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Epistemic language

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Eϕ | Cϕ

(only one, fixed group)

I Kiϕ = “agent i knows that ϕ”

I Eϕ =
∧

i∈Agt Kiϕ = “it is shared knowledge that ϕ”

I Cϕ =
∧

k≥0 E
kϕ = “it is common knowledge that ϕ”
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S5 individual knowledge

S5(K) = modal logic S5 for the modal operators Ki

I truth axiom:
Kiϕ→ ϕ

I positive introspection axiom:

Kiϕ→ KiKiϕ

I negative introspection axiom:

¬Kiϕ→ Ki¬Kiϕ
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Shared knowledge: definition

Def(E): Eϕ↔
∧

i∈Agt Kiϕ

I normal modal operator:
I axiom K(E) provable
I rule of necessitation RN(E) derivable

I truth axiom provable:
Eϕ→ ϕ

I neither positive nor negative introspection provable

I axiom B(E) provable:

ϕ→ E¬E¬ϕ
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Common knowledge: basic desiderata

I truth axiom:
Cϕ→ ϕ should be valid

I positive introspection axioms:

Cϕ→ ECϕ should be valid

Cϕ→ CCϕ should be valid

I negative introspection axioms:

¬Cϕ→ E¬Cϕ should be valid

¬Cϕ→ C¬Cϕ should be valid

I fixed-point axiom follows:

FP Cϕ→ E(ϕ ∧ Cϕ) xxxxxxxxxxxxxx
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Common knowledge: induction principles

I two versions
I induction axiom schema:

GFP C(ϕ→ Eϕ)→ (ϕ→ Cϕ)
I induction rule:

RGFP from ϕ→ E(ϕ ∧ ψ), infer ϕ→ Cψ

I intuitive in temporal logics (well-founded orderings)

I doesn’t ‘talk’ in epistemic logics

“If it is the case that ϕ is ‘self-evident’, in the sense that
if it is true, then everyone knows it, and, in addition, if
ϕ is true, then everyone knows ψ, we can show by induc-
tion that if ϕ is true, then so is Ek(ψ ∧ ϕ) for all k.”
[vDHvdHK15]

I aim: find a more intuitive axiom
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Recap: the axiom system with induction rule

S5(K) and Def(E), plus:

FP Cϕ→ E(ϕ ∧ Cϕ)
RGFP from ϕ→ E(ϕ ∧ ψ), infer ϕ→ Cψ

[HM92, FHMV95]

I sound and complete for S5 models
I rule of necessitation RN(C) derivable
I axioms K(C), T(C), 4(C), 5(C) provable
I induction axiom schema GFP provable

7 / 18



Recap: the axiom system with induction axiom

S5(K) and Def(E), plus:

K(C) system K for C
FP Cϕ→ E(ϕ ∧ Cϕ)
GFP C(ϕ→ Eϕ)→ (ϕ→ Cϕ)

[Leh84, HM85]

I sound and complete for S5 models
I induction rule RGFP provable
I original presentation has moreover axioms T(C), 4(C), 5(C)
⇒ redundant!
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A new axiomatisation of S5 common knowledge

S5(K) and Def(E), plus:

S4(C) an axiomatisation of S4 for C
FP1 Cϕ→ Eϕ
GFP1 C(Eϕ ∨ E¬ϕ)→ (Cϕ ∨ C¬ϕ)

I sound for S5 models
I GFP1 provable in the axiom system with induction axiom GFP

I complete for S5 models
I induction axiom GFP provable
I proof uses K(C), RN(C),T(C) 4(C)

I given S5(K), GFP1 equivalent to the (a priori stronger):

GFP2 C
(∧

i∈Agt Kiϕ ∨Ki¬ϕ
)
→ (Cϕ ∨ C¬ϕ)
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Semantics of the new axiom

GFP1: C(Eϕ ∨ E¬ϕ)→ (Cϕ ∨ C¬ϕ)

excludes:

•

R1

•R1 R2

Eϕ

•

2

•

•

R1

•R1 R2

E¬ϕ

•

R2

•

w0

(big cone = R∗
E (w0); triangles = RE-accessible worlds)
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Soundness: proof of GFP1

Proposition

GFP1 is provable from GFP.

Proof.
I premise of GFP1 logically stronger than that of GFP

I relies on T(K) (or rather, its consequence T(E))

I case analysis:

1.
(
ϕ ∧ C(Eϕ ∨ E¬ϕ)

)
→ (ϕ ∧ C(ϕ→ Eϕ)) T(E), K(C)

2.
(
ϕ ∧ C(ϕ→ Eϕ)

)
→ Cϕ GFP

3.
(
ϕ ∧ C(Eϕ ∨ Eϕ)

)
→ (Cϕ ∨ C¬ϕ) from 1, 2

4.
(
¬ϕ ∧ C(Eϕ ∨ E¬ϕ)

)
→ (Cϕ ∨ C¬ϕ)

from 3 by uniform substitution of ϕ by ¬ϕ
5. C(Eϕ ∨ E¬ϕ)→ (Cϕ ∨ C¬ϕ) from 3, 4
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Completeness: a key lemma

Lemma
The schema C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) is provable from the
axiom schemas K(C), 4(C), RN(C), T(C), and FP.

Proof.

1. C(ϕ→ Eϕ)→ E(ϕ→ Eϕ) by FP, T(C), K(E)

2. E(ϕ→ Eϕ)→ (E¬Eϕ→ E¬ϕ) by K(E)

3. ¬ϕ→ E¬Eϕ B(E)

4. C(ϕ→ Eϕ)→ (¬ϕ→ E¬ϕ) from 1, 2, 3

5. CC(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) from 4 by RN(C) and K(C)

6. C(ϕ→ Eϕ)→ CC(ϕ→ Eϕ) 4(C)

7. C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) from 5 and 6
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Completeness: proof of GFP

Proposition

GFP is provable from GFP1.

Proof.

1. C(Eϕ ∨ E¬ϕ)→ (Cϕ ∨ C¬ϕ) GFP1

2.
(
C(ϕ→ Eϕ) ∧ C(¬ϕ→ E¬ϕ)

)
→ C(Eϕ ∨ E¬ϕ)

by RN(C) and K(C)

3.
(
C(ϕ→ Eϕ) ∧ C(¬ϕ→ E¬ϕ)

)
→ (Cϕ ∨ C¬ϕ) from 1 and 2

4. C(ϕ→ Eϕ)→ C(¬ϕ→ E¬ϕ) key lemma

5. C(ϕ→ Eϕ)→ (Cϕ ∨ C¬ϕ) from 3, 4

6. C(ϕ→ Eϕ)→ (Cϕ ∨ ¬ϕ) from 5 by T(C)
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Example: compatriots [LH15]

I in a conference break, two Dutch talk together in English, not
knowing that they are compatriots

¬(K1d2 ∨K1¬d2) ∧ ¬(K2d1 ∨K2¬d1) (1)

I a third person tells them: “hey, you’re compatriots”

C(d1 ↔ d2) (2)

I background knowledge:

C
∧
i

(
(di → Kidi ) ∧ (¬di → Ki¬di )

)
(3)

I implies common knowledge that both are compatriots:

(2) ∧ (3)→ (C(d1 ∧ d2) ∨ C(¬d1 ∧ ¬d2)) (4)
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Example: compatriots (ctd.)

I common knowledge obtained through deduction, using GFP1
I proof:

1. (2) ∧ (3)→ C
(
E(d1 ∧ d2) ∨ E(¬d1 ∧ ¬d2)

)
by 4(C), FP1, K(C)

2. C
(
E(d1 ∧ d2)∨E(¬d1 ∧¬d2)

)
→
(
C(d1 ∧ d2)∨C(¬d1 ∧¬d2)

)
consequence of GFP1

3. (2) ∧ (3)→
(
C(d1 ∧ d2) ∨ C(¬d1 ∧ ¬d2)

)
from 1, 2

I induction principles not so easy to apply
I group version of the omniscience problem?
I implicit vs. explicit common knowledge [LH15]

I often common knowledge cannot be deduced
I cf. consecutive numbers puzzle
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Commonly knowing whether

I definable from ‘knowing that’ operators:
I Kifiϕ = Kiϕ ∨Ki¬ϕ “i knows whether ϕ”
I Eifϕ = Eϕ ∨ E¬ϕ “it is shared knowledge whether ϕ”
I Cifϕ = Cϕ ∨ C¬ϕ “it is common knowledge whether ϕ”

I the other way round:
I Cϕ = ϕ ∧ Cifϕ
I Eϕ = . . .
I Cϕ = . . .

I easy axiomatisation

1. axiomatisation of Kifi [FWvD15]
2. Eifϕ↔

∧
i∈Agt Kifiϕ (N.B.: does not hold for belief!)

3. standard axiomatisation of C, substituting Cϕ by ϕ ∧ Cifϕ
I induction axiom GFP becomes:(

(ϕ → Eifϕ) ∧ Cif(ϕ → Eifϕ)
)
→ (ϕ → Cifϕ)

⇒ not easy to parse
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A nicer axiomatisation of commonly knowing whether

I FP1 and GFP1 become:

FP2 Cifϕ→ Eifϕ
GFP2 CifEifϕ→

(
Eifϕ→ Cifϕ)
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Conclusion

I GFP1 ‘talks to us’
I more intuitive than the standard induction principles

I what about logics weaker than S5?
I GFP2 surely not a reasonable principle of common belief:

I common belief that each of us has an opinion about ϕ does
not imply common belief about ϕ

I the weaker GFP1 not reasonable either!
I counterexample: misunderstanding in conversation

I B1 CB p ∧ B2 CB¬p
I consequence: B1 CBEB p ∧ B2 CBEB¬p
I consequence: B1 CB (EB p ∨ EB¬p) ∧ B2 CB (EB p ∨ EB¬p)
I consequence: CB (EB p ∨ EB¬p)
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