setting 2/2

Scenarios,

1. LM with homoschedastic Gaussian errors:

2. Binomial logit-link model:

3. Poisson log-link model:

4. Overdispersion

Real: Negative Binomial log-link model,

Fitted: while Poisson log-link model.

Methods:

� Flipscores,

� Bootstrap (Simonsohn et al, 2020),

� Parametric test (t-test in LM, Wald-test in others GLMs).
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Simulation: H0, univariate
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Prop. of Rejections for Parametric test in Neg Binom setting ranges between

0.154 and 0.170
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Simulation: H1, univariate
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since it does not control the type I error
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Simulation: multivariate

In order to ensure (strong) FWER control with any multiple testing

procedure we must ensure control of the Type I error control of the

combinated (i.e. multivariate) test of any of subsets of tested

hypothesis (by Closed Testing principle).

Combining Methods:

� Flipscores:
� Mean of the test statistics,

� Max of the test statistics,

� Bootstrap:
� Stouffer/Liptak (Sum of the z-tranfomed p-values),

� Median of the test statistics,

� Parametric: Bonferroni. Not shown because extremely

conservative and under-powered).

Sims: combine the 5 tests (i.e. weak FWER) 18



Simulation: H0, multivariate
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Simulation: H1, multivariate
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Results



Raw (unadjusted) p-values
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Data were generated with no effects → all false positives!
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Adjusted p-values, strong FWER control
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Global p-value ≈ 0.09 → all null effects
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Take-home message

Accounting for selective inference (multiple testing, adjusted

p-values) is crucial

? Is there any non-null effect among the tested models?

! Take the global p-value

? How many models are significant? (How many for a given

predictor/transformation/model-choice)

! Confidence interval for the proportion (TDP) via closed

testing

? Which models are significant?

! Take the adjusted p-values and choose the model/story you

like most
23



What is allowed and what is not

PIMA allows:

� any GLMs (and Cox models comming soon)

� any transformation of variables (predictors, responses)

� any outlier/leverage deletion method

BUT all the above models must be

� planned in advance

� valid (at least the right link)

There is no free lunch
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Enjoy p-hacking, it is now valid!

flipscores: github.com/livioivil/flipscores and CRAN

� Sign flip score test: GLMs and any other model with score

� robust to some model misspecifications

jointest: github.com/livioivil/jointest

� inference framework for multivariate inference with

flipscores (and more)

� FWER and (address to) TDP control

pima: github.com/livioivil/pima

� inference framework for multiverse analysis

� model picking with adjusted p-values

� see vignettes there
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