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A story about Chinese Dark Chess
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Representation choices matter!
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A Markov Decision Process
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Some single-agent domain models

| Observability

\ Full Partial
No Markov Chain Hidden Markov
Control Model
over state
transitions Yes Markov Decision Partially Observ-
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Today’s concern
@ deterministic POMDPs
@ factored representations




A deterministic POMDP
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|
Reducing POMDPs to MDPs

@ Transform a POMDP P into an MDP Mp
@ With equivalent optimal values
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Reducing POMDPs to MDPs

@ Transform a POMDP P into an MDP Mp
@ With equivalent optimal values

@ Mapping policies for Mp to policies for P.
@ — reuse mature MDP technology

@ — provide complexity bounds
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Littman’s encoding (1996)

@ Transform a det-POMDP P into an MDP Lp

@ Each state of Ly is a table with one entry per
state of P describing the evolution of that state.
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Littman’s encoding

@ Transform a det-POMDP P into an MDP Lp
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Littman’s encoding
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@ Each state of Lp is a table with one entry per
state of P describing the evolution of that state.

@ I states for P — 0((1+X)*) states for Lp
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History-based encoding (new(?))

@ Transform a det-POMDP P into an MDP Hp

@ Each state of Hp is a table encoding the history
of action/observation performed in P.
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History-based encoding

select action a, and
append to history

sample hidden
state s
s not consistent with

for each ay,...,ax observation before a;

in action history

i next action
update s with
effects of a;
no more actions
oal trueins
record observation uccess!

determined from s
15/20
























1



1 O



1 O

16/20



|
History-based encoding

@ Transform a det-POMDP P into an MDP Hp

@ Each state of Hp is a table encoding the history
of action/observation performed in P.

@ A actions-observations for P, horizon H —
0 ((A)H+¢) states for Hp
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Size considerations

Repr. Encoding Number of States
Flat POMDP >

Flat MDP: Littman (1+2)*

Flat MDP: History Aft+e
Factored POMDP 2V
Factored MDP: Littman (1+2")2"
Factored MDP: History Aft+c

A actions and observations, V state variables, ¢ small constant
> states, H horizon
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Det-POMDPs with polynomial depth

=0l x|

2 AT e T T
- O e
a8 T8 a1 m
At IH«NI_ & Al
ECEEEED a5
| | e
I 1 e
s Jmsime 1 1 s

Sanity check: we reprove PSPACE membership.
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Conclusion

Discussion point
@ Factored vs explicit representations J
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Limitations — won’t fix
@ Deterministic effects
@ No adversary
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Conclusion

Discussion point
@ Factored vs explicit representations

Limitations — won’t fix
@ Deterministic effects
@ No adversary

Future Work
@ Extend to discounted rewards

@ Experiments in Troubleshooting domains

@ Check the literature on the complexity of
factored POMDPs
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