Alternative axiomatisations of common knowledge

Andreas Herzig, Elise Perrotin CNRS, IRIT, France

Rennes, FMAI Workshop, May 2, 2019

Epistemic language

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \wedge \varphi\left|\mathbf{K}_{i} \varphi\right| \mathbf{E} \varphi \mid \mathbf{C} \varphi \\
& \text { (only one, fixed group) }
\end{aligned}
$$

- $\mathbf{K}_{i} \varphi=$ "agent i knows that $\varphi^{\prime \prime}$
- $\mathbf{E} \varphi=\bigwedge_{i \in A g t} \mathbf{K}_{i} \varphi=$ "it is shared knowledge that φ "
- $\mathbf{C} \varphi=\bigwedge_{k \geq 0} \mathbf{E}^{k} \varphi=$ "it is common knowledge that $\varphi^{\prime \prime}$

S5 individual knowledge

$$
\mathrm{S} 5(\mathbf{K})=\text { modal logic } \mathrm{S} 5 \text { for the modal operators } \mathbf{K}_{i}
$$

- truth axiom:

$$
\mathbf{K}_{i} \varphi \rightarrow \varphi
$$

- positive introspection axiom:

$$
\mathbf{K}_{i} \varphi \rightarrow \mathbf{K}_{i} \mathbf{K}_{i} \varphi
$$

- negative introspection axiom:

$$
\neg \mathbf{K}_{i} \varphi \rightarrow \mathbf{K}_{i} \neg \mathbf{K}_{i} \varphi
$$

Shared knowledge: definition

$\operatorname{Def}(\mathbf{E}): \mathbf{E} \varphi \leftrightarrow \bigwedge_{i \in A g t} \mathbf{K}_{i} \varphi$

- normal modal operator:
- axiom K(E) provable
- rule of necessitation $\operatorname{RN}(\mathbf{E})$ derivable
- truth axiom provable:

$$
\mathbf{E} \varphi \rightarrow \varphi
$$

- neither positive nor negative introspection provable
- axiom $\mathrm{B}(\mathbf{E})$ provable:

$$
\varphi \rightarrow \mathbf{E} \neg \mathrm{E}_{\neg \varphi}
$$

Common knowledge: basic desiderata

- truth axiom:

$$
\mathbf{C} \varphi \rightarrow \varphi \text { should be valid }
$$

- positive introspection axioms:
$\mathbf{C} \varphi \rightarrow \mathbf{E C} \varphi$ should be valid
$\mathbf{C} \varphi \rightarrow \mathbf{C C} \varphi$ should be valid
- negative introspection axioms:
$\neg \mathbf{C} \varphi \rightarrow \mathbf{E} \neg \mathbf{C} \varphi$ should be valid
$\neg \mathbf{C} \varphi \rightarrow \mathbf{C} \neg \mathbf{C} \varphi$ should be valid
- fixed-point axiom follows:

$$
\operatorname{FP} \quad \mathbf{C} \varphi \rightarrow \mathbf{E}(\varphi \wedge \mathbf{C} \varphi)
$$

Common knowledge: induction principles

- two versions
- induction axiom schema:

$$
\operatorname{GFP} \quad \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\varphi \rightarrow \mathbf{C} \varphi)
$$

- induction rule:

$$
\operatorname{RGFP} \quad \text { from } \varphi \rightarrow \mathbf{E}(\varphi \wedge \psi) \text {, infer } \varphi \rightarrow \mathbf{C} \psi
$$

- intuitive in temporal logics (well-founded orderings)
- doesn't 'talk' in epistemic logics
"If it is the case that φ is 'self-evident', in the sense that if it is true, then everyone knows it, and, in addition, if φ is true, then everyone knows ψ, we can show by induction that if φ is true, then so is $\mathbf{E}^{k}(\psi \wedge \varphi)$ for all k." [vDHvdHK15]
- aim: find a more intuitive axiom

Recap: the axiom system with induction rule

S5(K) and $\operatorname{Def}(\mathbf{E})$, plus:

$$
\begin{array}{ll}
\mathrm{FP} & \mathbf{C} \varphi \rightarrow \mathbf{E}(\varphi \wedge \mathbf{C} \varphi) \\
\mathrm{RGFP} & \text { from } \varphi \rightarrow \mathbf{E}(\varphi \wedge \psi), \text { infer } \varphi \rightarrow \mathbf{C} \psi
\end{array}
$$

[HM92, FHMV95]

- sound and complete for S 5 models
- rule of necessitation $\operatorname{RN}(\mathbf{C})$ derivable
- axioms $\mathrm{K}(\mathbf{C}), \mathrm{T}(\mathbf{C}), 4(\mathbf{C}), 5(\mathbf{C})$ provable
- induction axiom schema GFP provable

Recap: the axiom system with induction axiom

S5(K) and $\operatorname{Def}(\mathbf{E})$, plus:

$$
\begin{array}{ll}
\mathrm{K}(\mathbf{C}) & \text { system K for } \mathbf{C} \\
\mathrm{FP} & \mathbf{C} \varphi \rightarrow \mathbf{E}(\varphi \wedge \mathbf{C} \varphi) \\
\mathrm{GFP} & \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\varphi \rightarrow \mathbf{C} \varphi)
\end{array}
$$

[Leh84, HM85]

- sound and complete for S 5 models
- induction rule RGFP provable
- original presentation has moreover axioms $\mathrm{T}(\mathbf{C}), 4(\mathbf{C}), 5(\mathbf{C})$ \Rightarrow redundant!

A new axiomatisation of S 5 common knowledge

S5(K) and $\operatorname{Def}(\mathbf{E})$, plus:

$$
\begin{array}{ll}
\mathrm{S} 4(\mathbf{C}) & \text { an axiomatisation of } \mathrm{S} 4 \text { for } \mathbf{C} \\
\mathrm{FP}_{1} & \mathbf{C} \varphi \rightarrow \mathbf{E} \varphi \\
\operatorname{GFP}_{1} & \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \neg \varphi) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi)
\end{array}
$$

- sound for S 5 models
- GFP_{1} provable in the axiom system with induction axiom GFP
- complete for S 5 models
- induction axiom GFP provable
- proof uses $\mathrm{K}(\mathbf{C}), \operatorname{RN}(\mathbf{C}), \mathrm{T}(\mathbf{C}) 4(\mathbf{C})$
- given $\mathrm{S} 5(\mathbf{K}), \mathrm{GFP}_{1}$ equivalent to the (a priori stronger):

$$
\operatorname{GFP}_{2} \quad \mathbf{C}\left(\bigwedge_{i \in A g t} \mathbf{K}_{i} \varphi \vee \mathbf{K}_{i} \neg \varphi\right) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi)
$$

Semantics of the new axiom

$$
\mathrm{GFP}_{1}: \quad \mathbf{C}\left(\mathbf{E}_{\varphi} \vee \mathbf{E} \neg \varphi\right) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi)
$$

excludes:

Soundness: proof of GFP_{1}

Proposition

GFP_{1} is provable from GFP.
Proof.

- premise of GFP_{1} logically stronger than that of GFP
- relies on $\mathrm{T}(\mathbf{K})$ (or rather, its consequence $\mathrm{T}(\mathbf{E})$)
- case analysis:

$$
\begin{aligned}
& \text { 1. }(\varphi \wedge \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \neg \varphi)) \rightarrow(\varphi \wedge \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi)) \\
& \text { 2. }(\varphi \wedge \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi)) \rightarrow \mathbf{C} \varphi \\
& \text { 3. }(\varphi \wedge \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \varphi)) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi) \text { from 1, } 2 \\
& \text { 4. }(\neg \varphi \wedge \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \neg \varphi)) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi) \\
& \text { from } 3 \text { by uniform substitution of } \varphi \text { by } \neg \varphi \\
& \text { 5. } \mathbf{C}\left(\mathbf{E} \varphi \vee \mathbf{E}_{\neg \varphi)} \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi)\right. \\
& \text { from 3, } 4
\end{aligned}
$$

Completeness: a key lemma

Lemma

The schema $\mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \varphi)$ is provable from the axiom schemas $\mathrm{K}(\mathbf{C}), 4(\mathbf{C}), \mathrm{RN}(\mathbf{C}), \mathrm{T}(\mathbf{C})$, and FP .
Proof.

$$
\begin{array}{lr}
\text { 1. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{E}(\varphi \rightarrow \mathbf{E} \varphi) & \text { by FP, T(C), K(E) } \\
\text { 2. } \mathbf{E}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\mathbf{E} \neg \mathbf{E} \varphi \rightarrow \mathbf{E} \neg \varphi) & \text { by } \mathrm{K}(\mathbf{E}) \\
\text { 3. } \neg \varphi \rightarrow \mathbf{E} \neg \mathbf{E} \varphi & \mathrm{B}(\mathbf{E}) \\
\text { 4. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\neg \varphi \rightarrow \mathbf{E} \neg \varphi) & \text { from 1, 2, 3 } \\
\text { 5. } \mathbf{C C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \varphi) & \text { from 4 by } \mathrm{RN}(\mathbf{C}) \text { and K(C) } \\
\text { 6. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{C C}(\varphi \rightarrow \mathbf{E} \varphi) & \text { 4(C) } \\
\text { 7. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \varphi) & \text { from } 5 \text { and } 6
\end{array}
$$

Completeness: proof of GFP

Proposition

GFP is provable from GFP_{1}.
Proof.

$$
\begin{aligned}
& \text { 1. } \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \neg \varphi) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi) \\
& \text { 2. }(\mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \wedge \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \varphi)) \rightarrow \mathbf{C}(\mathbf{E} \varphi \vee \mathbf{E} \neg \varphi) \\
& \text { 3. }(\mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \wedge \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \varphi)) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi) \text { from } 1 \text { and } 2 \\
& \text { 4. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow \mathbf{C}(\neg \varphi \rightarrow \mathbf{E} \neg \neg) \\
& \text { 5. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi) \\
& \text { 6. } \mathbf{C}(\varphi \rightarrow \mathbf{E} \varphi) \rightarrow(\mathbf{C} \varphi \vee \neg \varphi)
\end{aligned}
$$

Example: compatriots [LH15]

- in a conference break, two Dutch talk together in English, not knowing that they are compatriots

$$
\begin{equation*}
\neg\left(\mathbf{K}_{1} d_{2} \vee \mathbf{K}_{1} \neg d_{2}\right) \wedge \neg\left(\mathbf{K}_{2} d_{1} \vee \mathbf{K}_{2} \neg d_{1}\right) \tag{1}
\end{equation*}
$$

- a third person tells them: "hey, you're compatriots"

$$
\begin{equation*}
\mathbf{C}\left(d_{1} \leftrightarrow d_{2}\right) \tag{2}
\end{equation*}
$$

- background knowledge:

$$
\begin{equation*}
\mathbf{C} \bigwedge_{i}\left(\left(d_{i} \rightarrow \mathbf{K}_{i} d_{i}\right) \wedge\left(\neg d_{i} \rightarrow \mathbf{K}_{i} \neg d_{i}\right)\right) \tag{3}
\end{equation*}
$$

- implies common knowledge that both are compatriots:

$$
\begin{equation*}
(2) \wedge(3) \rightarrow\left(\mathbf{C}\left(d_{1} \wedge d_{2}\right) \vee \mathbf{C}\left(\neg d_{1} \wedge \neg d_{2}\right)\right) \tag{4}
\end{equation*}
$$

Example: compatriots (ctd.)

- common knowledge obtained through deduction, using GFP $_{1}$
- proof:

1. $(2) \wedge(3) \rightarrow \mathbf{C}\left(\mathbf{E}\left(d_{1} \wedge d_{2}\right) \vee \mathbf{E}\left(\neg d_{1} \wedge \neg d_{2}\right)\right)$ by $4(\mathbf{C}), \mathrm{FP}_{1}, \mathrm{~K}(\mathbf{C})$
2. $\mathbf{C}\left(\mathbf{E}\left(d_{1} \wedge d_{2}\right) \vee \mathbf{E}\left(\neg d_{1} \wedge \neg d_{2}\right)\right) \rightarrow\left(\mathbf{C}\left(d_{1} \wedge d_{2}\right) \vee \mathbf{C}\left(\neg d_{1} \wedge \neg d_{2}\right)\right)$
3. $(2) \wedge(3) \rightarrow\left(\mathbf{C}\left(d_{1} \wedge d_{2}\right) \vee \mathbf{C}\left(\neg d_{1} \wedge \neg d_{2}\right)\right)$
from 1, 2

- induction principles not so easy to apply
- group version of the omniscience problem?
- implicit vs. explicit common knowledge [LH15]
- often common knowledge cannot be deduced
- cf. consecutive numbers puzzle

Commonly knowing whether

- definable from 'knowing that' operators:
- $\operatorname{Kif}_{i} \varphi=\mathbf{K}_{i} \varphi \vee \mathbf{K}_{i} \neg \varphi$
- $\operatorname{Eif} \varphi=\mathbf{E} \varphi \vee \mathrm{E} \neg \varphi$
- $\operatorname{Cif} \varphi=\mathbf{C} \varphi \vee \mathbf{C} \neg \varphi$
"it is shared knowledge whether φ "
- the other way round:
- $\mathbf{C} \varphi=\varphi \wedge \mathbf{C i f} \varphi$
- $\mathbf{E} \varphi=\ldots$
- $\mathbf{C} \varphi=\ldots$
- easy axiomatisation

1. axiomatisation of Kif $_{j}$ [FWvD15]
2. $\operatorname{Eif} \varphi \leftrightarrow \bigwedge_{i \in A_{g t}} \mathbf{K i f}_{i} \varphi$
(N.B.: does not hold for belief!)
3. standard axiomatisation of \mathbf{C}, substituting $\mathbf{C} \varphi$ by $\varphi \wedge \mathbf{C i f} \varphi$

- induction axiom GFP becomes:

$$
((\varphi \rightarrow \operatorname{Eif} \varphi) \wedge \operatorname{Cif}(\varphi \rightarrow \operatorname{Eif} \varphi)) \rightarrow(\varphi \rightarrow \operatorname{Cif} \varphi)
$$

\Rightarrow not easy to parse

A nicer axiomatisation of commonly knowing whether

- FP_{1} and GFP_{1} become:

FP_{2}	$\operatorname{Cif} \varphi \rightarrow \operatorname{Eif} \varphi$
GFP_{2}	$\operatorname{CifEif} \varphi \rightarrow(\operatorname{Eif} \varphi \rightarrow \operatorname{Cif} \varphi)$

Conclusion

- GFP_{1} 'talks to us'
- more intuitive than the standard induction principles
- what about logics weaker than S5?
- GFP_{2} surely not a reasonable principle of common belief:
- common belief that each of us has an opinion about φ does not imply common belief about φ
- the weaker GFP 1 not reasonable either!
- counterexample: misunderstanding in conversation
- $\mathrm{B}_{1} \mathrm{CB} p \wedge \mathrm{~B}_{2} \mathrm{CB} \neg p$
- consequence: $\mathbf{B}_{1} \mathbf{C B}$ EB $p \wedge \mathbf{B}_{2} \mathbf{C B}$ EB $\neg p$
- consequence: $\mathrm{B}_{1} \mathbf{C B}(E B p \vee E B \neg p) \wedge \mathrm{B}_{2} \mathbf{C B}(E B p \vee E B \neg p)$
- consequence: $\mathbf{C B}(E B p \vee E B \neg p)$

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge.
MIT Press, 1995.
R Jie Fan, Yanjing Wang, and Hans van Ditmarsch.
Contingency and knowing whether.
Rew. Symb. Logic, 8(1):75-107, 2015.
R Joseph Y. Halpern and Yoram Moses.
A guide to the modal logics of knowledge and belief: Preliminary draft. In Proceedings IJCAI'85, pages 480-490. Morgan Kaufmann, 1985.

R Joseph Y. Halpern and Yoram Moses.
A guide to completeness and complexity for modal logics of knowledge and belief.
Artificial Intelligence, 54(3):319-379, 1992.
國 Daniel J. Lehmann.
Knowledge, common knowledge and related puzzles (extended summary).
In Proc. PODC, pages 62-67, 1984.
H. van Ditmarsch, J.Y. Halpern, W. van der Hoek, and B.P. Kooi.

Handbook of Epistemic Logic.
College Publications, 2015.

