Developing imaging predictors and neurobehavioural phenotypes for externalising disorders.

Gunter Schumann MD; Chair in Biological Psychiatry; MRC-SGDP Centre; Institute of Psychiatry, Psychology and Neuroscience; King's College, London
Reinforcement-related behaviour in normal brain function and psychopathology

IMAGEN is a longitudinal, multi-centre functional and structural neuroimaging genetic study of a cohort of 2000+ adolescents, investigating the neurobiological basis of individual differences in brain activity during reward, impulsiveness and emotional reactivity at 14, 16 and 19 years.

Schumann et al. Molecular Psychiatry 2010
Structure of IMAGEN

Recruitment, longitudinal clinical, behavioural and neuropsychological characterisation of 2000 adolescents

Gene expression profiles

Genetic analysis of human homologues

fMRI-registered behavioural tasks

Genomic analysis of brain region-specific gene effects

Genome-wide methylation and expression analysis

Functional in vitro and in vivo characterisation.

Replication: Canadian Saguenay Youth MRI study (n=1000)

London
Nottingham
Dublin
Mannheim
Hamburg
Berlin
Paris
Dresden

Impulsivity
Emotional processing
Reward processing
Resting state

3T fMRI
Structural MRI
DTI

Schumann et al. Mol Psych 2010

Impulsivity
Emotional processing
Novelty seeking
Reward sensitivity
Drug self-admin.
Predictors of alcohol abuse:

“Neuropsychosocial profiles of current and future adolescent alcohol misusers”
Neuropsychosocial profiles of current and future adolescent alcohol misusers

115 Binge Drinker
Age 14 years

150 controls
(no alcohol at 14 and 16 years)

121 future binge drinkers
(16 years)

Classification
91% correct
(p=8 x 10^{-61})

Prediction
66% correct
(p=4.2 x 10^{-17})

Regularised logistic regression

Association of brain region und alcohol abuse

Classification (14 Jahre)
Prediction (16 Jahre)

Vm-praefront. Cortex
R Gyrus praecentr.
L Gyrus front. inf.
Gyrus front. sup.
Neuropsychosocial profiles of alcohol misuse

History

Personality

Genetics

Brain

Cognition

Environment
Binge Drinking Prediction - Domains

Brief, Personality-Targeted Coping Skills Interventions and Survival as a Non–Drug User

N=732 fourteen year old adolescents;
Control condition is standard school drug education curriculum

Conrod et al., Arch. Gen. Psychiatry 2010
(i) Multimodal predictors across different levels of observation, including neuroimaging can set a gold standard for predictions against which more widely applicable measures can be tested.

(ii) Depending on the phenotype predicted best predictors might not be the most mechanistically informative.

(iii) Due to the heterogeneity of the biological mechanisms underlying observable behaviour it might be more promising to predict quantifiable neurobiological phenotypes, which reflect clinically relevant psychopathology.
Polygenicity and heterogenetity limit the contribution of each single gene to the overall presentation.

(Ducci and Goldman, 2012)
Endophenotype concept and heritability

Gottesmann and Gould 2003
Genome-wide pleiotropy between psychiatric disorders.

Cross-Disorder Group of the Psychiatric Genomics Consortium

Genomic architecture of brain heritability

V_g/V_p: variance brain volume explained by genetic factors

Toro et al. Molecular Psychiatry 2015
Functional networks in MRI and gene expression data

Richiardi et al. Science 2015
Impulsivity is a risk factor for substance abuse in adolescents

Brain activity networks during inhibition are associated with substance abuse in adolescents.

*The interval between horizontal and vertical arrows in the stop trials becomes smaller/larger in steps of 50 msec depending on each subject's performance to ensure 50% successful and 50% unsuccessful inhibition for each subject.
Reward anticipation in 1544 individuals activates 21 distinct brain regions

Weighted network analysis of brain activity during reward anticipation in 1544 individuals and subsequent bootstrapping.
We carried out several approaches to identify quantitative neurobiological phenotypes involving brain activation and structure, and genetic information.

However, most of these approaches suffer from a limited explanation of variance of behavioural or neuropsychiatric phenotypes, thus limiting their potential clinical utility.
Canonical Correlation Analysis
- a mathematical framework to understand linear relationships between two or more sets of variables.

Linear Regression, one independent variable (univariate, both modalities)

$$y = \alpha_1 + y_2 \alpha_2 = C_1$$

Linear Regression, two independent variables (multivariate, one modality)

$$x_1 \beta_1 + x_2 \beta_2 = C_2$$

 Maximise correlation

Canonical Correlation Analysis (multivariate, both modalities)
Classical canonical correlation analysis requires more samples than features.

In classical canonical correlation analysis, all features have non-zero weights, even if their contribution is negligible.

IMAGEN dataset:
- Features ~ 500,000
- Samples ~ 2000

Non-parametric/Kernel formulations can deal with this limitation:

1) Kernel Canonical Correlation
2) Sparse Canonical Correlation
Maximizing correlation of brain features with behavioural items using sparse Canonical Correlation Analysis

Structural neuroimaging data

Clinical assessment (DAWBA)

Max
- Defining a neurobehavioural phenotype by maximizing correlation of structural and/or functional brain characteristics with combinations of single behavioural items derived from deconstructed questionnaires is a promising way to identify neurobiologically-based behavioural symptom clusters.

- Neurobehavioural phenotypes thus defined might be more suitable for predictions than broad diagnostic or behavioural categories.

- However, this approach requires extensive replication to establish its robustness.

- It also requires empirical evaluations of the strengths and weaknesses of its applicability for clinical decision making and pharmaceutical research.
Institute of Psychiatry, London
Tianye Jia
Christine Macare
Xu Bing
Barbara Ruggeri
Sylvane Desrivieres
Gabriel Robert
Alex Ing

University of Vermont
Hugh Garavan
University College, Dublin
Rob Whelan
Stanford University
Michael Greicius
Jonas Richiardi

IMAGEN consortium
London, Nottingham
Berlin, Mannheim
Hamburg, Dresden,
Paris, Dublin

FUNDERS
European Commission
Medical Research Council, UK
National Institute of Health, U.S.A.
Swedish Research Council, FORMAS
Bundesministerium fuer Bildung und Forschung, Germany
National Institute for Health Research, UK