Alternative axiomatisations of common knowledge

Andreas Herzig, Elise Perrotin CNRS, IRIT, France

Rennes, FMAI Workshop, May 2, 2019

Epistemic language

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \mathbf{K}_i \varphi \mid \mathbf{E} \varphi \mid \mathbf{C} \varphi$$
 (only one, fixed group)

- ▶ $\mathbf{K}_i \varphi =$ "agent i knows that φ "
- ▶ $\mathbf{E}\varphi = \bigwedge_{i \in Agt} \mathbf{K}_i \varphi = \text{``it is shared knowledge that } \varphi$ ''
- ▶ $\mathbf{C}\varphi = \bigwedge_{k\geq 0} \mathbf{E}^k \varphi =$ "it is common knowledge that φ "

S5 individual knowledge

$$S5(\mathbf{K}) = \text{modal logic S5 for the modal operators } \mathbf{K}_i$$

truth axiom:

$$\mathbf{K}_{i}\varphi \rightarrow \varphi$$

positive introspection axiom:

$$\mathbf{K}_{i}\varphi \rightarrow \mathbf{K}_{i}\mathbf{K}_{i}\varphi$$

negative introspection axiom:

$$\neg \mathbf{K}_i \varphi \to \mathbf{K}_i \neg \mathbf{K}_i \varphi$$

Shared knowledge: definition

$$Def(\mathbf{E}): \mathbf{E}\varphi \leftrightarrow \bigwedge_{i \in Agt} \mathbf{K}_i \varphi$$

- normal modal operator:
 - axiom K(E) provable
 - ► rule of necessitation RN(**E**) derivable
- truth axiom provable:

$$\mathbf{E}\varphi \to \varphi$$

- neither positive nor negative introspection provable
- ► axiom B(**E**) provable:

$$\varphi \to \mathbf{E} \neg \mathbf{E} \neg \varphi$$

Common knowledge: basic desiderata

truth axiom:

$$\mathbf{C}\varphi o \varphi$$
 should be valid

positive introspection axioms:

$$\mathbf{C}\varphi \to \mathbf{E}\mathbf{C}\varphi$$
 should be valid $\mathbf{C}\varphi \to \mathbf{C}\mathbf{C}\varphi$ should be valid

negative introspection axioms:

$$\neg \mathbf{C}\varphi \to \mathbf{E} \neg \mathbf{C}\varphi$$
 should be valid $\neg \mathbf{C}\varphi \to \mathbf{C} \neg \mathbf{C}\varphi$ should be valid

fixed-point axiom follows:

FP
$$\mathbf{C}\varphi \to \mathbf{E}(\varphi \wedge \mathbf{C}\varphi)$$

Common knowledge: induction principles

- two versions
 - induction axiom schema:

GFP
$$\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to (\varphi \to \mathbf{C}\varphi)$$

induction rule:

RGFP from
$$\varphi \to \mathbf{E}(\varphi \wedge \psi)$$
, infer $\varphi \to \mathbf{C}\psi$

- intuitive in temporal logics (well-founded orderings)
- doesn't 'talk' in epistemic logics

"If it is the case that φ is 'self-evident', in the sense that if it is true, then everyone knows it, and, in addition, if φ is true, then everyone knows ψ , we can show by induction that if φ is true, then so is $\mathbf{E}^k(\psi \wedge \varphi)$ for all k." [vDHvdHK15]

aim: find a more intuitive axiom

Recap: the axiom system with induction rule

 $S5(\mathbf{K})$ and $Def(\mathbf{E})$, plus:

FP
$$\mathbf{C}\varphi \to \mathbf{E}(\varphi \wedge \mathbf{C}\varphi)$$

RGFP from $\varphi \to \mathbf{E}(\varphi \wedge \psi)$, infer $\varphi \to \mathbf{C}\psi$

[HM92, FHMV95]

- sound and complete for S5 models
 - rule of necessitation RN(C) derivable
 - axioms K(C), T(C), 4(C), 5(C) provable
 - induction axiom schema GFP provable

Recap: the axiom system with induction axiom

 $S5(\mathbf{K})$ and $Def(\mathbf{E})$, plus:

$$\begin{array}{ll} {\rm K}({\bf C}) & {\rm system} \ {\rm K} \ {\rm for} \ {\bf C} \\ {\rm FP} & {\bf C}\varphi \to {\bf E}(\varphi \wedge {\bf C}\varphi) \\ {\rm GFP} & {\bf C}(\varphi \to {\bf E}\varphi) \to (\varphi \to {\bf C}\varphi) \end{array}$$

[Leh84, HM85]

- sound and complete for S5 models
 - ▶ induction rule RGFP provable
 - original presentation has moreover axioms T(C), 4(C), 5(C) ⇒ redundant!

A new axiomatisation of S5 common knowledge

 $S5(\mathbf{K})$ and $Def(\mathbf{E})$, plus:

$$\begin{array}{ll} {\rm S4(C)} & {\rm an\ axiomatisation\ of\ S4\ for\ C} \\ {\rm FP_1} & {\rm C}\varphi \rightarrow {\rm E}\varphi \\ {\rm GFP_1} & {\rm C}({\rm E}\varphi \vee {\rm E}\neg\varphi) \rightarrow ({\rm C}\varphi \vee {\rm C}\neg\varphi) \end{array}$$

- sound for S5 models
 - GFP₁ provable in the axiom system with induction axiom GFP
- complete for S5 models
 - induction axiom GFP provable
 - ▶ proof uses K(C), RN(C), T(C) 4(C)
- given S5(K), GFP₁ equivalent to the (a priori stronger):

GFP₂
$$\mathbf{C}\Big(\bigwedge_{i\in Agt}\mathbf{K}_i\varphi\vee\mathbf{K}_i\neg\varphi\Big)\to(\mathbf{C}\varphi\vee\mathbf{C}\neg\varphi)$$

Semantics of the new axiom

$$\mathtt{GFP}_1 \colon \quad \mathbf{C}(\mathbf{E}\varphi \vee \mathbf{E}\neg \varphi) \to (\mathbf{C}\varphi \vee \mathbf{C}\neg \varphi)$$

Soundness: proof of GFP₁

Proposition

 GFP_1 is provable from GFP.

Proof.

- premise of GFP₁ logically stronger than that of GFP
 - relies on T(**K**) (or rather, its consequence T(**E**))
- case analysis:

1.
$$(\varphi \land \mathbf{C}(\mathbf{E}\varphi \lor \mathbf{E}\neg \varphi)) \to (\varphi \land \mathbf{C}(\varphi \to \mathbf{E}\varphi))$$
 T(E), K(C)

2.
$$(\varphi \wedge \mathbf{C}(\varphi \to \mathbf{E}\varphi)) \to \mathbf{C}\varphi$$

GFP

3.
$$(\varphi \land \mathbf{C}(\mathbf{E}\varphi \lor \mathbf{E}\varphi)) \to (\mathbf{C}\varphi \lor \mathbf{C}\neg\varphi)$$

from 1, 2

4.
$$(\neg \varphi \land \mathsf{C}(\mathsf{E}\varphi \lor \mathsf{E}\neg \varphi)) \to (\mathsf{C}\varphi \lor \mathsf{C}\neg \varphi)$$

from 3 by uniform substitution of φ by $\neg \varphi$

5.
$$C(E\varphi \lor E\neg \varphi) \to (C\varphi \lor C\neg \varphi)$$
 from 3, 4

Completeness: a key lemma

Lemma

The schema $\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to \mathbf{C}(\neg \varphi \to \mathbf{E}\neg \varphi)$ is provable from the axiom schemas $\mathbf{K}(\mathbf{C})$, $4(\mathbf{C})$, $\mathbf{RN}(\mathbf{C})$, $\mathbf{T}(\mathbf{C})$, and \mathbf{FP} .

Proof.

1.
$$\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to \mathbf{E}(\varphi \to \mathbf{E}\varphi)$$
 by FP, $\mathbf{T}(\mathbf{C})$, $\mathbf{K}(\mathbf{E})$

2.
$$\mathbf{E}(\varphi \to \mathbf{E}\varphi) \to (\mathbf{E}\neg \mathbf{E}\varphi \to \mathbf{E}\neg \varphi)$$
 by $\mathbf{K}(\mathbf{E})$

3.
$$\neg \varphi \to \mathbf{E} \neg \mathbf{E} \varphi$$

4.
$$\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to (\neg \varphi \to \mathbf{E}\neg \varphi)$$
 from 1, 2, 3

5.
$$\mathbf{CC}(\varphi \to \mathbf{E}\varphi) \to \mathbf{C}(\neg \varphi \to \mathbf{E}\neg \varphi)$$
 from 4 by $\mathtt{RN}(\mathbf{C})$ and $\mathtt{K}(\mathbf{C})$

6.
$$\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to \mathbf{CC}(\varphi \to \mathbf{E}\varphi)$$
 4(C)

7.
$$\mathbf{C}(\varphi \to \mathbf{E}\varphi) \to \mathbf{C}(\neg \varphi \to \mathbf{E}\neg \varphi)$$
 from 5 and 6

Completeness: proof of GFP

Proposition

GFP is provable from GFP_1 .

Proof.

1.
$$\mathbf{C}(\mathbf{E}\varphi\vee\mathbf{E}\neg\varphi)\to(\mathbf{C}\varphi\vee\mathbf{C}\neg\varphi)$$
 GFP₁
2. $(\mathbf{C}(\varphi\to\mathbf{E}\varphi)\wedge\mathbf{C}(\neg\varphi\to\mathbf{E}\neg\varphi))\to\mathbf{C}(\mathbf{E}\varphi\vee\mathbf{E}\neg\varphi)$ by RN(C) and K(C)
3. $(\mathbf{C}(\varphi\to\mathbf{E}\varphi)\wedge\mathbf{C}(\neg\varphi\to\mathbf{E}\neg\varphi))\to(\mathbf{C}\varphi\vee\mathbf{C}\neg\varphi)$ from 1 and 2
4. $\mathbf{C}(\varphi\to\mathbf{E}\varphi)\to\mathbf{C}(\neg\varphi\to\mathbf{E}\neg\varphi)$ key lemma
5. $\mathbf{C}(\varphi\to\mathbf{E}\varphi)\to(\mathbf{C}\varphi\vee\mathbf{C}\neg\varphi)$ from 3, 4
6. $\mathbf{C}(\varphi\to\mathbf{E}\varphi)\to(\mathbf{C}\varphi\vee\neg\varphi)$ from 5 by T(C)

Example: compatriots [LH15]

in a conference break, two Dutch talk together in English, not knowing that they are compatriots

$$\neg (\mathsf{K}_1 d_2 \vee \mathsf{K}_1 \neg d_2) \wedge \neg (\mathsf{K}_2 d_1 \vee \mathsf{K}_2 \neg d_1) \tag{1}$$

a third person tells them: "hey, you're compatriots"

$$\mathbf{C}(d_1 \leftrightarrow d_2) \tag{2}$$

background knowledge:

$$\mathbf{C} \bigwedge_{i} \left((d_{i} \to \mathbf{K}_{i} d_{i}) \wedge (\neg d_{i} \to \mathbf{K}_{i} \neg d_{i}) \right) \tag{3}$$

implies common knowledge that both are compatriots:

$$(2) \wedge (3) \rightarrow (\mathbf{C}(d_1 \wedge d_2) \vee \mathbf{C}(\neg d_1 \wedge \neg d_2)) \tag{4}$$

Example: compatriots (ctd.)

- common knowledge obtained through deduction, using GFP₁
- proof:

1.
$$(2) \wedge (3) \rightarrow \mathbf{C}(\mathbf{E}(d_1 \wedge d_2) \vee \mathbf{E}(\neg d_1 \wedge \neg d_2))$$
 by $4(\mathbf{C})$, FP_1 , $\mathrm{K}(\mathbf{C})$

2. $\mathbf{C}(\mathbf{E}(d_1 \wedge d_2) \vee \mathbf{E}(\neg d_1 \wedge \neg d_2)) \rightarrow (\mathbf{C}(d_1 \wedge d_2) \vee \mathbf{C}(\neg d_1 \wedge \neg d_2))$ consequence of GFP₁

3. (2)
$$\wedge$$
 (3) \rightarrow ($\mathbf{C}(d_1 \wedge d_2) \vee \mathbf{C}(\neg d_1 \wedge \neg d_2)$)

from 1, 2

- induction principles not so easy to apply
 - group version of the omniscience problem?
 - ▶ implicit vs. explicit common knowledge [LH15]
- often common knowledge cannot be deduced
 - cf. consecutive numbers puzzle

Commonly knowing whether

- definable from 'knowing that' operators:
 - ightharpoonup Kif; $\varphi = K_i \varphi \vee K_i \neg \varphi$ "i knows whether φ "
 - **Eif** $\varphi = \mathbf{E}\varphi \vee \mathbf{E}\neg \varphi$ "it is shared knowledge whether φ "
 - **Cif** $\varphi = \mathbf{C}\varphi \vee \mathbf{C}\neg \varphi$ "it is common knowledge whether φ "
- the other way round:
 - \triangleright $\mathbf{C}\varphi = \varphi \wedge \mathbf{Cif}\varphi$
 - \blacktriangleright **E** $\varphi = \dots$
 - \triangleright $\mathbf{C}\varphi = \dots$
- easy axiomatisation
 - 1. axiomatisation of **Kif**; [FWvD15]
 - 2. $\mathsf{Eif}\varphi \leftrightarrow \bigwedge_{i \in \mathsf{Agt}} \mathsf{Kif}_i\varphi$
 - (N.B.: does not hold for belief!)
 - 3. standard axiomatisation of C, substituting $\mathbf{C}\varphi$ by $\varphi \wedge \mathbf{Cif}\varphi$
 - induction axiom GFP becomes:

$$\big((\varphi \to \mathsf{Eif} \varphi) \land \mathsf{Cif}(\varphi \to \mathsf{Eif} \varphi)\big) \to (\varphi \to \mathsf{Cif} \varphi)$$

 \Rightarrow not easy to parse

A nicer axiomatisation of commonly knowing whether

► FP₁ and GFP₁ become:

$$\begin{array}{ll} \operatorname{FP}_2 & \operatorname{Cif}\varphi \to \operatorname{Eif}\varphi \\ \operatorname{GFP}_2 & \operatorname{Cif}\operatorname{Eif}\varphi \to \left(\operatorname{Eif}\varphi \to \operatorname{Cif}\varphi\right) \end{array}$$

Conclusion

- ► GFP₁ 'talks to us'
 - more intuitive than the standard induction principles
- what about logics weaker than S5?
 - ▶ GFP₂ surely not a reasonable principle of common belief:
 - \blacktriangleright common belief that each of us has an opinion about φ does not imply common belief about φ
 - the weaker GFP₁ not reasonable either!
 - counterexample: misunderstanding in conversation
 - ▶ $B_1 CB p \wedge B_2 CB \neg p$
 - ► consequence: $\mathbf{B}_1 \mathbf{CB} \mathbf{EB} p \wedge \mathbf{B}_2 \mathbf{CB} \mathbf{EB} \neg p$
 - ▶ consequence: $B_1 CB (EB p \lor EB \neg p) \land B_2 CB (EB p \lor EB \neg p)$
 - ▶ consequence: $CB(EB p \lor EB \neg p)$

MIT Press, 1995.

Jie Fan. Ya

Jie Fan, Yanjing Wang, and Hans van Ditmarsch. Contingency and knowing whether.

Rew. Symb. Logic, 8(1):75–107, 2015.

Joseph Y. Halpern and Yoram Moses.

A guide to the modal logics of knowledge and belief: Preliminary draft. In *Proceedings IJCAI'85*, pages 480–490. Morgan Kaufmann, 1985.

Joseph Y. Halpern and Yoram Moses.

A guide to completeness and complexity for modal logics of knowledge and belief.

Artificial Intelligence, 54(3):319–379, 1992.

Daniel J. Lehmann.

Knowledge, common knowledge and related puzzles (extended summary).

In Proc. PODC, pages 62-67, 1984.

H. van Ditmarsch, J.Y. Halpern, W. van der Hoek, and B.P. Kooi. *Handbook of Epistemic Logic*.

College Publications, 2015.