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Program synthesis

Basic idea:

“Program synthesis is the task to automatically construct a
program that satisfies a given high-level specification.”

We are interested in programs that:

Interact with an environment

May run forever

Example: operating systems, controllers in power plants. . .

Specification language: LTL

Propositional logic +

Xϕ: “ϕ holds at next step”

ϕUψ: “ϕ will hold until ψ holds”

Gϕ: “ϕ always holds”

Fϕ: “ϕ eventually holds”
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LTL synthesis (Pnueli and Rosner, 1989)

I: input variables,

O: output variables

Game between system and environment

Environment chooses valuations for I

System chooses valuations for O

i0 i1 i2 . . .
o0 o1 o2 . . .

LTL synthesis problem

Given a specification ϕ ∈ LTL over I ∪O, synthesize a strategy
σ : (2I)∗ → 2O such that all resulting behaviours satisfy ϕ.

Synthesize a finite representation of this infinite object.

What about synthesis of distributed systems?
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Distributed synthesis

p, q

p

q

(•, ◦, •)

(◦, •, •)

(◦, ◦, ◦)

(•, ◦, •)

(•, •, ◦)

(•, •, •)

∼a

p, q are atomic propositions
◦, • are actions

strategies σ : Histories→ Actions

indistinguishability relations ∼a

Input: A concurrent game structure and a formula ϕ ∈ LTL

Output: A distributed strategy to enforce ϕ
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Imperfect information

1 Strategies must be consistent with players’ information

Constraint on strategies:

If h ∼a h
′, then σa(h) = σa(h′).

2 Makes epistemic reasoning meaningful and useful

Example: opacity

A system is opaque for property P if a spy never knows whether
the current execution is in P .

Classic definition:

∀h,∃h′ s.t. h ∼spy h
′ and h′ /∈ P

With epistemic temporal logic:

G¬KspyP
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Semantics of knowledge when reasoning about strategies

Yellow subtree: controller’s strategy
∼spy: spy’s indistinguishability relation

KspyP?

∼spy∼spy
P P

Two possible semantics:

spy ignores controller’s strategy

Uninformed semantics

→ KspyP does not hold

spy knows controller’s strategy

Informed semantics

→ KspyP holds
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In the litterature

Both semantics have been used, but implicitely.

Informed semantics:

Distributed synthesis from epistemic temporal specifications

van der Meyden and Vardi, 1998

van der Meyden and Wilke, 2005

Uninformed semantics:

All epistemic extensions of ATL and SL (that we know of)

One paper talks about this issue: Puchala, 2010

What is known about distributed synthesis?
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Overview

Peterson and Reif (1979), Pnueli and Rosner (1990)

Distributed synthesis for reachability objective is undecidable.

Two known ways of retrieving decidability for temporal objectives:

1 Public actions

2 Hierarchical information

For epistemic temporal objectives and

informed semantics:

decidable for public actions
undecidable for hierarchical information

[van der Meyden and Wilke, 2005]

uninformed semantics:

decidable for public actions [Belardinelli et al., 2017]
decidable for hierarchical information [Puchala, 2010]
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SL with imperfect information and knowledge

SL (Chatterjee et al. 2010, Mogavero et al. 2014)

LTL +

∃σ ϕ
“there exists a strategy σ s.t. ϕ”

(a, σ)ϕ
“when player a plays strategy σ, ϕ”
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SL with imperfect information and knowledge

SLii (Berthon et al. 2017)

LTL +

∃oσ ϕ
“there exists a strategy σ with observational power o s.t. ϕ”

(a, σ)ϕ
“when player a plays strategy σ, ϕ”
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SL with imperfect information and knowledge

ESL (M. and Murano, 2018)

LTL +

∃oσ ϕ
“there exists a strategy σ with observational power o s.t. ϕ”

(a, σ)ϕ
“when player a plays strategy σ, ϕ”

Kaϕ
“player a knows that ϕ”

Aϕ
“in all outcomes, ϕ”
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What can ESL express?

Distributed synthesis:

∃o1x1 . . . ∃onxn (a1, x1) . . . (an, xn)∀oey (e, y)ψ

Existence of Nash equilibria:

∃oax ∃oby ∃ocz (a, x)(b, y)(c, z)∧
d∈{a,b,c} ∃odx′ (d, x′) Wind →Wind

Players changing observation:

∃o1x1 (a, x1)AF∃o2x2 (a, x2)AF Wina

“First I find my glasses, then I play for real.”
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Main result

Hierarchical instances

An ESL formula Φ is hierarchical if:

innermost strategies observe better than outermost ones

epistemic subformulas do not talk about current strategies

Considering the uninformed semantics of knowledge:

Theorem

Model-checking hierarchical instances of ESL is decidable.
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Corollaries:

On systems with hierarchical information,
for epistemic temporal specifications with uninformed semantics,

We can solve

distributed synthesis,

module checking,

synthesis of Nash equilibria,

rational synthesis,

. . .

12 / 13



Interested? Come to Napoli!



Rational distributed synthesis

Rational synthesis
Fisman et al. (2010), Condurache et al. (2016), Kupferman et al. (2016)

Environment made of several components {e1, . . . , em}
individual LTL goals ψi

System made of one component a

LTL specification ψg

Φc-RS := ∃x ∃y1 . . . ∃ym (a,x)(e,y)ϕNE ∧Aψg

Φnc-RS := ∃x ∀y1 . . . ∀ym (a,x)(e,y)ϕNE → Aψg

where
ϕNE :=

∧
i∈[m]

[(
∃y′i (ei, y

′
i)Aψi

)
→ Aψi

]
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