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Preface 

Several recent works underline methodological points that limit the validity of published 
results, for instance in neuroimaging studies (Button et al Nat Rev Neurosc 14:1-12, 2013, 
Ionnadis et al. TICS 1-7, 2014, Carp J NeuroIm 63:289-300, 2012). One of the themes is 
the endemic low statistical power of the published studies due to the small size of 
population involved. To overcome this aspect cohort studies should be promoted. This 
workshop was dedicated to the methodological aspects and solutions to support the 
constitution, the management and the processing of such large cohorts and their link to 
image processing infrastructures for the sharing and execution of processing workflows 
through software and hardware architectures. This encompasses the aspects of application 
ontologies, data structures, new paradigms for handing data, interoperability of 
repositories, semantic queries, image processing composition, machine learning, data 
mining and high performance computing,... and the pros and cons aspects of existing 
working solutions. 

This proceedings addresses the Methodological Issues for Population Imaging related to 
the topics of data management and processing of large imaging data bases, including 
Infrastructure for facilitating data and software sharing and reused; Conceptual and 
technical methods for solving specific difficult points (domain ontology development, 
image processing pipeline development, grid access facilitation, data mining and machine 
learning on big data ...); Case studies using specific platforms (pros and cons, ...), and 
needs and requirements for specific multi-centre studies. 

The workshop was partially supported by the France Life Imaging national project in 
France (ANR-11-INBS-006). It was organized in an half day event during the MICCAI
2015 conference in Munich, Germany. It with two invited speakers: 

• Prof. Monique Breteler, Director of Population Health Sciences, German
Center for Neurodegenerative Diseases (DZNE) , Helmholtz, Bonn, Germany

• Prof. Gunter Schumann, Chair in Biological Psychiatry, MRC-SGDP
Centre, Institute of Psychiatry, King’s College, London, UK

Christian Barillot 
Michel Dojat 
David Kennedy 
Wiro Niessen 
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Data-driven Probabilistic Atlases Capture Whole-brain 
Individual Variation 

Yuankai Huo1, Katherine Swett2, Susan M. Resnick3, Laurie E. Cutting2, 
Bennett A. Landman1 

1 Electrical Engineering, Vanderbilt University, Nashville, TN, USA 
2 Special Education, Vanderbilt University, Nashville, TN, USA 

3 National Institute on Aging, Baltimore, MD, United States 

Abstract. Probabilistic atlases provide essential spatial contextual information 
for image interpretation, Bayesian modeling, and algorithmic processing. Such 
atlases are typically constructed by grouping subjects with similar demographic 
information. Importantly, use of the same scanner minimizes inter-group varia-
bility. However, generalizability and spatial specificity of such approaches is 
more limited than one might like. Inspired by Commowick’s “Frankenstein's 
creature paradigm” which builds a personal specific anatomical atlas, we pro-
pose a data-driven framework to build a personal specific probabilistic atlas un-
der the large-scale data scheme. The data-driven framework clusters regions 
with similar features using a point distribution model to learn different anatomi-
cal phenotypes. Regional structural atlases and corresponding regional probabil-
istic atlases are used as indices and targets in the dictionary. By indexing the 
dictionary, the whole brain probabilistic atlases adapt to each new subject 
quickly and can be used as spatial priors for visualization and processing. The 
novelties of this approach are (1) it provides a new perspective of generating 
personal specific whole brain probabilistic atlases (132 regions) under data-
driven scheme across sites. (2) The framework employs the large amount of 
heterogeneous data (2349 images). (3) The proposed framework achieves low 
computational cost since only one affine registration and Pearson correlation 
operation are required for a new subject. Compared with site-based group atlas-
es, the experimental results show that the proposed atlases capture more indi-
vidual variations by decreasing the Jensen–Shannon divergence between proba-
bilistic atlases and the ground truth. Our method matches individual regions bet-
ter with higher Dice similarity value when testing the probabilistic atlases. Im-
portantly, the advantage the large-scale scheme is demonstrated by the better 
performance of using large-scale training data (1888 images) than smaller train-
ing set (720 images). 

Keywords:  Atlas, Data Mining, Clustering, Data-Driven, Large-scale Data 

1 Introduction 

Probabilistic atlases play important roles in understanding the spatial variation of 
brain anatomy, in visualization, and in the processing of data. The basic framework of 
making probabilistic atlases is to bring the image data from the selected subjects into 
an atlas space by rigid or non-rigid registration [1]. Then, probabilistic maps are gen-

Yuankai Huo, Katherine Swett, Susan Resnick, Laurie Cutting, Bennett Landman ; Data-driven 
probabilistic atlases capture whole-brain individual variation, In: Proceedings of the 1st Miccai 
2015 Workshop on Management and Processing of images for Population Imaging – MICCAI-
MAPPING2015, C . Barillot, M. Dojat, D. Kennedy and W. Niessen (Eds), pp.7-14, 2015. 
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erated by averaging the segmentations of regions from a specific group of subjects 
with similar demographic data, such as age, sex and from the same site. However, the 
inter-subject variability is normally larger than the inter-group variability, which 
causes the group-based scheme to fail to capture a great deal of individual variation.  

To overcome the large inter-subject variability, Commowick et al. proposed the 
“Frankenstein's creature paradigm” to build a personal specific anatomical atlas for 
head and neck region [2]. The paradigm first selected regional anatomical atlases 
based on a training database then merged them together into a complete atlas. Howev-
er, this framework cannot be directly applied on making probabilistic atlases since 
each probabilistic atlas is averaged from a group of segmentations. Moreover, com-
pared with the 105 CT images used as the database in Commowick’s framework, we 
employ 2349 heterogeneous MRI images in our framework. 

In this paper, we propose a large-scale data-driven framework to learn a dictionary 
of the whole brain probabilistic atlases (132 regions) from 1888 heterogeneous 3D 
MRI training images. The novel contributions of this paper are (1) providing a new 
data-driven perspective of making whole brain probabilistic atlas, (2) generating the 
more accurate personal specific probabilistic atlases by using the large-scale data from 
different groups and even different sites, and (3) achieving low computational cost of 
applying the learned dictionary on new subjects.  

2 Data 

The dataset aggregates 9 datasets with a total 2349 MRI T1w 3D images obtained 
from healthy subjects. The 2349 images are divided to 1888 training and 431 testing 
datasets based on the site and demographic information. The 1888 training images are 
used to train the data-driven framework (“Training Set 1888”). A subset of 720 train-
ing images (“Training Set 720”) is employed to generate group atlases (Table 1).  

Table 1. Data summary of Training Set 720 and Testing Set 
Study Site Sex  

(1 is male)
Age 

(years) 
Scanner 
(Tesla) 

Training 
(number) 

Testing 
(number) 

1 BLSA NIA 1, 2 29~45 3T 40 0 
2 Cutting Vanderbilt 1, 2 20~30 3T 40 37 
3 ABIDE NYU 1, 2 15~32 3T 40 0 
4 IXI Guys 1 20~45 1.5T 40 22 
5 IXI Guys 2 20~45 1.5T 40 20 
6 IXI HH 1, 2 20~45 3T 40 47 
7 IXI IOP 1, 2 20~45 1.5T 40 0 
8 ADHD200 NYU 1, 2 15~17 3T 40 0 
9 ADHD200 NeuroIM 1, 2 15~26 3T 40 0 
10 ADHD200 Pittsburgh 1, 2 15~20 3T 40 0 
11 fcon_1000 Beijing 1 20~26 3T 40 23 
12 fcon_1000 Beijing 2 20~26 3T 40 61 
13 fcon_1000 Cambridge 1 20~25 3T 40 17 
14 fcon_1000 Cambridge 2 21~25 3T 40 39 
15 fcon_1000 ICBM 1, 2 19~45 3T 40 0 
16 fcon_1000 NewYork 1, 2 20~45 3T 40 52 
17 fcon_1000 Oulu 1, 2 20~23 1.5T 40 63 
18 NKI_rockland Rockland 1, 2 15~45 3T 40 35 

OASIS with manual segmentation 1, 2 18~90 3T 0 45 
Total 720 461 

*The Full Training Set 1888 is obtained from the following datasets:
BLSA: Baltimore Longitudinal Study of Aging  Cutting: Data from Cutting pediatric project 
ABIDE: Autism Brain Imaging Data Exchange  IXI: Information eXtraction from Images 
ADHD200: Attention Deficit Hyperactivity Disorder  fcon_1000: 1000 Functional Connectome  
NKI_rockland: Nathan Kline Institute Rockland  OASIS: Open Access Series on Imaging Study 
NDAR: National Database for Autism Research
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3 Methods 

The proposed data-driven framework consists of two main portions. First, a dictionary 
is learned by the training data (§3.1-3.3) (Figure 1). Second, the learned dictionary is 
applied to a new subject by affine alignment to MNI space (§3.4-3.5) (Figure 2). 

3.1 Get Regional Segmentations and Point Distribution Model 

All 720 training subjects were first affinely registered [3] to the MNI305 atlas [4]. 
Then, a state-of-the-art multi-atlas segmentation (including atlases selection, pairwise 
registration [5], label fusion [6] and error correction [7]) was performed on each sub-
ject. 45 MPRAGE images from OASIS dataset were used as original atlases which are 
manually labeled with 133 labels (132 brain regions and 1 background) by the Brain-
COLOR protocol [8]. Here, we define ௜ܵ as the whole brain segmentations with 133 
labels and the ݅ ∈ ሼ1,2… ,720ሽ represent different subjects.  

Then, a mean segmentation ܵ̅ is generated from all ሼ ௜ܵሽ௜ୀଵ,ଶ,…,଻ଶ଴	by majority vote 
label fusion. Since the ܵ̅ is smooth, it is a good template of making surface meshes for 
132 regions. When the meshes are generated, the vertices തܸ ௞ on the mean segmenta-
tion ܵ̅ can be propagated to individual segmentations [9]. We non-rigidly register each 

௜ܵ  to ܵ̅ and get the diffeomorphism ߶௜ሺ∙ሻ [5]. The inverse transformation ߶௜
ିଵሺ∙ሻ is

used to propagate the തܸ ௞ back to individual vertices	 ௜ܸ
௞ (Figure 1).

3.2 Clustering 

The Affinity Propagation (AP) clustering method [10] was used to cluster the similar 
segmentations by using the ௜ܸ

௞ as features. The advantage of AP clustering is it can
adaptively cluster the samples into a number of clusters without providing the number 
of clusters. For region ݇, the negative mean Euclidian distance ݀௞ሺ݅, ݆ሻ	between verti-
ces ௜ܸ

௞ and ௝ܸ
௞ is used as the similarity measurement for AP clustering,

Fig. 1. Flowchart of training a data-driven dictionary of whole brain probabilistic atlas. 

MICCAI-MAPPING2015

9



݀௞ሺ݅, ݆ሻ ൌ െ
1
௞ܯ

෍ฮݒ௜,௠
௞ െ ௝,௠ݒ

௞ ฮ
ଶ

ெೖ

௠ୀଵ

(1)

where the ݒ௜,௠
௞  and ݒ௝,௠

௞  are the ݉௧௛ vertex in the vertices ௜ܸ
௞ and ௝ܸ

௞. ܯ௞ is the size of
the vertices ௜ܸ

௞ or ௝ܸ
௞. Typically, 7~20 reliable clusters are generated for each region.

3.3 Learn Dictionary 

For One Region 
The regional anatomical atlases ܣ௖௞ are the “dictionary index” and the regional proba-
bilistic atlases ௖ܲ

௞  corresponding “dictionary target” (red rectangular in Figure 1).
First, the regional probabilistic atlases ௖ܲ

௞ for the cluster ܿ is obtained by averaging
the segmentations that belong to that cluster.  

௖ܲ
௞ ൌ

1
௖ܮ
෍ ௜ܵ

௞ , ௖ܶ ൌ
1
௖ܮ
෍ܫ௜, ݈݈ܽ ݅ ∈ ݎ݁ݐݏݑ݈ܿ ܿ (2)

where ௜ܵ
௞ is the segmentation of region ݇ from subject ݅ and ܮ௖ is the number of seg-

mentations in the cluster ܿ. The anatomical atlases for each cluster are found by (2) 
and ܫ௜ is the whole brain anatomical image from subject ݅.  

However, as shown in Figure 1, each ௖ܶ is a whole brain anatomical atlas rather 
than a regional anatomical atlas for region ݇. So, we need to extract the target area for 
region ݇ by a reasonable mask ܯ௞. 

To get the mask ܯ௞, we (1) average all ሼ ௖ܲ
௞ሽ௖ୀଵ,ଶ,…,஼	 to തܲ௞ (2) obtain the ݇ܯ by

setting the threshold തܲ௞ 	൐ 0.01. The obtained mask will be much larger than any 
individual segmentation, which covers the potential spatial locations of region ݇. 

Finally, we apply the mask ܯ௞ on every ܶܿ to get a regional anatomical atlas ܣ௖௞

௖௞ܣ ൌ ௖ܶ° ௞ܯ (3)

The masked ܣ௖௞ is corresponding to the regional probabilistic atlas ௖ܲ
௞.

Fig. 2. Flowchart of applying the dictionary to customize a probabilistic atlas for a new subject. 
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For Whole Brain 
We repeat the “For One Region” steps 132 times (for all regions except background) 
to get the whole brain dictionary as shown in the lower left part of Figure 2.  

3.4 Apply Dictionary on New Subjects 

To efficiently establish an individual whole brain probabilistic atlases, each target 
subject is affinely aligned [3] to the MNI305 atlas to get ܫ௜ (Figure 2). Then, the re-
gional intensity ܤ௜

௞ can be masked out by

௜ܤ
௞ ൌ °௜ܫ ௞ܯ (4)

By comparing the ܤ௜
௞ to our learned dictionary, the index can be obtained by finding

the most correlated regional anatomical atlas ܿܣ
݇.  The correlation metrics used here is

the Pearson correlation.  Once the index ܿ݉ܽݔ is found, the corresponding ௖ܲ೘ೌೣ
௞  is

chosen as the regional probabilistic atlas for the new subject. 

ܿ௠௔௫௞ ൌ arg	max
௖

,௖௞ܣ൫ݎݎ݋ܿ ௜ܤ
௞൯, ܿ ∈ ሼ1,2,… , ሽ (5)ܥ

Repeating equations (4) and (5) for all regions, we find the 132 most correlated re-
gional probabilistic atlases for the new subject.  

3.5 Normalize to Whole Brain Atlas 

Since the regional probabilistic atlases were chosen independently, the total proba-
bility for a voxel might be larger or smaller than 1. To normalize them to a complete 
set of whole brain probabilistic atlases, we employed a whole brain tissue probabilis-
tic mask ܯ௧from 1888 training image which contains the voxels with tissue probabil-
ity greater than 0.95. For each voxel ሺݔ, ,ݕ  ௧, the 132 regionalܯ ሻ within the maskݖ
probabilistic atlases are normalized to 1; otherwise we keep it untouched. 

෠ܲ௞ሺݔ, ,ݕ ሻݖ ൌ 	൞

ܲܿ
ݔܽ݉
݇
௞ ሺݔ, ,ݕ ሻݖ

ܼ
,ݔ ,ݕ ݖ ∈ ݊݅ܽݎܾ ݇ݏܽ݉ ,௧ܯ ݎ݋ ܼ ൐ 1

ܲܿ
ݔܽ݉
݇
௞ ሺݔ, ,ݕ ሻݖ ݁ݏ݅ݓݎ݄݁ݐ݋

 (6)

ܼ ൌ 	∑ ܲܿ
ݔܽ݉
݇
௞ ሺݔ, ,ݕ ሻଵଷଶݖ

௞ୀଵ  is the normalization term. 

Last, the probability of background ෠ܲ଴ሺݔ, ,ݕ  ሻ is obtained byݖ

෠ܲ଴ሺݔ, ,ݕ ሻݖ ൌ 1 െ෍ ෠ܲ௞ሺݔ, ,ݕ ሻݖ
ଵଷଶ

௞ୀଵ

 (7)

The set of ሼ ෠ܲ௞ሺݔ, ,ݕ -ሻሽ௞ୀ଴,ଵ,ଶ,…,ଵଷଶ is the normalized data-driven whole brain probݖ
abilistic atlases for the new subject. For each voxel in the whole brain probabilistic 
atlases, the total probability of 132 labels and background is 1. 

4 Experimental Results 

Two metrics are employed in the experiments. First, the Jensen-Shannon (JS) diver-
gence is used to assess the spatial similarity between the probabilistic atlases and the 
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target segmentations for each testing subject [11]. Here, the “target segmentations” 
means the multi-atlas segregations for the withheld testing images and the manual 
segmentations for the OASIS images. The smaller JS divergence value is, the more 
similar the two spatial distributions are. So, smaller is the better for JS. 

Second, to compare the different probabilistic atlases more intuitively, we apply 
“naive segmentation” on whole brain by choosing labels with the highest probability 
for each voxel. Notice that we are not providing a novel segmentation algorithm. In-
stead, we compare the spatial accuracy of different probabilistic atlases by using the 
naïve segmentation since this approach is entirely depending on the probability. Then, 
the Dice similarity measures the overlaps between the naive segmentations and the 
target segmentations.  

All statistical significance tests are made using a Wilcoxon signed rank test 
(p<0.01). Creating a whole brain probabilistic atlas for a new subject can be done with 
1 rigid registration and 12 seconds of CPU time (Xeon W3520 2.67GHz). 

4.1 Evaluation by Withheld Testing Data 

Figures 3 and 4 show the results using withheld testing subjects. The green boxplots 
represent the average JS or Dice values by applying the probabilistic atlases from all 
the other 17 group atlases for one testing subject. The blue, red and orange boxplots 

Fig. 3. Jensen-Shannon divergence. The comparisons of JS divergence for different atlases are
all significantly different for both withheld and OASIS testing images. 

Fig. 4. Dice similarity. The comparisons of Dice value for different atlases are all significant for
both withheld and OASIS testing images except the IXI-HH group marked by “Ø”. 
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show the JS or Dice values by using the corresponding group probabilistic atlases, 
data-driven probabilistic atlases from Training Set 720 and from Training Set 1888. 

Figure 3 and 4 demonstrate that the data-driven atlases match the target segmenta-
tions significantly better than the traditional group based atlases with the significantly 
smallest JS divergence and greatest Dice values while the atlases from other groups 
perform the worst. Moreover, for the data-driven atlases with two different numbers 
of training images, the large-scale Training Set 1888 performs significant better than 
Training Set 720 for both JS divergence and Dice similarities. 

To conclude, (1) the group based atlases perform significantly better than the atlas-
es from other groups which demonstrates the group-based framework is able to con-
trol the inter-group variability; (2) our proposed data-driven framework produced the 
more accurate probabilistic atlases than group based atlases by capturing the individu-
al variance; (3) by using the large-scale training data, the performance of data-driven 
framework is improved significantly. 

4.2  Evaluation by OASIS Data 

45 subjects from OASIS dataset with manual segmentations are used for 44 leave one 
tests. The data-driven probabilistic atlases are obtained from the learned dictionary. 
The right hand panel of results in Figures 3 and 4 show that the results of manual 
segmentations repeat the finding in §4.1. 

Moreover, we show one testing subject (slice z = 75 in MNI space from 3D image) 
from the OASIS dataset in Figure 5. By comparing with the manual segmentations 
for 6 regions, it shows that the data-driven atlases match the true segmentations more 
accurately than the group atlases. Moreover, the large-scale Training Set 1888 match-
es the manual segmentation better than the smaller Training Set 720.  

Fig. 5. One testing subject from OASIS dataset. Top row shows the anatomical image, manual
segmentation, highest probability segmentations using the group probabilistic atlases, Training
Set 720 and Training Set 1888. The lower rows show the details of 6 regions. For each region,
from left to right are: anatomical image, manual segmentation, probabilistic atlases generated by
different methods and their overlays on manual segmentations.
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5 Discussion 

We present a data-driven framework to learn a dictionary of whole brain probabilistic 
atlases to achieve accurate individualized whole brain probabilistic atlases. This 
framework (1) provides a new perspective of using data-driven scheme rather than the 
traditional group based methods, (2) uses the large-scale heterogeneous data to 
achieve more personal specific probabilistic atlases than using the single-group and 
single-site data by capturing the individual variation (3) demonstrates the advantages 
of using large-scale scheme in generating personal probabilistic atlases compared with 
the smaller size of training images, and (4) only requires one affine registration and 
Pearson correlations to apply to new subjects which achieves low computational cost.  

Due to the higher accuracy and low computational cost, the proposed method is 
able to be the priors in many medical image processing algorithms and applications. 

Acknowledgments: This research was supported by NIH 5R21EY024036, NIH 
1R21NS064534, NIH 2R01EB006136, NIH 1R03EB012461, NIH R01EB006193 and 
also supported by the Intramural Research Program, National Institute on Aging, NIH. 
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A neuroscience gateway for handling and
processing population imaging studies

M.W.A. Caan, J. Teeuw, S. Shahand, M. M. Jaghoori, J. Huguet,
A. van Altena, and S.D. Olabarriaga

Academic Medical Center, Amsterdam, Netherlands
m.w.a.caan@amc.nl

Abstract. Data handling and processing in population imaging stud-
ies on high-end resources requires dedicated technological knowledge,
something for which neuroscientists are commonly not trained. We have
developed a NeuroScience Gateway that provides an intuitive web-based
interface for data-intensive science discovery and hides the underlying
technological details from the scientist. The eXtensible Neuroimaging
Archive Toolkit (XNAT) was adopted for storing medical imaging data
and processing results. The e-BioInfra Catalogue holds a database of
metadata, user, and system information. The processing manager per-
forms and monitors data processing on a grid infrastructure. Processed
data are archived and a data history report is generated for provenance
purposes. Over a period of 18 months, 36 users have processed their data,
amounting to 6.85 CPU years. We review the lessons learned over this
period of time and sketch an outlook for future development.

1 Introduction

Due to the sheer amount of produced data, population imaging studies require
high-end storage and processing resources to answer research questions on, e.g.,
ageing processes and neurodegenerative disorders. Distributed computing infras-
tructures, such as grids, enable processing of large datasets, but dedicated tech-
nical knowledge is needed to exploit them. Most neuroscientists and bioscientists
are not trained to use interfaces that expose low-level details of the technology.
To bridge this gap, Science Gateways (SGs) have been proposed as easy-to-use
(high-level) user interfaces to enable data-intensive scientific discovery without
knowing the underlying technical details.

In recent years, different projects have been started to develop SGs in the
neuroscience field. Examples include the data engine [6] of the CHAIN project [1],
COINS, a neuroimaging tool suite [11], a web-based, distributed computing plat-
form coined CBRAIN [15], and the LONI pipeline [5], a graphical workflow en-
vironment. The neuGRID for you (N4U) SG [2] houses multiple algorithms,
pipelines, and visualization toolkits on grid, cloud, and clusters. The eXten-
sible Neuroimaging Archive Toolkit (XNAT) is developed with data archiving
and sharing as its main goal, but also supports running pipelines per individual

M.W.A. Caan, J. Teeuw, S. Shahand, M. M. Jaghoori, J. Huguet, A. van Altena, S.D. 
Olabarriaga ; A neuroscience gateway for handling and processing population imaging studies, 
In: Proceedings of the 1st Miccai 2015 Workshop on Management and Processing of images 
for Population Imaging – MICCAI-MAPPING2015, C . Barillot, M. Dojat, D. Kennedy and 
W. Niessen (Eds), pp.15-22, 2015.  
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dataset [10] but not on multiple datasets simultaneously. LORIS is an alternative
web-based data management system for multi-center studies [4].

A population imaging study may be described by a number of research study
phases: study design, data acquisition, data handling, processing, analysis, and
publication [12]. A SG for computational neuroscience should support all of these
study phases. The Neuroscience gateway (NSG) presented in this paper [13]
focuses on the data- and compute-intensive elements, i.e., the data handling
and processing phases. It should therefore support metadata collection, enable
data processing and provenance management, provide sufficient security and
privacy mechanisms, enable data and methodology sharing, and offer scalable,
transparent, and flexible management of storage and computing resources. In
this paper, we present an overview of the NSG system’s architecture, usage
statistics and lessons learned over the past years of NSG activity.

2 Overview of NSG

As the NSG is presented in details in [13], here we highlight the most relevant
aspects to support the discussions.

Usage scenario. Users log into the system via an intuitive web interface to
access the imaging studies of which they are a member to browse, search, and
filter data and metadata. They select the subjects and their corresponding MR
imaging scans to be processed by one of the available applications, and then
launch the processing. The NSG manages data transport from the data server
to the grid, then schedules and monitors the data processing applications on the
grid. The resulting output is stored back on the data server with relevant prove-
nance information for future reference. The gateway also handles authentication
with the data server and DCI resources transparently.

System architecture. Figure 1 shows the main system components. The
MRI-scanner is inside a hospital. The acquired data are pseudonymized and sent
from the scanner to the internal data server (XNAT) located behind the hos-
pital’s firewall. From here, the data are anonimized more strictly and uploaded
to an external data server (eXNAT) accessible via the internet. The gateway is
hosted on a server in the demilitarized zone (DMZ) of the hospital network, a
semi-secured layer between the heavily protected intranet and the (open) inter-
net.

Data server. XNAT was adopted for storing medical imaging data and the
corresponding metadata. XNAT [10] is an open-source information management
system that offers an integrated framework for data storage and management.
It provides a RESTful API with a set of web services that enable querying for
data and metadata, uploading, modifying and downloading resources. The API
eases the programmatic integration of additional tools and systems with XNAT.
Its data model provides a general hierarchy and security model: data is grouped
under logical ‘Projects’ containers which are stored as metadata. A project con-
tains data of a single imaging study, accessible to project members only. Each
project contains a set of subjects, which can be measured in events abstractly
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Fig. 1: System architecture in which the NSG is embedded.

Fig. 2: Screenshot of the external XNAT server showing reconstructions processed on
the NSG for one subject at the bottom of the screen.

referred to as ‘Experiments’. Image sessions are specific representations of exper-
iments where imaging data is acquired. Externally processed data can be stored
as a ‘Reconstruction’. See a screenshot of the eXNAT web interface in Figure 2.

Gateway components. Data and metadata management functionalities are
implemented in the e-BioInfra Catalogue (eCAT). User and system-level infor-
mation is stored using a model with the following basic entities: User, Project,
Data, Metadata, Resource, Credential, Application, Processing, Submission, and
Submission Status. Data transport from the XNAT to the grid is managed by
a separate component, the processing manager (PM) [8], which interacts with
the eCAT to obtain the relevant information and credentials. The PM prepares,
submits, and monitors jobs with selected applications and data. The current
NSG applications are defined as workflows with WS-PGRADE/gUSE [9]. If the
PM detects failures in processing the grid jobs, the administrator is notified,
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Fig. 3: Pipeline to run TRACULA application including preprocessing DTI data, im-
age segmentation (Freesurfer [7]) and estimating white matter orientation distributions
(FSL BedpostX [16]), with average grid execution times.

who will take the required actions (e.g., resume aborted experiments and notify
the user). The NSG provides the user with monitoring information (figure 4).

Security. Users are provided with username/password to gain access to the
gateway and to XNAT. These are kept as two separate credentials to preserve full
control for the data server administrator. The NSG manages multiple credentials
transparently. A robot X-509 certificate is used to access grid resources, which
is managed by the gateway administrator transparently for the users.

Example of application. TRACULA is a method available at the NSG
for automatically reconstructing white matter pathways from T1- and diffusion-
weighted MRI data [17] - figure 3 displays the used pipeline. TRACULA takes as
input two MRI scans per scanning session of a subject: a T1-weighted structural
scan and a diffusion weighted MRI scan. The output is a series of reconstructed
white matter tracts and their statistics. In the NSG web interface the user selects
the data and runs the applications, one at a time. The UI guides the user through
the pipeline steps by recommending suitable applications based on selected data.
Figure 2 illustrates how the results of the various steps are stored by the NSG
as Reconstructions with metadata in XNAT.

3 Results

The NSG has been used by neuroscientists since the end of 2013 for analysis of
large imaging studies. The data handling and processing phases in research are
supported as follows. After logging into the NSG, the user is provided with a
list of projects on the eXNAT server, for which access has been granted. The
user is then directed to the Data tab, to select scans to be processed. Figure 4
illustrates the interface for monitoring on-going or completed processing tasks.
For each processed scan, a data history report is generated as illustrated in
Figure 5. The report contains the main input data characteristics, such that it
can be traced back in XNAT; the selected application and its version number;
the experiment date; the generated files; and the involved researcher.

Usage statistics were collected over a period of 18 months. In total 40 users
registered to the NSG, of which 36 launched at least one experiment. Figure 6
provides an overview of the number of jobs per user, and the estimated CPU-
time used. The graphs reflects the difference in size of datasets processed by the
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Fig. 4: Screenshot os NSG monitoring window with a list of experiments (left) and the
included datasets (right). The History button (circle) provides provenance information.

Table 1: Total grid usage by the NSG: number of jobs and estimated CPU-years.

Total Freesurfer DTIpreprocessing BedpostX TRACULA

#jobs 6325 2527 1426 696 1676
CPU-years 6.85 5.19 0.33 0.95 0.38

users, and teh ability of the NSG to scale well with these datasets. The Freesurfer
application is using most computing resources. Processing one dataset using
Freesurfer on average amounted to 18 hours, which is comparable to known pro-
cessing times on local servers. In Table 1 the used CPU time is given, amounting
to 6.85 years in total.

4 Discussion and lessons learned

The NSG presented here follows earlier SG versions that evolved based on lessons
learned along time [3, 14]. Compared to the previous version [14], the data flow
currently follows the course of a scientific experiment more naturally. Previously,
the user selected the desired application and then needed to manually upload
prepared archives containing the data to be processed. This process was error
prone because the archives needed to be formatted in a strict manner. Also, no
metadata was stored with the processed results, which made management and
reuse more difficult in the long term. These difficulties have been removed by
the adoption of a third-party data server, XNAT, which is widely used by the
neuroimaging community. Nevertheless, additional lessons have been learned in
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Fig. 5: Data history report captured and gathered automatically for a data processing.

the past year from how users in fact work with the NSG, and how well this
matches to the scenario we had initially designed.

A major difficulty derived from our choice of integrating XNAT with the
NSG, while keeping them as independent systems. The user is currently con-
fronted with two credentials, and, although the XNAT interface is embedded in
the NSG, most users interact with the two systems separately. It also requires
training for users to conceptually understand the differences between both sys-
tems. Additionally, the NSG hosts a separate metadata database, duplicating
some fields from XNAT for search functionality and efficiency reasons. The two
databases are synchronized periodically, which introduces latency in using NSG
when new data or users are added. It also increases network traffic and load on
the servers. Contrary to XNAT, the NSG currently does not offer an API.

The strategy for storing results back in XNAT is currently not optimal: the
results are packed into an archive and uploaded to XNAT as a single file per
processing. For Freesurfer segmentations, a XNAT Assessment data type has
been developed already, ordering segmentation volumes in a hierarchical manner.
This allows for querying and retrieving results in a structured manner. Moreover,
since no working directory or scratch model is available for the NSG, all processed
data are directly archived in XNAT, possibly leading to database pollution.

We also observed that, although XNAT provides native support to the DI-
COM format, it is designed in a generic way to support custom file formats.
Proprietary file formats of MRI vendors form a clear example to be embedded
in XNAT. We have exploited this to develop an import pipeline for the Philips
PAR/REC data format, which is now actively used in our user community.

Concerning the applications, first, the current implementation does not allow
running larger pipelines comprising of multiple processing steps at once. Second,
multiple data inputs per application are not allowed in the web interface. In
the example of TRACULA (Figure 3), one scan from the imaging session is se-
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Fig. 6: Number of jobs and consumed CPU-hours per user of the NSG (log scale).
Each data point corresponds to a user. A job refers to the execution of an application
with a single dataset. Error bars denote the mean and standard error of the mean.

lected by the user, and the other inputs are automatically selected by the system
following a series of rules specific to the application requirements. Third, all ap-
plications are predefined, because the NSG was conceived and designed to target
neuroscience users with little to none scripting and programming background.
Future work should provide a solution for user-defined imaging pipelines and
changing application parameters. If needed, the gateway administrator can now
create different versions of an application with specific sets of parameters for dif-
ferent use cases. Fourth, the NSG only allows for fully automated processing of
data, without possibilities for semi-automated or interactive processing (e.g. in
image segmentation). Finally, one important aspect for third-party applications
is to properly arrange licensing. Freesurfer is for example issued under a public
license, valid for single users only. Therefore all NSG users are requested to apply
for a Freesurfer license individually before being allowed to run the application.

Despite the above mentioned limitations, a group of 36 users has been able to
successfully adopt to process data of large studies using the NSG. As illustrated
in Figure 6, on average each user processed more than 100 jobs, and Freesurfer
and DTI Preprocessing are the most popular. The popularity of Freesurfer and
related CPU-hours consumed confirms high demands for greater processing ca-
pacity. This is a significant step forward, compared to the practice of manual,
slow and error-prone processing of data. This opens the road for adopting the
NSG in larger population imaging studies that lie ahead, for which we need to
make our service and code publicly available.
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Abstract. Some of the major concerns of researchers and clinicians involved in popu-
lation imaging experiments are on one hand, to manage the huge quantity and diversi-
ty of produced data and, on the other hand, to be able to confront their experiments 
and the programs they develop with peers. In this context, we introduce Shanoir, a 
“Software as a Service” (SaaS) environment that offers cloud services for managing 
the information related to population imaging data production in the context of clini-
cal neurosciences. We show how the produced images are accessible through the Sha-
noir Data Management System, and we describe some of the data repositories that are 
hosted and managed by the Shanoir environment in different contexts. 

Keywords. Population imaging, database, data sharing, neuroinformatics, “Software 
as a Service” (SaaS), Cloud Computing, web application, Java, web services, Shared 
repositories, centralized resources 

1 Introduction 

Some of the major concerns of researchers and clinicians involved in population imaging 
experiments are, on one hand, to manage the huge quantity and diversity of produced data 
and, on the other hand, to be able to confront their experiments and the programs they de-
velop with peers. In practice, researchers or clinicians in the neuroimaging domain are en-
couraged to set up large-scale experiments, but the lack of resources and capabilities to 
recruit locally subjects who meet specific inclusion criteria motivates the need for sharing 
the load in order to produce the relevant imaging data. For these reasons, making possible 
the pooling of experimental results, through the Internet and between collaborative centers, 
allows to recruit large subject populations and to widen the scientific achievement of the 
conducted experimental studies. Also, through distributed imaging databases, the search for 
similar results, the search for images containing singularities or transverse searches via data 
mining techniques could highlight possible regularities. Moreover, this will broaden also 
the possible panel of people involved in neuroimaging studies, while protecting the excel-
lence of the supplied work.  

In this context, the Shanoir† (SHAring NeurOImaging Resources) environment aims at 
establishing the conditions allowing, through the Internet, to share distributed information 
sources in neuroimaging, whether these sources are located in various centers of experi-

* Corresponding Author: Christian.Barillot@irisa.fr / Ph : +33 299847505 / Fax : +33 299847171
† Shanoir: http://www.shanoir.org 
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mentation, clinical departments of neurology, or research centers in cognitive neurosciences 
or image processing. This enables a large variety of users to diffuse, exchange or reach 
neuroimaging information with appropriate access means, in order to be able to retrieve 
information almost as easily as if the data were stored locally by means of the “cloud com-
puting” Storage as a Service (SaaS) concept [1].  

In this paper, we introduce the Shanoir software environment that offers services for 
managing the information related to neuroimaging data production in the context of clinical 
neurosciences. We show how the produced images are accessible through the Shanoir Data 
Management System. The paper is organized as follows. In section 2, we rapidly describe 
the software environment, and their extension for loading the data for querying the data, 
and for processing the data. Section 3 describes some population data repositories and sec-
tion 4 provides a discussion on the use of these repositories and the potential evolutions. 

2 Shanoir software environment 

2.1 General description of the software environment 

Shanoir is an open source software environment, with QPL licensing, designed to archive, 
structure, manage, visualize and share neuroimaging data with an emphasis on managing 
distributed collaborative research projects. It provides common features of neuroimaging 
data management systems along with research-oriented data organization and enhanced 
accessibility. Shanoir is based on a secured J2EE application running on a JBoss server, 
reachable via graphical interfaces in a browser or by third party programs via SOAP web 
services. It behaves as a repository of neuroimaging files coupled with a relational database 
holding meta-data (Fig. 1).  

Shanoir uses semantics for concepts organization that are defined by ontology, called 
OntoNeuroLOG‡ [2] [3]. OntoNeuroLOG reuses and extends the OntoNeuroBase ontology 
[4]. In Shanoir, the OWL-Lite implementation was manually derived from the OntoNeu-
roLOG initial expressive representation to Java classes. The data model based on this on-
tology is devoted to the neuroimaging field and is structured around research studies 
whereof involved patients have examinations, which either produce image acquisitions or 
clinical scores. Each image acquisition is composed of datasets represented by their acquisi-
tion parameters and image files. For security and regulation reasons, by default, the system 
only keeps anonymous data. Raw and derived (i.e. post-processed) image files can also be 
imported into the system from various sources (DICOM CDs, PACS, image files in NIfTI / 
Analyze format) using either online wizards, with completion of related metadata, com-
mand line tools or SOAP web services. For raw data, once de-identified during import, 
DICOM header's content is automatically extracted and inserted into the database by a cus-
tomizable feature called “Study Card”. 

Shanoir can also record any executed processing allowing retrieving workflows applied 
to a particular dataset along with the derived data. Clinical scores resulting from instrument 
assessments (e.g. neuropsychological tests) can be recorded and easily retrieved and ex-
ported in different formats (Excel, CSV, XML). Scores, image acquisitions and post-
processed images are bound together, which makes relationship analysis possible. The in-
strument database is scalable and new measures can be added in order to meet specific pro-
ject needs. 

Using cross-data navigation and advanced search criteria, the user can quickly point to a 
subset of data to be downloaded. Client side applications have also been developed to illus-

‡ OntoNeuroLOG: http://neurolog.i3s.unice.fr/public_namespace/ontology 
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trate how to locally access and exploit data though the available web services. With regards 
to security, the system requires authentication and user rights are tunable for each hosted 
studies. A study manager can thereby define the users allowed to see, download or import 
data into his/her study or simply make it public.  

In practice, Shanoir serves neuroimaging researchers in organizing efficiently their stud-
ies while cooperating with other laboratories. By managing patient privacy, Shanoir allows 
the exploitation of clinical data in a research context. It is finally a handy solution to pub-
lish and share data with a broader community. 

2.2 The Study Card and quality control concepts 

Images can be imported in Shanoir from various sources: DICOM CDs, PACS (with 
DICOM Query & Retrieve), and image files (in NIfTI and Analyze format). Users are 
guided step by step through online forms to perform imports. In addition of archiving 
DICOM files, NIfTI copies are automatically generated and saved. This is convenient since 
the NIfTI format is better suited to local 3D image processing (such as registration, seg-
mentation, statistical analysis, etc.) than the DICOM format. 

Fig. 1. Shanoir Software Architecture 

Fig. 2. Shanoir data organization 
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The Study Card concept 
While being archived, the DICOM files are processed in two phases. The first phase de-

identifies the images. The second one inserts into the database the metadata items generated 
from the DICOM header. This is achieved thanks to the “Study Card” concept. This con-
cept allows the online meta-data wrapping between the local data to be imported (center, 
acquisition equipment…) and the semantic concepts of the research study the data will be 
assigned to. This allows the alignment between the actual DICOM metadata to the ontolo-
gy, and also provides additional allocation of concepts to the stored images that is more 
related to the research study protocol (e.g. functional MRI, perfusion imaging, contrast 
agent, diffusion imaging…). The mechanism behind this feature is based on a user-
predefined set of rules associating to particular acquisition equipment, and a particular data 
production site to the desired research study. Each rule determines the specific value of a 
metadata item according to the value(s) of one or more specific DICOM tag(s) (e.g. Series 
Description…). This greatly facilitates the consistent recording and alignment to the ontol-
ogy of metadata for all the data of a research study without tedious workflow during the 
online import of images. Due to the simplicity of the process, no specific skills are pre-
required to perform the import of data and it only takes a few minutes over the Internet. 
This “Study Card” concept also allows an automatic quality control of the data imported 
based on their metadata. For instance, a conformal statement can be attached to the import-
ed data according to a match score to the Study Card rules. 

2.3 The web portal 

Shanoir provides a user-friendly secure web access and offers an intuitive workflow to ease 
the collection and retrieval of neuroimaging data from multiple sources (Fig. 3). On the 
home page, the user can access to the most frequent functionalities: Find and Download 
Datasets, Explore the Research Studies, Find Clinical Scores, and Import Data. On the top 
of all pages, the user always has a very complete navigation menu that leads to all services. 

2.4 The interoperability 

Interoperability is a very important concern for the Shanoir environment. For this purpose, 
Shanoir offers a web service interface that is open to all possible clients. This interface is 
already used by different external applications, developed either in C++, Java or Objective-
C environments such as ShanoirUploader, medInria (http://med.inria.fr) and Shanoir. 

SOAP for the integration of services. 
Shanoir web services interfaces are based on the Simple Object Access Protocol 

(SOAP). Messages between client and server that are exchanged based on XML, with de-
fined elements. As transport layer HTTP on base of TLS is used. The elements and services 
are described with the Web Service Description Language (WSDL). On base of this de-
scription client stubs can be automatically generated to simplify the connection of new 
clients. The web service layer is implemented with the Java API for XML web services. 

“ShanoirUploader” for seamless integration of data. 
“ShanoirUploader” is a Java desktop application that transfers data securely between a 

PACS and a Shanoir server instance (e.g. within a hospital). It uses a DICOM que-
ry/retrieve connection to search and download images from a local PACS. After retrieval, 
the DICOM files are locally anonymized (using either a built-in process or a custom one) 
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and then uploaded to the Shanoir server. The primary goals of that application are to enable 
mass data transfers between different remote server instances and therefore reduce the wait-
ing time of the users, when importing data into Shanoir. Most of the time during import is 
spent with data transfers. 

Apache Solr for metadata querying. 
Shanoir integrates the enterprise search platform, Apache Solr 

(http://lucene.apache.org/Solr/), to provide the users a vast array of advanced features such 
as near real-time indexing and queries, full-text search, faceted navigation, autosuggestion 
and autocomplete. One of the most important features of Solr search is the faceted naviga-
tion. Facets correspond to properties of the Solr information elements. They are derived by 
analysis of the pre-existing meta-data that are related to the ontology model used by Sha-
noir. All the metadata are indexed in a JBoss server that hosts the Solr servlets. A custom 
security post-filter has been also developed and implemented in Shanoir for user access 
control. This filter retrieves user identification and access rights in Shanoir and interacts 
with the Solr server to show pertinent results that the user is allowed to access. 

MedInria for image processing. 
Shanoir web services may also be queried from standalone C++/Qt applications through 

the QtShanoir library (http://qtshanoir.gforge.inria.fr). QtShanoir uses the SOAP-based web 
services provided by a Shanoir server to get and display studies, patients, and data with 
their associated metadata. In QtShanoir, a set of Qt widgets are defined that can be embed-
ded in any Qt application. This library was used to implement a Shanoir query plugin inside 
the medInria visualization and processing software. This implementation allows for the 
interrogation and the download of image data from Shanoir, to process it within medInria 
using the available processing tools and then upload back the processing results to the Sha-
noir server with the correct metadata values (Erreur ! Source du renvoi introuvable.). 

Fig. 3: Shanoir web portal summary of the main functionalities 
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3 Data repositories 

Each Shanoir repository has an administrator that manages the access rights of the repos-
itory. Then, each user has to request an account through the dedicated web form and specify 
which study he/she wants to access, who is his/her contact, what will be his/her role con-
cerning this study, and what level of expertise/access is needed (guest, user, expert, ad-
min)... According to the information provided, the Shanoir administrator of the repository 
grants (or not) the user access to the system. The access to a specific study is granted by the 
person responsible of this study (i.e. the PI of the research study or its official representa-
tive). Depending on these settings, the new user will be able to see, download, and import 
datasets or even to modify the study parameters. The corresponding rights are set for a lim-
ited time and must go through a renewal process on purpose. If requested, the user can re-
ceive a report by email each time data are imported in his/her study. 

3.1 The Shanoir@Neurinfo Repository 

Started in 2009, the Neurinfo research facility§ promotes translational clinical research 
and supports the development of clinical research, technological and methodological activi-
ties. It offers resources for in vivo human imaging acquisition, image data analysis and 
image data management. A large community of users, both clinicians and scientists, uses 
these resources as part of local, national or international imaging based research projects. 

All the data produced at Neurinfo for academic or clinical research purposes are man-
aged through a dedicated Shanoir@Neurinfo repository (Fig. 4) administered by the facility 
technical staff. The Shanoir@Neurinfo server also hosts data from multi-sites imaging stud-
ies. In total, more than 1To data from 31 centers and 37 scanners are archived within this 
repository (see Left Table in Fig. 4 for details). 

On the daily practice, DICOM data are imported by a technician from either a local 
PACS, a CD/DVD or a disk drive containing the DICOMDIR at its root and the DICOM 
files. The clinical studies conducted at Neurinfo concern the whole-body (brain, spine, 
heart, lung, pelvis, vasculature...) with a major focus on brain anatomy and function in 
normal control and pathological populations. Out of the 60 or so ongoing research studies 
at the Neurinfo platform, 75% relates to brain imaging, 15% to abdominal imaging and 

§ http://www.neurinfo.org/

CENTERS 31 
ACQUISITION EQUIPMENTS 
(MRI SCANNERS) 37 

RESEARCH STUDIES 60 

SUBJECTS 2.228 

EXAMINATIONS 3.157 

DATASET ACQUISITIONS 71.993 

DATASETS 114.441 

ACTIVE USERS 52 

TOTAL USERS  127 

PACS Shanoir (DICOM) 1588 Go  

Nifti Data 1511 Go 

Data Base 5 Go 

Fig. 4. The Shanoir@Neurinfo repository: Current Global Statistics (left) and Service Infrastructure (right) 
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10% to heart imaging. Among the neuro-imaging clinical studies, multiple sclerosis, de-
mentia, tumors, stroke and mood disorders are the most investigated pathologies. 

The general policy for the Shanoir@Neurinfo repository for dissemination of the data re-
lated to one study is decided upon beforehand with the principal investigator, in agreement 
with the informed consent form approved by the ethics committee and signed by the partic-
ipant. Any opening of the data to third parties is submitted to the approval of the principal 
investigator prior to allow the (complete or partial) access to a third party user. Nonethe-
less, to ensure dissemination and the best usage of data acquired from public funding, the 
Neurinfo team strongly encourages investigators to share their data, which is usually agreed 
after an embargo period. 

3.2 The Shanoir@OFSEP Repository 

The OFSEP project** was selected in response to the national call for projects “Cohorts 
2010” as part of the “Investments for the Future” program. This is a collaborative project 
involving over 40 French expert MS centers. The aim of this project is to build and main-
tain a nationwide cohort of patients with Multiple Sclerosis (MS), and enrich the clinical 
data with biological samples, socio-economic data and neuro-images. 

A dedicated imaging working group is in charge of acquiring, processing, integrating 
imaging and derived imaging data into a shared Imaging Resource Centre (IRC), and make 
this IRC inter-operate with the clinical databases. The consistent assessment of MRI-based 
measurements at a large scale require robust and efficient image processing pipelines. A 
further goal of this project is to establish an information technology (IT) infrastructure ena-
bling audited access to imaging data, as well as a “virtual laboratory” environment support-
ing the distributed, synergistic development, validation, and deployment of specialized 
image analysis procedures, developed by different national and international research cen-
ters. To ensure an easy access to the imaging data and allow modifications, queries, annota-
tions and access control, the Shanoir environment has been selected. It also ensures interop-
erability and data management related to the imaging part of this cohort (the clinical part is 
managed by the EDMUS†† system). 

Started in 2012, the Shanoir@OFSEP server has been installed to store the imaging data 
of the OFSEP cohort. This cohort aims at studying neuroimaging data of 40.000 MS pa-
tients over the next 10 years. A consensus has emerged concerning the acquisition protocol 
that requires: a brain MRI every 3 years, a spinal-MRI every 6 years, that is to say 200.000 
MRI over 10 years. Shanoir@OFSEP database will grow during this period and beyond [5]. 

Since OFSEP is a nationwide project gathering many patients, many IRC and much dif-
ferent MRI equipment, a federated repository with nationwide access and with thorough 
homogenization mechanism was therefore needed. The OFSEP imaging WG is continuous-
ly gathering new acquisition centers volunteering to take part to the cohort. In Sha-
noir@OFSEP, there are currently about 30 IRCs pooling 40 MRI acquisition equipment 
representing 12 MR scanner models from 3 MR constructors (Siemens, Philips, GE). All 
the centers are importing data in one main study called the “Mother Cohort”. If necessary, 
derived imaging data will be then imported back to the server in order to refer to potential 
post-processing information, MS specific imaging biomarkers making them available for 
others authorized users. 

Currently Shanoir@OFSEP repository is hosting 5 studies: the “Mother Cohort” 
(200.000 MRI planned over the next 10 years) as well as 4 MS imaging clinical research 
projects. More of these “OFSEP-labeled” clinical research projects or nested cohorts will 

** The OFSEP MS Cohort observatory: http://www.ofsep.org/fr/l-observatoire/presentation-ofsep 
†† EDMUS: http://www.edmus.org
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be integrated in the following years. Everyone can join the “Mother Cohort” study as long 
as they use the OFSEP protocol. One can also ask the OFSEP to contribute to the project 
through his study as soon as the principal investigator presents his research study subject to 
the OFSEP scientific committee that can grant (or not) the hosting. Data hosted on Sha-
noir@OFSEP, will remain confidential (private) throughout the duration of the study, but 
can be made available to all researchers through a specific application to OFSEP. 

4 Conclusion and perspectives 

The Shanoir Software as a Service environment has been presented. We have shown how 
this system manages to share distributed information sources in neuroimaging over the 
Internet, whether these resources are located in various centers of experimentation, clinical 
departments in neurology, or research centers in cognitive neurosciences or image pro-
cessing. Through the description of two repositories that administrate a Shanoir environ-
ment (Neurinfo and OFSEP), we have illustrated how a large variety of users can diffuse, 
share or access neuroimaging information between peers almost as easily as if the data were 
stored on their local hospital, research labs or companies. Through the description of the 
Shanoir software environment, we have illustrated how neuroimaging data can be struc-
tured, managed, archived, visualized and shared with examples on multi-institutional, col-
laborative research projects.  

5 Acknowledgements 

This work has been supported by the “technological development program” of Inria, by the 
Brittany region council and the EU-Feder program for the Neurinfo platform, and by two 
grants provided by the French Government and handled by the “Agence Nationale de la 
Recherche,” within the framework of the “Investments for the Future” program, under the 
references ANR-10-COHO-002 (for OFSEP) and ANR-11-INBS-006 (for FLI). 

6 REFERENCES 

1. Rimal, B.P., E. Choi, and I. Lumb. A taxonomy and survey of cloud computing systems. in
INC, IMS and IDC, 2009. NCM'09. Fifth International Joint Conference on. 2009. Ieee.

2. Michel, F., et al. Grid-wide neuroimaging data federation in the context of the NeuroLOG
project. in Proceedings of the HealthGrid. 2010.

3. Temal, L., et al., Towards an ontology for sharing medical images and regions of interest in
neuroimaging. J Biomed Inform, 2008. 41(5): p. 766-78.

4. Barillot, C., et al., Federating Distributed and Heterogeneous Information Sources in
Neuroimaging: The NeuroBase Project. Stud Health Technol Inform, 2006. 120: p. 3-13.

5. Cotton, F., et al., OFSEP, a Nationwide Cohort of People with Multiple Sclerosis:
Consensus minimal MRI protocol. Journal of Neuroradiology, 2015. (in Press).

MICCAI-MAPPING2015

30



Population Imaging Study IT Infrastructure: An
Automated Continuous Workflow Approach

Marcel Koek1, Hakim Achterberg1, Marius de Groot1, Erwin Vast1, Stefan
Klein1, and Wiro Niessen1,2

1 Biomedical Imaging Group Rotterdam, Departments of Radiology & Medical
Informatics, Erasmus MC, Rotterdam, the Netherlands

2 Imaging Science & Technology, Department of Applied Sciences, Delft University of
Technology, the Netherlands

Abstract. The increasing scale and complexity of population imaging
studies poses challenges for managing and maintaining data storage, ac-
cess and analysis infrastructures. Traditionally the data workflow in a
population study is largely managed manually. We propose an automated
workflow approach which formalizes and streamlines the management of
the image storage and analysis workflow. At the core of the infrastruc-
ture is an automated study manager that serves as a mediator between
the different components and keeps the master records of the data ob-
jects in the study. This approach helps minimize human errors, improve
consistency of the data and allows for continuous data flows.

1 Introduction

With advancing scanner technology, wider availability of automated analysis
methods and increasingly complex multidisciplinary research questions, data
management of population imaging studies is a substantial responsibility. The
amount of data a population imaging study generates is increasing and so is
the complexity of the data analysis. These large and rich datasets present re-
searchers with great opportunities for new research, but also lead to challenges
with respect to the storage and analysis of the imaging data.

Besides the increasing scale of population imaging studies, there are more de-
velopments that challenge conventional practices in imaging: (1) Studies acquire
more and more non-imaging data and are positioned more in multidisciplinary
settings (e.g. imaging genetics), (2) more studies are multicentric, often present-
ing heterogeneity amongst scanners and scanning protocols, and (3) an increase
in imaging biomarkers that are available.

These developments make it more important to manage the data and pro-
cessing for population studies very carefully. They require robust solutions for
storage, processing and management of the study data. For consistency and re-
producibility, it is important to automate or otherwise formalize as much of the
entire imaging workflow as possible. A complete workflow for every scan should
be defined and adhered to, making sure all automatic processing and manual

Marcel Koek, Hakim Achterberg, Marius de Groot, Erwin Vast, Stefan Klein, Wiro Niessen ; 
Population Imaging Study IT Infrastructure: An Automated Continuous Workflow Approach, 
In: Proceedings of the 1st Miccai 2015 Workshop on Management and Processing of images 
for Population Imaging – MICCAI-MAPPING2015, C . Barillot, M. Dojat, D. Kennedy and 
W. Niessen (Eds), pp.31-38, 2015. 
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actions are performed in the correct way. By minimizing the opportunity for hu-
man errors in the workflow, this assures adherence to predefined procedures and
provides insight herein for granting bodies, journals and certificate authorities.

To achieve this, it is important to integrate a number of concepts into a com-
prehensive infrastructure for population imaging. For many imaging infrastruc-
ture concepts there are solutions available, but a complete integrated solution is
to our knowledge not existing. In this work, we present the development of an
infrastructure for population imaging, where we use, as much as possible, exist-
ing software. All of the software used is freely available, making it possible for
others to replicate (part of) the infrastructure. At the core of this infrastructure
a novel component, the study manager, is placed which formalizes and manages
the workflow for the study, and automates tasks where possible. It is this study
manager that interoperates with, and links together, all systems in the infras-
tructure. Since parts of the workflow of the population imaging management are
automated, the workflow can be executed more continuously.

2 Design

We briefly describe the workflow of existing population imaging studies first.
From that we define the requirements for a system that implements solutions
for dealing with large amounts of data and high data complexity. Subsequently,
we outline the proposed IT infrastructure for population imaging with a central
role for the automated study manager.

2.1 Workflow in population imaging studies

Population imaging studies all have a common structure to their workflows. The
workflow in most population imaging studies can be split up in roughly the
following tasks:

1. Select (new) participants for eligibility
2. Invite eligible participants and schedule scan visits
3. Screen participants for contraindications to scanning
4. Scan participants and gather other information
5. Store all acquired (meta-)data in an archive and/or study database
6. Check scans for incidental findings and major imaging artefacts
7. Retrieve (pseudonymized or anonymized) data for analysis
8. Data analysis at participant level, determining quantitative biomarkers or

other statistics
9. Perform a quality assessment of the (processed) data

10. Aggregate level analysis, describing population effects
11. Disseminate results of analysis

All steps in this workflow are manually performed and initiated. The steps
are either routinely initiated or per request. While patient inclusion (steps 1-2)
and final analysis (steps 10-11) will typically involve groups of participants, the
steps in between are typically followed per participant.
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2.2 Requirements for a population imaging IT infrastructure

The IT infrastructure is involved in steps 4 through 10 of the workflow described
above. The general requirements for a data and analysis management infrastruc-
ture, supporting the previously mentioned tasks, for population imaging studies
are:

– The data archive must be reliable and recoverable in case of disaster, failures
of machines should not corrupt study data integrity

– The state of a scan session in a workflow must be known unambiguously
– As data passes through different tasks in the study workflow, provenance

documents must be recorded to document the history of each dataset.
– All components must interact (this requires all core components to have

programmatic interfaces)
– The system must be able to accept data continuously and be able to ingest

data in batches
– The system needs to remain online, even during routine maintenance
– The system must be able to mix manual procedures with automated pro-

cessing
– Data on the infrastructure must all be anonymized / pseudonymised
– The system must be scalable. Limiting components need to be parallelizable.

2.3 The proposed infrastructure

The main systems that are used in the proposed population imaging IT infras-
tructure are:

– An automated study manager for managing the study workflow
– An image archive for storing acquired imaging data and derived imaging

data
– A study database for storing subject information and data as well as derived

non-imaging data
– An automated image processing engine for managing biomarker generating

pipelines
– Viewers and editors for review of incidental findings and quality assessment
– Anonymization / Pseudonymization system

In Figure 1 the infrastructure based on the basic systems is schematically illus-
trated.

Automated Study manager The study manager keeps track of the state
of every scan. It guides the scan sessions through a predefined workflow and
is aware of all possible states and transitions in the workflow. This approach
offloads administrative overhead and thereby allows for instantaneous processing
of data as it comes in, rather than manually starting processing tasks for entire
cohorts. A big advantage of this continuous approach is time efficiency. In the
automated parts of the workflow there is no need for any buffers where tasks
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Fig. 1. Schematic overview of the interaction between the basic components of a pop-
ulation imaging workflow. An pseudonymization system could be plugged in between
the image archive and the scanner. After processing the results could be reviewed on
a workstation.

have to wait until they are executed. This makes it possible to disclose results
of the analysis quickly after acquiring the data.

The study manager takes a central place in the infrastructure. It interoperates
with every system in the infrastructure. This makes recording high-level data
provenance possible. Data provenance records will be created for every scan
session for every task in the workflow. Having provenance recorded for every
data object in the study is important for reproducibility, for data sharing, or to
aid in problem solving. Knowing how a dataset was analyzed is a prerequisite
for ensuring the reliability of any analysis.

Every transition in the workflow of the imaging study is recorded. This atomic
operation stores everything that is relevant for restoring the situation in case of a
system failure. When the study manager needs to recover after a failure it looks
for tasks that were pending and requests the current status from the responsible
systems in the infrastructure. When the state of a data object is unclear this is
reported to an administrator who can take actions accordingly.

Image Archive The image archive holds all imaging data of a population
study. To integrate the image archive into the automated workflow infrastruc-
ture, it must expose data handling functionality via a programmatic interface.
The image archive should support the DICOM3 image format for raw data, and
a selection of other formats for derived data.

Study database All (simple type) data about each participant (e.g. site visit,
cognitive data, blood markers, physical tests) are stored in the study database.
For an integrated infrastructure, it is important that the database can be queried
via a programmatic interface. At the very least, basic demographic information
and context for imaging visits should be exposed.

3 Digital Imaging and Communications in Medicine
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Automated image processing engine The image processing engine is re-
sponsible for starting and monitoring image processing pipelines. The processing
engine should collect data provenance documents for all results generated by the
image processing pipeline.

Viewers and editors There are a number of steps that require manual interac-
tion: review for incidental findings, quality assessment of the raw image data and
the results of automatic processing, and possibly manual segmentation steps. For
this, image viewers and editors are needed that are able to retrieve data from the
image archive. Ideally they can also interact with the study manager, so users
can easily view/edit the scans that are queued for manual interaction.

Anonymization The proposed infrastructure is designed for research purposes.
In general, this means that all data on the infrastructure should be anonymized
or pseudonymized. To facilitate easy transfer of data from a clinical partner
to the infrastructure, it is important to have a reliable, automated anonymiza-
tion method. In case the data of a subject is split over multiple independent
databases and the results of analysis have to be combined later, the data should
be pseudonymized. The pseudonymization keys should be stored with the proper
instances at the clinical side.

3 Implementation

This section starts with a description of the study manager. We then describe
the existing software solutions available for the other components of the in-
frastructure. Finally, we briefly describe the current software stack used in our
infrastructure.

3.1 Study manager

We are not aware of any existing software that fulfills the specific requirements
of the study manager. Therefore, we have started developing a study manager
in-house. The study manager basically consists of 3 components, a state machine
model, a database and an Application Programmatic Interface (API). Front-ends
for managing and monitoring can be made by using the API.

A state machine is a mathematical model of an abstract machine that can
have one of a finite number of states. In case of a population imaging study, the
study workflow can be modelled by a state machine. Each data object (e.g a
scan session) that is part of the study is in a certain state. A data object can be
in one state at a time and can only go to a next state when an event or condition
triggers a transition. The possible transitions are defined by the workflow. This
formalizes the workflow as it enforces the data to flow through the workflow in
a predefined order. The workflow is fully customizable so it can fit the needs of
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different studies. Figure 2 shows a part of the state machine model for the study
workflow.

The state history of every data object in the system is stored in a database.
The current state can be extracted by looking for the last state known. The
state machine has to be persistent, so that any change is immediately stored in
the database and cannot be lost. After a system failure the system needs to be
brought in the correct state as soon as possible.

Because other components are not aware of the study manager, the tran-
sitions are triggered by meeting certain conditions by default. For every scan
session, the study manager checks if the condition of one of the transitions from
the current state are met and triggers the transition accordingly. Optionally it
is possible to trigger a transition externally via a Representational State Trans-
fer (REST) API [2]. This can be used by administration tools or custom made
viewers where the results are reviewed on their quality. The state and basic data
of each scan session can be requested via the same REST API.

Fig. 2. Part of the state machine model of the study workflow.

3.2 Other components of the IT Infrastructure

For image storage there are a number of possible systems. XNAT[5] is an image
archive with a REST interface primarily created neuroimaging studies, but is
now used in other imaging domains as well. Midas4 is an open-source toolkit for
creating data storage solutions. SciTran5 is a project in development, offering
a storage solution from imaging data. As an alternative to a dedicated image
storage solution, it is also possible to use an object storage such as Openstack

4 http://midasplatform.org
5 http://scitran.github.io
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Swift6, Ceph7 or a public-cloud based solution and let the study manager interact
directly with the storage layer.

There are many study database options, both high level and low level. For
clinical research, OpenClinica8 is a project that offers a study database combined
with webforms for convenient data entry. Many population imaging studies use
custom made software with database backends to store the study data.

There are many pipeline engines available, most notably: Loni pipeline[1],
Nipype[3] and Fastr9. They are all created for the domain of medical imaging and
are based around the concept of interfacing with command-line tools, without
requiring special APIs or recompilation.

For viewing any viewer can be used, for example 3DSlicer10, ITK-SNAP11

and FSLView12 or custom made viewers based on VTK13, MeVisLab14, XTK15

or similar software. For anonymization and routing DICOM files the Clinical
Trial Processor has been created by the Radiological Society of North America.

3.3 Currently used components

We currently use XNAT for image archiving, Fastr for managing the analysis,
CTP for pseudonymization the data. For reviewing and correction of the analysis
results a custom made tool is made using MeVisLab. Incidental finding checking
is done on radiological workstations. For some studies OpenClinica is used as
the study database, while others have a tailor made study database. Data is
stored on a replicated GPFS file system, which offers copy-on-write and atomic
snapshots that serve as recovery time points.

4 Discussion

We propose a population imaging infrastructure using a continuous, automated
workflow approach. We explored different options for the components required
for building this infrastructure. However, the separate components can be inter-
changed to suit specific requirements of the study and institutional preferences.
The study manager acts as mediator between the different components and —
most importantly — keeps a record of the state of each individual scan.

As there is no suitable solution for the study manager available, we introduce
our own open source software16. In our study manager, the transitions between

6 http://swift.openstack.org
7 http://ceph.com
8 https://www.openclinica.com
9 http://fastr.readthedocs.org/en/default/

10 http://www.slicer.org
11 http://www.itksnap.org
12 http://fsl.fmrib.ox.ac.uk/fsl/fslview
13 http://www.vtk.org
14 http://www.mevislab.de
15 https://github.com/xtk/X
16 https://bitbucket.org/bigr_erasmusmc/syncotron
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tasks are predefined and are automated. However, the tasks themselves can be
either manual or fully automated. The automated nature of the study manager
avoids human error and ensures consistency of the data. By automating the
transitions the workflow becomes continuous, leading to a quick availability of
the derived measures. Using predefined transitions ensures the state of a data
object is always valid and the state is stored in a persistent database. With
this knowledge, the study manager can fully recover after a system crash. While
transitioning the data objects (e.g. scan sessions) through the workflow, the
study manager records provenance documents.

With this infrastructure proposal we present a blueprint for a continuous,
automated management of population image studies. Our design is based on
our experience with the Rotterdam Scan Study which contains more than 12000
scan sessions of over 5800 unique participants at time of writing[4]. It is designed
to handle the increasing scale of population imaging studies, the complexity of
analysis methods, and the growing number of automatically derived biomarkers.
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Abstract. With the increasing number of datasets encountered in imag-
ing studies, the increasing complexity of processing workflows, and a
growing awareness for data stewardship, there is a need for managed,
automated workflows. In this paper we introduce Fastr, an automated
workflow engine with support for advanced data flows. Fastr has built-
in data provenance for recording processing trails and ensuring repro-
ducible results. The extensible plugin-based design allows the system to
interface with virtually any image archive and processing infrastructure.
This workflow engine is designed to consolidate quantitative imaging
biomarker pipelines so that they can easily be applied to new data.

1 Introduction

In medical image analysis, most methods are no longer implemented as a sin-
gle computer program, but as a comprehensive workflow composed of multiple
programs that are run in a specific order. Each program is executed with inputs
that are predetermined or are following from the results of previous steps. With
increasing complexity of the methods, the workflows become more convoluted
and encompass more steps. This makes execution of such a method by hand
tedious and error-prone and has led to solutions based on scripts that perform
all the steps in the correct order.

In population imaging, data collections are typically very large and are often
acquired over prolonged periods of time. As data collection is going on continu-
ously, the concept of a ’final’ dataset is either a non-existent or at least a far away
time point. Commonly, analyses on population imaging datasets therefore define
intermediate cohorts or time points. All image analysis methods need to produce
consistent results over time and should be able to cope with the ever growing
size of the population study. Therefore the process of running analysis pipelines
on population imaging data needs to be automated to ensure consistency and
minimize errors.

Traditionally this is accomplished by writing scripts created specifically for
one processing workflow. This can work well, but generally the solutions are
tailor-made for a specific study and software environment. This makes it diffi-
cult to apply such a method to different data or on different infrastructure than
originally intended. With evolving compute resources, in practice this approach

Hakim Achterberg, Marcel Koek, Wiro Niessen ; Fastr: a workflow engine for advanced data 
flows, In: Proceedings of the 1st Miccai 2015 Workshop on Management and Processing of 
images for Population Imaging – MICCAI-MAPPING2015, C . Barillot, M. Dojat, D. Kennedy 
and W. Niessen (Eds), pp.39-46, 2015
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is therefore not reproducible and difficult to maintain. Additionally, for trans-
parency and reproducibility of the results it is very important to know exactly
how the data was processed. To accomplish this, an extensive data provenance
system is required.

Writing a script that takes care of all the aforementioned issues is a chal-
lenging and time consuming task. However, many of the components are generic
for any type of workflow and do not have to be created separately for each
workflow. Therefore, we developed an image processing workflow framework for
creating and managing processing pipelines: Fastr. The framework is designed
to build workflows that are agnostic for where the input data is stored, where
the resulting output data should be stored, where the steps in the workflow will
be executed, and what information about the data and processing needs to be
logged for data provenance. To allow for flexible data handling, the input and
output of data is managed by a plugin-based system, which allows for flexible
data handling. Where and in what order the workflow steps are executed is man-
aged by a pluggable system as well. The provenance system is a built-in feature
that ensures a complete log of the processing.

2 Design

In the Fastr philosophy, a workflow is built from a number of atomic steps.
Each step can be considered a call to a command line executable. Each different
executable that can be called by the system we call a tool. Each tool needs data
and/or parameters (input) to process and generate output data. These inputs
and outputs are fed to the executable via command line arguments. Fastr needs
to be made aware of how to feed data to the tool and how to get data from
the tool. Therefore, the inputs and outputs of each tool along with information
about where and how to locate the executable are described in simple xml files.

Once the required tools are known to the system, a workflow can be created.
A workflow in Fastr is represented by a network of nodes. A node is a step in
a workflow and can be considered as an instantiation of a tool. Figure 1 shows
a simple graphic representation of an atlas-based segmentation workflow, using
the Elastix registration package[4]. In Elastix, a deformation field is optimized
to match the moving image to the fixed (reference) image. There are different
classes of nodes: normal nodes, source nodes, constant nodes and sink nodes. The
source nodes and constant nodes are places where data can enter the network,
whereas sink nodes are the places where the data can leave the network. Data
flow in the network is defined by links. A link is a connection between the output
of a node and the input of another node. The nodes and links in the network
form a graph from which the dependencies can be determined for the execution
order.

2.1 Data model

Data in Fastr is represented by samples. A sample is the unit of data that is
presented to inputs of a node for a single run. It can be a simple scalar value,
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Fig. 1. Example Network representing a single atlas-based segmentation workflow im-
plemented using the open source Elastix image registration software. Green boxes are
source nodes, purple constant nodes, gray normal nodes, and blue sink nodes. Each
node contains two columns: the left column represents the inputs,the right column
represents the outputs of the node. The arrows indicate links between the inputs and
outputs. This image was generated automatically from the source code.

a string, a file, or a list of these. To illustrate this, in this section we will use
the Elastix Node from 1 as an example Node. The fixed and moving inputs of
the Elastix node are required to be images. The parameters input should be
supplied with one or more text files defining the registration settings; therefore
a sample of this input should be a list of parameter files. The transform output
will generate a sample that contains a list of transform files (one transform file
for each input parameter file). The amount of values a sample contains is called
the cardinality of the sample.

Figure 2 illustrates a number of situations where samples are offered to inputs
(f for fixed, m for moving, and p for parameters) that results in a number of
samples (t for transforms). In Figure 2a we present the simplest situation, where
one sample with one value is offered to each input and one sample with one value
is generated. In Figure 2b, the fixed and moving inputs have one sample with
one value, but the parameters input has one sample with two values. The result
is a sample with two values, as one transform file is created per parameter file.

To facilitate batch processing a node can be presented with a collection of
samples. These collections are multi-dimensional arrays of samples. In Figure
2c, we depict a situation where three registrations are performed. Three samples
are offered to the fixed input and one sample is offered to the other inputs. This
results in three samples: each sample of the fixed input was used in turn, whereas
the samples for the moving and parameters were considered constant. In Figure
2d, there are three samples for the fixed and moving inputs. The result is again
three samples as now each pair of samples from fixed and moving inputs was
taken, and the parameters was considered constant.

This is useful for simple batch processing where a task should be repeated
a number of times for different input values. However, in a multi-atlas based
segmentation for example, it is required to register every fixed image (the targets)
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Fig. 2. Illustration of the data flows in a Node. Each rectangle is a sample, and a block
of rectangles represents a sample collection. The value is printed in each rectangle,
where the commas separate multiple values. The samples f are offered to the fixed
input, the sample m to moving input and the sample p to the parameters input. The
sample t are generated for the transform output. The sample t subscript indicates
which input samples were used to generate the result.

to every moving image (the atlases). To simplify this procedure Fastr can switch
from pairwise behaviour to an outer product behavior. In Figure 2e, this is
depicted graphically. Every combination of fixed and moving sample is used for
registration and the result is a two-dimensional array of transformation samples
that in turn contain two transformations each.
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Fig. 3. Converging and diverging flows. The start situation on the left diverges to the
situation in the middle after which data converges the first dimension. Note that in
the middle situation there is an empty place in the sample collection (top right). This
is possible due to a sparse array representation of the sample collections. This results
in two samples with different cardinality in the right-most situation.

Sometimes a tool outputs a sample with a higher cardinality which should
be treated as separate samples for further processing, or conversely a number
of samples should be offered as a single sample to an input (e.g. for taking an
average). For this, Fastr offers two flow directives in data links. The first directive
is diverging which indicates that the cardinality is to be transformed into a new
dimension. This is illustrated in the left side of Figure 3. The second directive is
converging which indicates one or more dimensions in the sample array should
be collapsed and combined into the cardinality. This process is illustrated in the
right side of Figure 3. These flow directives allow for more complex dataflows in
a simple fashion and enable users to implement MapReduce type of workflows.
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2.2 Data input and output

The starting points of every workflow are source nodes, in which the data is
imported into the networks. Similarly the endpoints of every workflow are the
sink nodes which export the data to the desired location. When constructing a
network, the sources and sink need to be defined, but the system only needs to
know the type of data that will be presented. The actual definition of the data
is done at runtime using uniform resource identifiers (URI).

Based on the URI scheme, the retrieval/storage of the data will be performed
by a plugin. Given two example URI:

vfs://mount/some/path/file1.txt

xnat://xnat.example.com/data/archive/projects/sandbox/subj...

The schemes (in red) of these URIs are different. This means that the first
URI will be handled by the Virtual File System plugin, whereas the second URI
will be handled by the XNAT[3] storage plugin. These plugins implement the
methods to actually retrieve and store the data. The remainder of the URI is
handled by the plugin, so the format of the schemes URI format is defined by
the plugin developer.

There are also plugins that can expand a single URI into multiple URIs based
on wildcards or searches. In the following example URIs we use wildcards (shown
in blue) to retrieve multiple datasets in one go:

xnat://xnat.example.com/search?project=test&subjects=s[0-9]...
vfsregexp://tmp/network_dir/.*/.*/__fastr_result__.pickle.gz

The XNAT storage plugin has a direct storage as well as search URI scheme
defined. The VFS regular expression plugin, uses the regexp filter to generate a
list of matching vfs URIs.

This makes the network completely agnostic to the location and storage
method of the source and target data. Also it allows easy loading of large amounts
of resources using wildcards, csv files or searches. Currently Fastr includes plu-
gins for input/output from the (virtual) filesystem, csv files and XNAT.

2.3 Execution

The Fastr framework is designed to offer flexible execution of jobs. The frame-
work analyzes the workflow and creates a list of jobs, including dependencies,
that need to be executed. Then it dispatches the jobs to an execution plugin. A
different plugin can be selected for each run allowing for easy switching of the
execution backend. The plugins can dispatch jobs to an execution system such
as a cluster, grid, or cloud.

The Fastr execution system carries out the following steps:

– The Network is analyzed and an ordered list of nodes is generated; at this
stage, logical errors in the network will be identified and thrown

– A job for each desired sample combination is created for each node
– The jobs are dispatched by the execution plugin
– The execution plugin schedules and runs the job
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– The job executes the actual processing, gathers and validates the results and
creates a provenance record.

– The execution plugin sends a callback to the network to process the new
data

Currently, Fastr supports functional plugins for processing locally and on a
cluster (using the DRMAAv1 api3). Next plugins will focus on flexible middle-
ware for grid/cluster/cloud, like Dirac4, that offer support for a wide range of
systems.

2.4 Provenance

Data provenance is a built-in feature of Fastr. An implementation of the W3C
Prov Data model (PROV-DM) is used to provide this. Fastr records all rele-
vant data during execution and ensures that for every resulting file from a sink
a complete data provenance document is included. The standard format of a
provenance document is PROV-N, which can be serialized to PROV-JSON or
PROV-XML.

In Figure 4 the three base classes and the properties of how they relate to
each other are illustrated. For Fastr, networks, tools and nodes are modelled as
agents, jobs as activities and data objects as entities. The relating properties are
naturally valid for our workflow application. The hierarchy and topology of the
network follows automatically from the relating properties between the classes,
but in order to make the provenance document usable for reproducibility, extra
information is stored as attributes on the classes and properties. For every agent
in our system the version is stored and for every entity the value or file path and
an md5sum is stored. For every activity the start and end time of execution, the
stdout and stderr logs are stored, the end status (success, success with warnings,
failed, etc), and an exhaustive description of the environment.

3 Results

A functional version of Fastr is available from https://bitbucket.org/bigr_

erasmusmc/fastr. It is released under the Apache license 2.0, which means it
is open-source and free to use. The framework is written in Python and easy to
install using the standard Python tools. Fastr is platform independent and runs
on Linux, Mac and Windows environments. However the focus lies on supporting
Linux since that is the platform used in most processing environments.

The project has online documentation at http://fastr.readthedocs.org.
It includes a small tutorial, a user manual and a developer reference of the code
built using Sphinx.

Currently we are using the system for a number of workflows for multiple large
studies as well as some projects with other departments in-house. For example,

3 http://www.drmaa.org
4 http://diracgrid.org
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Fig. 4. The three base classes of the provenance data model with their relating prop-
erties. The agents are orange pentagons, the entities are yellow ovals and the activities
are depicted as blue squares. This image is copied from PROV-O: The PROV Ontology.
Copyright 2015 W3C (MIT, ERCIM, Keio, Beihang).

the Rotterdam Scan Study uses a Fastr workflow for the preprocessing, tissue
type segmentation and lobes segmentation of brain images. The data is fetched
from the archive and is processed in a cluster environment. The resulting data
is stored in an image archive.

4 Discussion

With Fastr we created a workflow system that allows users to rapidly create
workflows. The simple access to advanced features makes Fastr suitable for both
simple and complex workflows. Workflows created with Fastr will automatically
have a good provenance system, support for execution on various computational
resources, and support for multiple storage systems. Therefore, Fastr speeds up
the development cycle for creating workflows and minimizes the introduction of
errors.

There are other workflow systems developed for the domain of medical image
analysis. Most notable are LONI pipeline and Nipype. LONI pipeline[1] is a
mature package with a GUI to create workflows for neuroimaging. This package
is maintained by the LONI group at the University of Southern California and
provided as a closed-source package. Though this system works well in the LONI
infrastructure, the close-source nature makes it more difficult to fit into different
infrastructures and extend the system with new features.

The only open-source, domain-specific tool that we are aware of is Nipype[2],
which is aimed at creating a common interface for varying neuroimaging tools.
It also features a system for creating workflows. Compared to Fastr, the tool
interfaces Nipype uses are slightly more labour intensive to create, but more
advanced and flexible due to the extra freedom. Their design allows for easy
manual exploration of data and prototyping of processing. Conversely, Fastr is
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more aimed at large scale batch processing and managed pipelines. The Fastr
data model is inherently aimed at batch processing and advanced data flows,
whereas Nipype uses MapNodes and JoinNodes for non-linear data flows. Also,
Fastr allows for multiple versions of tools to be available simultaneously, whereas
Nipype by default searches for executables on the PATH. We believe it is im-
portant to be able to keep an environment where all the old versions of tools are
available for future reproducibility of the results.

4.1 Future directions

As Nipype and Fastr both offer distinct powerful features, it might be worth-
while to interchange ideas with Nipype. Considering that there are many in-
terfaces available for Nipype, we want to support Nipype interfaces with the
Fastr workflow system in the future. However, it is not trivial to combine the
Nipype interfaces with the Fastr tool versioning principle. It would also be very
advantageous to share the provenance definition used, so that both platforms
can append to each others provenance in a natural fashion.

For reproducibility it is important to be able to re-run analyses in exactly the
same conditions. Currently Fastr supports environment modules to keep multiple
versions of software available at the same time. However, the same version of the
software can still be different based on underlying libraries, compiler used and
the OS. Docker5 offers a solution to this problem. Docker is a lightweight linux
container, that works similar to virtual machines, but is much more efficient. It
ensures that the binaries and underlying libraries are all the same between runs.
We plan to add support for Docker containers to make it easier to share tools
and improve reproducibility further.

Finally, we are working on more (web based) tooling around Fastr to make it
is easier to visualize/develop networks and inspect the results of a run (including
provenance information).
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Abstract. DICOM is today an ubiquitous standard for medical imag-
ing, used by an overwhelming majority of modalities and archives de-
ployed in radiology departments. Earlier versions of DICOM were cen-
tered on clinical practice, though later versions introduced concepts re-
lated to animal imaging and clinical trials: the current standard version
has all the specifications required to create an archive of DICOM images
for clinical and pre-clinical research.

However, several prominent archives geared towards clinical research
have their roots in clinical practice, implying a small set of highly-
controlled image sources, which makes them ill-suited when used in the
much more chaotic environment of research. In this paper, we present
the design and implementation details of a generic DICOM-based picture
archive for clinical as well as pre-clinical research. This design includes
data normalization, modality-independent storage, generic queries and
fine-grained access control rules.

1 Introduction

Since its inception in the early 1990s, DICOM has become a world-wide standard
for a wealth of activities related to medical imaging: from large image archives for
a whole hospital to display and worklist management, it covers imaging not only
of human subjects, but also of animals and tissue samples. Notwithstanding the
inclusion of data model for clinical trials only in recent versions of the standard,
this ubiquity in clinical practice is however not mirrored in clinical research.

Although seemingly transparent, the switch from clinical practice to clinical
research is not an easy one: the data used in clinical trials is increasingly multi-
centric in order to reach a better statistical power and with this variety of sources
comes a wide variability regarding not only the image content – such as signal-to-
noise ratio or voxel size – but also the metadata attached to the image. Prominent
softwares such as DCM4CHEE [8], Shanoir [7] and XNAT [9] are widely and
successfully deployed when medical imaging archives for clinical research are
needed, but in our opinion, they still lack the flexibility required for smooth
operation when storing multi-modal as well as human and animal images.

When building a picture archive for clinical research, three main points are
to be considered: the preprocessing of data before storage (since the data comes

Julien Lamy, Romain Lahaxe, Jean-Paul Armspach, Fabrice Heitz ; Design and implementation of 
a generic DICOM archive for clinical and pre-clinical research, In: Proceedings of the 1st Miccai 
2015 Workshop on Management and Processing of images for Population Imaging – MICCAI-
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from heterogeneous, external sources), the query capabilities (what stored ele-
ments can be queried or filtered), and the access control (which operation each
person is allowed to perform).

Imaging data in clinical research has two main specificities when compared
to clinical practice: heterogeneity and a requirement for anonymity. The hetero-
geneity can appear either through the names of objects (subjects, time points,
MR sequence names, etc.) or through the DICOM elements used to encode a
given information: even though the elements concerning diffusion MRI (e.g. gra-
dient direction and b-value) have been specified by the DICOM standard since
2003, we have yet to receive images where those informations are not stored
in vendor-specific fields. Concerning the naming of objects, different acquisition
centers will have different naming conventions, and, even though this seemingly
only affects post-hoc studies, it is quite common in our experience for acquisition
centers to disregard the naming guidelines of imaging protocols; in a particularly
severe example we encountered, the data from a trial with 160 subjects from 29
different centers contained 61 different series names for a classical T1 3D MR
sequence. A similar problem arises when considering anonymity: due to multi-
ple factors, human as well as technical, the subject naming rules given by the
principal investigator might not hold, and data might be either nominative or
contain wrong identifiers. In most cases, new elements will also need to be added
to the data, to accommodate the clinical research model (acquisition center, time
points, etc.) as well as archive-specific elements.

Data storage must allow more generic queries than the simple patient / study
/ series discovery: it is common to perform queries based on acquisition date
(e.g. for quality control), subject demographics (e.g. to study sub-groups based
on age), or acquisition parameters (e.g. to study the effect of MR sequence
parameters on image quality). Due to the large number of existing elements in
DICOM data and the ever-evolving nature of medical imaging which translates
to an ever-evolving DICOM standard, it is not possible to predict every query
that the users of an archive could perform: any database storing medical images
should allow generic queries and be future-proof, i.e. it should not require a
change of schema anytime the DICOM standard evolves. Since research data is
less static than clinical data – errors and ensuing normalization being possibly
discovered a long time after the initial storage – the storage should also allow
traceability, to guarantee that any modification to the original data has a known
author, date and reason, and can be reversed.

In the context of a large archive, users will have different access rights ac-
cording to the study they request and to the operation they want to perform:
in a typical environment, principal investigators will have extended permissions
(read and write) on the studies they lead but should have no rights to other
studies, while clinical research associates will be authorized to submit specific
data (e.g. only a specific MR sequence) and image processing specialists will only
have read permissions. This variety of roles shows the need for a fine-grained ac-
cess control, depending not only on the user identity, but also on the type of
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operation performed (i.e. the DICOM service invoked) and the content of the
operation data (i.e. the content of the query or of the submitted data).

In the following sections, we will detail how we designed a system meeting
all these requirements, along with implementation details.

2 Design

2.1 Conversion, normalization and de-identification

The pre-processing of data before storage, consisting mainly of conversion, nor-
malization, and de-identification operations, can be modeled generically as a
routing system – similar to the usual concept used by computer networks –
based on DICOM files.

A routing rule can be seen as a pair of a condition and a list of actions: each
piece of data entering the system is checked against the condition, and should
the condition be met, actions are applied sequentially. Actions can be atomic
(e.g. check the existence or value of an element) or composite (logical negation,
conjunction or disjunction).

Working on field-based data gives us three main operations – field modifi-
cation, addition or deletion – where the new value in the case of modification
or deletion can be either static or dynamically depending on the values of other
fields. Data normalization will typically involve mostly field modification using
value mappings (e.g. for the sequence name), while the de-identification profiles
specified by the DICOM standard will use mostly deletions (e.g. postal address
of the patient) and modifications based on dynamic values (e.g. replace the pa-
tient’s birth date with the patient’s age). Figure 1 shows an example of such a
rule.

Under these definitions, a routing system is composed of a list of rules, applied
sequentially. The conditions and actions of each rule in a routing system can be
arbitrary, but, for easier comprehension, should remain disjoint.

2.2 Storage

The different data models proposed by the DICOM standard are all entity-
relationship models. The storage components of several prominent medical image
archives (DCM4CHEE, Shanoir, XNAT) follow this model and store the data
that can be queried in an SQL-powered relational database. Although this seem

Patient's Name: Doe^John
Patient's Birth Date: 19781612
Patient's Address: 123 Golden Brick Rd

Patient's Name: DJ1234
Patient's Birth Date:  (empty)
Patient's Age: 037Y
Patient's Address

Fig. 1. Example of DICOM routing
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the logical choice for an entity-relationship model, the SQL-based implementa-
tions are very limited in term of search functionality: due to the large number of
elements (over 3800 in the current version of DICOM) and the wealth of IODs
and modules, a complete SQL-based backend would yield an intractable number
of tables.

In our opinion, the constant nature of an SQL schema is ill-suited to the
storage of medical data, especially when storing multi-modal data from both
human and animal subjects, since there will be a wide variety of elements from
one data set to another. In the last decade, new database mechanisms have ap-
peared, gathered under the “NoSQL” [5] umbrella term: used by Big data actors
– such as Google, Amazon or Facebook – NoSQL databases include document-
oriented databases, where the data structuration is less strict than in SQL. Under
this model, each DICOM data set is represented as a document structured by
its elements. The fields of the data set stored in the database are user-definable,
ranging from a simple system containing only basic information (patient’s name,
study and series dates and description), to a complete indexation of the data set,
including an interpretation of known vendor-specific fields (e.g. those containing
DTI information). The field-based nature of DICOM documents is especially
well-suited to document-oriented databases, and even more so since the latest
iterations of the DICOM standard specifies XML and JSON models for data
sets, two technologies abundantly used in document-oriented databases.

Along with the metadata, some document-oriented database engines allow
storing the original data set itself in the database instead of storing it directly on
the file system: DICOM files are typically small (from a few hundred kilobytes
for 2D files to a few tens of megabytes for usual 3D files), and their number can
hence quickly grow to several millions for a medium-sized archive; devising a
naming scheme which prevent collisions for that many files is no easy task, and
leveraging the database engine to store the original file relieves the developers
of such a burden. Moreover, since document-oriented databases originate in the
world of Big data, most of them have built-in scaling capabilities [4], allowing the
administrator to balance the load on medium-sized or even convenience servers,
growing the cluster along with the archive. Storage details, specifically according
to the file size, will be given in Section 3.

2.3 Access control

Since DICOM specifies how the user authentication must be performed, using
either a user/password, a Kerberos ticket or a SAML assertion, we will assume
that the user identity has been verified, and focus on the access control.

As mentioned in the introduction, users will have different roles, not only
according to their identity, but also according to the study to which they want
to submit data or from which they want to retrieve data. More specifically, an
operation is granted or denied access based on the user identity, the service they
are accessing, and the data related to the service, either in the query or in the
response.
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Based on the standardized DICOM service classes, we identified four different
services on which to specify access control: echo (reachability of the archive),
store, query and retrieve. Since medical data must be protected, even when
anonymized, the query service is separated from the retrieve service: a user may
have the permission to know the existence of some data, but be required to ask
a specific authorization (e.g. approval by an ethics committee) before actually
accessing it.

Apart from the echo service, which has no associated data, the request and
response data will allow the fine tuning of the permissions, allowing a user to
only read from a specific trial, or to only submit a specific modality (e.g. MR,
but no PET). Wide-ranging permissions, either on the service type or on the
associated data, can of course be specified for trusted users.

This access control scheme is applicable on the original DICOM services
(C-FIND, C-STORE, C-GET, etc.) as well as on their equivalent web services
(QIDO, STOW, WADO), since the user identity is conveyed in the HTTP head-
ers.

3 Implementation

Our implementation mostly uses C++, leveraging the constructs included in
C++ 11 [2], such as type inference and lambda functions, and is available on
GitHub [3]. We have split the system in two main projects, called dicomifier1

for the routing part, and dopamine2 for the archive.

3.1 Routing

Since data sources are heterogeneous, a routing system must provide easy to
write rules so that the time spent by operators or administrators remain minimal.
We have chosen to use an XML representation for the rules, since it allows a
standardized serialization, a direct access for advanced users, and an easily-
implementable GUI for less advanced users. The following shows an example of
an XML rule which converts the patient’s birth date to his age and empties the
birth date element.

<Rule>

<Condition>

<ElementMatch tag="PatientBirthDate" value="?*"/>

</Condition>

<Action>

<AgeFromBirthDate />

<EmptyElement tag="PatientBirthDate"/>

</Action>

</Rule>

1 https://github.com/lamyj/dicomifier
2 https://github.com/lamyj/dopamine
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We have used the same principle of rules to convert Bruker data sets, our
main source of data for small animal MRI to DICOM: each documented Bruker
field is mapped, either directly or after transformation, to a DICOM field. The
resulting DICOM data set can then be injected in the rest of the routing pipeline,
for potential normalization and storage.

3.2 Storage and access control

We have chosen to use MongoDB [6] as our database backend. MongoDB is
a stable software with a well-documented C++ API and a native document
representation using the BSON [1] format. It is designed to be scalable, by
distributing the data across several machines, and redundant, by transparently
replicating the data.

As its name suggests, the BSON format is a binary version of JSON, and,
since the JSON representation of data sets is specified by the DICOM standard,
the transformation of a data set to a document is straightforward, with two
specificities. First, we exploit the binary nature of BSON by storing binary fields
– i.e. those with a value representation of OB, OF, OD, OW or UN – directly in
the document instead of encoding them in Base64. This yields a smaller footprint,
since Base64 encoding incurs a size overhead of 33 %. Second, all elements that
may contain non-ASCII characters – i.e. all strings except those with a VR of AE
or CS – have their value re-encoded as UTF-8. This way, the search operations
are independent from the value of the Specific Character Set element.

We then offer the possibility to filter the elements from the data set that are
stored in the document: it is not desirable to store all elements in the documents,
since some elements are not usable for search purposes. This is the case for
vendor-specific elements with unknown semantics and for long elements such as
Pixel Data. Indices for the data set collections are configurable and default to
the unique identifiers and the descriptions at the patient, study, and series levels.

MongoDB proposes two different solutions for file storage: either in the doc-
ument itself for small files, or using a virtual file system called GridFS. GridFS
simply splits the file into small chunks – each one weighting 255 kB at the time
of writing – and store chunk information and file metadata in two collections.
Following MongoDB’s guidelines, we only store large data sets in GridFS, while
smaller data sets are store directly in the document. The cut-off point is 16 MB,
the maximal document size allowed by MongoDB at the time of writing: this
minimizes the complexity of the request when sending a file, since most of the
data we store is still 2D DICOM files, weighting a few hundreds kilobytes.

Concerning the access control, the authentication part is handled by a simple
plugin system, allowing administrators to choose the source of identity valida-
tion. We supply simple examples for password file and LDAP authentication,
enabling local as well as centralized authentication (e.g. using Active Direc-
tory). The access control rules are simply stored in MongoDB, using a simple
document schema. Any operation not matching an access control item is denied
access.
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Fig. 2. Data flow

In the following example, the user scott can only retrieve images from the
patient DoeˆJohn, while the user dr bob can perform any operation :

{ user: "scott", service: "Retrieve", dataset: ["00100010": "Doe^John"]},

{ user: "dr_bob", service: "*"}

Figure 2 summarizes the data flow in the system, for both original DICOM
services (C-STORE, C-FIND, C-GET, etc.) and newer web services (STOW,
QIDO, WADO).

4 Conclusion

We have presented in this paper a DICOM picture archive able to store multi-
modal DICOM data originating from either human or animal subjects. This
software allows normalization of data sets before storage, generic queries, and
fine-grained access control rules to tailor the privileges according to the user
identity. We have deployed this software as our primary archive for animal im-
ages, and plan to extend its use to our human images, acquired either in-house
or from external sources.

Looking back at the first months of use, we intend to develop the follow-
ing three new features. First, while the XML routing rules are not difficult to
write for a developer, this poses an acceptance problem for non-technical users:
we need to develop a simple GUI to generate and edit those rules. Second, the
data in clinical research is less static than the data in clinical practice: post-hoc
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modification is common, as is storing undesired data (e.g. failed segmentations);
to solve this, we plan to specify and implement new DICOM services to modify
and delete data, keeping of course the traceability of modifications and enforc-
ing the access control rules for both modification and deletion. Last, we would
like to integrate our archive to well-known image processing software (e.g. FSL,
SPM, FreeSurfer), so that users could run their preferred algorithms offline on
whole cohorts, leveraging the high-performance computing resources of their in-
stitutions, thus creating reproducible studies, where each pipeline step could be
validated, traced, and replayed when necessary.
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