Practical Encodings of Factored Deterministic POMDPs into Probabilistic Planning

Patrik Haslum¹, Abdallah Saffidine²

¹Australian National University, Canberra, Australia ² The University of New South Wales, Sydney, Australia

May 2, 2019

A story about Chinese Dark Chess

A story about Chinese Dark Chess

Representation choices matter!

A Markov Decision Process

Some single-agent domain models

		Observability	
		Full	Partial
Control over state transitions	No	Markov Chain	Hidden Markov Model
	Yes	Markov Decision Process	Partially Observable MDP

Some single-agent domain models

		Observability	
		Full	Partial
Control over state transitions	No	Markov Chain	Hidden Markov Model
	Yes	Markov Decision Process	Partially Observable MDP

Today's concern

- deterministic POMDPs
- factored representations

A deterministic POMDP

Reducing POMDPs to MDPs

- Transform a POMDP P into an MDP M_P
- With equivalent optimal values

Reducing POMDPs to MDPs

- Transform a POMDP P into an MDP M_P
- With equivalent optimal values
- Mapping policies for M_P to policies for P.

Reducing POMDPs to MDPs

- Transform a POMDP P into an MDP MP
- With equivalent optimal values
- Mapping policies for M_P to policies for P.
- → reuse mature MDP technology
- → provide complexity bounds

Littman's encoding (1996)

- Transform a det-POMDP P into an MDP LP
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.

Littman's encoding (1996)

- Transform a det-POMDP P into an MDP LP
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P

Littman's encoding

- Transform a det-POMDP P into an MDP LP
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P

Littman's encoding

- Transform a det-POMDP P into an MDP LP
- Each state of L_P is a table with one entry per state of P describing the evolution of that state.
- Σ states for $P \to \mathcal{O}((1+\Sigma)^{\Sigma})$ states for L_P

How satisfactory is that?

History-based encoding (new(?))

- Transform a det-POMDP P into an MDP H_P
- Each state of H_P is a table encoding the history of action/observation performed in P.

History-based encoding

History-based encoding

- Transform a det-POMDP P into an MDP H_P
- Each state of H_P is a table encoding the history of action/observation performed in P.
- A actions-observations for P, horizon $H \rightarrow \mathcal{O}((A)^{H+c})$ states for H_P

Size considerations

Repr.	Encoding	Number of States
Flat Flat Flat	POMDP MDP: Littman MDP: History	$\Sigma (1 + \Sigma)^{\Sigma} A^{H+c}$
	POMDP MDP: Littman MDP: History	$2^{V} (1+2^{V})^{2^{V}} A^{H+c}$

A actions and observations, V state variables, c small constant Σ states, H horizon

Det-POMDPs with polynomial depth

Sanity check: we reprove PSPACE membership.

Conclusion

Discussion point

Factored vs explicit representations

Conclusion

Discussion point

Factored vs explicit representations

Limitations → won't fix

- Deterministic effects
- No adversary

Conclusion

Discussion point

Factored vs explicit representations

Limitations → won't fix

- Deterministic effects
- No adversary

Future Work

- Extend to discounted rewards
- Experiments in Troubleshooting domains
- Check the literature on the complexity of factored POMDPs