Practical Encodings of Factored Deterministic POMDPs into Probabilistic Planning #### Patrik Haslum¹, Abdallah Saffidine² ¹Australian National University, Canberra, Australia ² The University of New South Wales, Sydney, Australia May 2, 2019 # A story about Chinese Dark Chess ## A story about Chinese Dark Chess Representation choices matter! #### A Markov Decision Process # Some single-agent domain models | | | Observability | | |--------------------------------------|-----|----------------------------|--------------------------| | | | Full | Partial | | Control
over state
transitions | No | Markov Chain | Hidden Markov
Model | | | Yes | Markov Decision
Process | Partially Observable MDP | ## Some single-agent domain models | | | Observability | | |--------------------------------------|-----|----------------------------|--------------------------| | | | Full | Partial | | Control
over state
transitions | No | Markov Chain | Hidden Markov
Model | | | Yes | Markov Decision
Process | Partially Observable MDP | #### Today's concern - deterministic POMDPs - factored representations #### A deterministic POMDP ## Reducing POMDPs to MDPs - Transform a POMDP P into an MDP M_P - With equivalent optimal values # Reducing POMDPs to MDPs - Transform a POMDP P into an MDP M_P - With equivalent optimal values - Mapping policies for M_P to policies for P. ### Reducing POMDPs to MDPs - Transform a POMDP P into an MDP MP - With equivalent optimal values - Mapping policies for M_P to policies for P. - → reuse mature MDP technology - → provide complexity bounds ## Littman's encoding (1996) - Transform a det-POMDP P into an MDP LP - Each state of L_P is a table with one entry per state of P describing the evolution of that state. # Littman's encoding (1996) - Transform a det-POMDP P into an MDP LP - Each state of L_P is a table with one entry per state of P describing the evolution of that state. - Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P #### Littman's encoding - Transform a det-POMDP P into an MDP LP - Each state of L_P is a table with one entry per state of P describing the evolution of that state. - Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P ### Littman's encoding - Transform a det-POMDP P into an MDP LP - Each state of L_P is a table with one entry per state of P describing the evolution of that state. - Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P #### How satisfactory is that? ## History-based encoding (new(?)) - Transform a det-POMDP P into an MDP H_P - Each state of H_P is a table encoding the history of action/observation performed in P. ## History-based encoding ### History-based encoding - Transform a det-POMDP P into an MDP H_P - Each state of H_P is a table encoding the history of action/observation performed in P. - A actions-observations for P, horizon $H \rightarrow \mathcal{O}((A)^{H+c})$ states for H_P #### Size considerations | Repr. | Encoding | Number of States | |----------------------|---------------------------------------|--| | Flat
Flat
Flat | POMDP
MDP: Littman
MDP: History | $\Sigma (1 + \Sigma)^{\Sigma} A^{H+c}$ | | | POMDP
MDP: Littman
MDP: History | $2^{V} (1+2^{V})^{2^{V}} A^{H+c}$ | A actions and observations, V state variables, c small constant Σ states, H horizon # Det-POMDPs with polynomial depth Sanity check: we reprove PSPACE membership. #### Conclusion #### Discussion point Factored vs explicit representations #### Conclusion #### Discussion point Factored vs explicit representations #### Limitations → won't fix - Deterministic effects - No adversary #### Conclusion #### Discussion point Factored vs explicit representations #### Limitations → won't fix - Deterministic effects - No adversary #### Future Work - Extend to discounted rewards - Experiments in Troubleshooting domains - Check the literature on the complexity of factored POMDPs