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Formalism
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(converges towards the
Markov System at ∞)
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(e.g. Markov Chain)

PAC bounds: 

with probability 97%, 
error < 3%

+
Information on the system:

Set of states – known in this talk
Support of transitions – depends
Transition probabilities – never

Observation W:
Sequence of States observed

e.g.: s1 s2 s3 s1 s3 s5

after finite time
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Learning algorithms:

Frequency estimator:
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+Error analysis: 
In AI, bounds on transition probabilities:
P(Estimated_Proba(s,t)-Prob(s,t) < 3%) > 97% 
using statistical « Okamoto Bounds » with
enough observations of transitions.

PAC bounds: 

with probability 97%, 
error < 3%



Goals

Understand learning algorithms from AI.
e.g., where 𝛽 -Laplace smoothing useful? 
Which 𝛽 to use?

Provide more meaningful bounds for model learnt:
Global bounds on behaviors of the model rather than 
local transition probabilities. 

How? Use logics LTL, CTL… to specify global behavior. 
We want that the probabilities to fulfil 
logical formula in model and in system must be close.



Local vs Global probabilities

Global Property : reach state 3. 
From state 1: PA()= ½.

From state 1:  has probability (t-e)/2t

Global error depends on conditioning t of system 
e.g.: t = 2e, PAW()=¼.

When learning AW, small
statistical errors possible

local error on proba: e



Result 1:
One fixed « Time Before failure » objective

Probability to see fault before seeing initial state again

=> Frequency estimator, giving MC AW

Reset strategy: reset when we reach sF or s0:

e.g.: 



Result 2:
What about learning a Markov chain good for all properties?

=> find AW , e such that uniformely, for all formula , we have: 

- All properties of LTL?

- All properties of PCTL?

- All properties of CTL?

Not possible (ask arbitrarily high precision
for arbitrarily nested formula). [Daca et al.’16]
Possible for depth k formulas, but  O(exp(k))

Not possible 
(PCTL cannot handle any statistical error)

Possible, and not so complex!
In particular, all reachability properties



PCTL cannot handle statistical error

PCTL Property  : (s2 => Proba(X(sF)) ≥ ½)
PA()=1 in the original system A.

If we learn AW from observations W, we can
do a small statstical error e and obtain

PAW()=0

-e
+e



Global PAC bounds for CTL
Error wrt Probability(X | Uy | G), for all ,y CTL formulae.

observations W={« u s v s »}: reset when same state seen twice

Need to know the support of transitions 
(not the case for fixed timed before failure)

Without it, learn: from system

with t very small

=> We use  Laplace smoothing to ensure the probabilities are all >0.



Global PAC bounds for CTL
Error wrt Probability(X | Uy | G), for all ,y CTL formulae.

observations W={« u s v s »}: reset when same state seen twice

… Next slide



Conditioning

R(2)=R(3)={1} and R(1)={}

P1(Leave≤m 1) = 1-(1-2t)m ≈ 2 m t

=> Cond(M) ≈ 2 m t



Conditioning

g wrt Probability(X | Uy | G), for all ,y CTL formulae.

…true thanks to Laplace smoothing



Experimental Results



Conclusion

Understand learning algorithms from AI:
Frequentist estimator enough for one fixed property.
𝛽 -Laplace smoothing to keep >0 transitions.
Useful for providing bounds for CTL, rationale to fix 𝛽.

Provide Global bounds on behaviors of the model learnt for CTL.

Not possible for PCTL or unbounded LTL. 
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