Practical Encodings of Factored Deterministic POMDPs into Probabilistic Planning

Patrik Haslum1, Abdallah Saffidine2

1Australian National University, Canberra, Australia
2The University of New South Wales, Sydney, Australia

May 2, 2019
A story about Chinese Dark Chess
A story about Chinese Dark Chess

Representation choices matter!
A Markov Decision Process
Some single-agent domain models

<table>
<thead>
<tr>
<th>Control over state transitions</th>
<th>Observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Full: Markov Chain</td>
</tr>
<tr>
<td>Yes</td>
<td>Partial: Hidden Markov Model</td>
</tr>
<tr>
<td></td>
<td>Partial: Partially Observable MDP</td>
</tr>
</tbody>
</table>
Some single-agent domain models

<table>
<thead>
<tr>
<th>Control over state transitions</th>
<th>Observability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
</tr>
<tr>
<td>No</td>
<td>Markov Chain</td>
</tr>
<tr>
<td>Yes</td>
<td>Markov Decision Process</td>
</tr>
<tr>
<td></td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td></td>
<td>Partially Observable MDP</td>
</tr>
</tbody>
</table>

Today’s concern
- deterministic POMDPs
- factored representations
A deterministic POMDP
Reducing POMDPs to MDPs

- Transform a POMDP \(P \) into an MDP \(M_P \)
- With equivalent optimal values
Reducing POMDPs to MDPs

- Transform a POMDP P into an MDP M_P
- With equivalent optimal values
- Mapping policies for M_P to policies for P.
Reducing POMDPs to MDPs

- Transform a POMDP P into an MDP M_P
- With equivalent optimal values
- Mapping policies for M_P to policies for P.
- → reuse mature MDP technology
- → provide complexity bounds
Littman’s encoding (1996)

- Transform a det-POMDP P into an MDP L_P
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
Littman’s encoding (1996)

- Transform a det-POMDP P into an MDP L_P
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \rightarrow O((1 + \Sigma)^{\Sigma})$ states for L_P
Littman’s encoding

- Transform a det-POMDP P into an MDP L_P
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \rightarrow \mathcal{O}((1 + \Sigma)^\Sigma)$ states for L_P
Littman’s encoding

- Transform a det-POMDP P into an MDP L_P.
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \rightarrow \mathcal{O}((1 + \Sigma)^{\Sigma})$ states for L_P.

How satisfactory is that?
History-based encoding (new(?))

- Transform a det-POMDP P into an MDP H_P
- Each state of H_P is a table encoding the history of action/observation performed in P.
History-based encoding

select action a_k and append to history

sample hidden state s

for each a_1, \ldots, a_k in action history

update s with effects of a_i

no more actions

s not consistent with observation before a_i

next action

goal true in s

Success!

record observation determined from s
a3,0

a3,1

b1,1

b1, 😐

b2

1

1
History-based encoding

- Transform a det-POMDP P into an MDP H_P
- Each state of H_P is a table encoding the history of action/observation performed in P.
- A actions-observations for P, horizon $H \rightarrow \mathcal{O}((A)^{H+c})$ states for H_P
Size considerations

<table>
<thead>
<tr>
<th>Repr.</th>
<th>Encoding</th>
<th>Number of States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>POMDP</td>
<td>Σ</td>
</tr>
<tr>
<td>Flat</td>
<td>MDP: Littman</td>
<td>$(1 + \Sigma)^\Sigma$</td>
</tr>
<tr>
<td>Flat</td>
<td>MDP: History</td>
<td>A^{H+c}</td>
</tr>
<tr>
<td>Factored</td>
<td>POMDP</td>
<td>2^V</td>
</tr>
<tr>
<td>Factored</td>
<td>MDP: Littman</td>
<td>$(1 + 2^V)^{2^V}$</td>
</tr>
<tr>
<td>Factored</td>
<td>MDP: History</td>
<td>A^{H+c}</td>
</tr>
</tbody>
</table>

A actions and observations, V state variables, c small constant
Σ states, H horizon
Det-POMDPs with polynomial depth

Sanity check: we reprove PSPACE membership.
Conclusion

Discussion point

- Factored vs explicit representations
Conclusion

Discussion point
- Factored vs explicit representations

Limitations → won’t fix
- Deterministic effects
- No adversary
Conclusion

Discussion point
- Factored vs explicit representations

Limitations → won’t fix
- Deterministic effects
- No adversary

Future Work
- Extend to discounted rewards
- Experiments in Troubleshooting domains
- Check the literature on the complexity of factored POMDPs