Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS

D. Della Monica, A. Murano

Università degli Studi di Udine

dario.dellamonica@uniud.it

Rennes, May 3, 2019

Outline

(1) Introduction and motivations
(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range
(4) Conclusions

Outline

(1) Introduction and motivations
(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4 Conclusions

Multi-Agent Systems (MAS)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Multi-Agent Systems (MAS)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Multi-Agent Systems (MAS)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Multi-Agent Systems (MAS)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

Multi-Agent Systems (MAS)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

COALITION - modeling collective behaviors/strategies

ATL: syntax and models

- Syntax. Formulae of ATL are given by the grammar:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\langle\langle A\rangle\rangle \bigcirc \varphi|\langle\langle A\rangle\rangle \square \varphi \mid\langle\langle A\rangle\rangle \varphi \mathcal{U} \varphi
$$

ATL: syntax and models

- Syntax. Formulae of ATL are given by the grammar:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\langle\langle A\rangle\rangle \bigcirc \varphi|\langle\langle A\rangle\rangle \square \varphi \mid\langle\langle A\rangle\rangle \varphi \mathcal{U} \varphi
$$

- Models. CGS's (concurrent game structure) are labeled transition systems:
- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)

ATL: syntax and models

- Syntax. Formulae of ATL are given by the grammar:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\langle\langle A\rangle\rangle \bigcirc \varphi|\langle\langle A\rangle\rangle \square \varphi \mid\langle\langle A\rangle\rangle \varphi \mathcal{U} \varphi
$$

- Models. CGS's (concurrent game structure) are labeled transition systems:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)

ATL: syntax and models

- Syntax. Formulae of ATL are given by the grammar:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\langle\langle A\rangle\rangle \bigcirc \varphi|\langle\langle A\rangle\rangle \square \varphi \mid\langle\langle A\rangle\rangle \varphi \mathcal{U} \varphi
$$

- Models. CGS's (concurrent game structure) are labeled transition systems:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)

ATL: syntax and models

- Syntax. Formulae of ATL are given by the grammar:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \varphi|\langle\langle A\rangle\rangle \bigcirc \varphi|\langle\langle A\rangle\rangle \square \varphi \mid\langle\langle A\rangle\rangle \varphi \mathcal{U} \varphi
$$

- Models. CGS's (concurrent game structure) are labeled transition systems:

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)

ATL: (intuitive) semantics

Collective strategy for the proponent team to guarantee φ holds

ATL: (intuitive) semantics

Collective strategy for the proponent team to guarantee φ holds

$$
\langle\langle A\rangle\rangle \bigcirc \varphi \quad \text { next }
$$

ATL: (intuitive) semantics

Collective strategy for the proponent team to guarantee φ holds
$\langle\langle A\rangle\rangle \bigcirc \varphi \quad$ next
$\langle\langle A\rangle\rangle \square \varphi \quad$ always

ATL: (intuitive) semantics

Collective strategy for the proponent team to guarantee φ holds
$\langle\langle\boldsymbol{A}\rangle\rangle \bigcirc \varphi \quad$ next
$\langle\langle A\rangle\rangle \square \varphi \quad$ always
$\langle\langle\boldsymbol{A}\rangle\rangle \varphi \mathcal{U} \psi \quad$ until ψ

ATL: (intuitive) semantics

Collective strategy for the proponent team to guarantee φ holds
$\langle\langle A\rangle\rangle \bigcirc \varphi \quad$ next
$\langle\langle A\rangle\rangle \square \varphi \quad$ always
$\langle\langle\boldsymbol{A}\rangle\rangle \varphi \mathcal{U} \psi \quad$ until ψ
regardless of actions performed by other agents (opponent)

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL $=$ ATL + qualitative (parity) + quantitative (energy)

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL $=$ ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- $n+m$ agents (n printers $+m$ users/environment)
- printer actions: $\{\mathbf{n}$ (do-nothing), \mathbf{p} (print) $\}$
- user actions: $\{\mathbf{n}$ (do-nothing), \mathbf{j} (send-a-job) \}

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL $=$ ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- $n+m$ agents (n printers $+m$ users/environment)
- printer actions: \{ \mathbf{n} (do-nothing), \mathbf{p} (print) $\}$
- user actions: $\{\mathbf{n}$ (do-nothing), \mathbf{j} (send-a-job) $\}$ pe-ATL abilities
- avoid errors (i printers do print and queue only contains $j<i j$ jobs)
- queue is emptied infinitely often
(Büchi \mapsto parity)
- users send infinitely many jobs \Rightarrow queue is filled up infinitely often
(fairness \mapsto parity)
- devices' turnover

Motivations

- ATL = coalition abilities + temporal goals
- pe-ATL $=$ ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- $n+m$ agents (n printers $+m$ users/environment)
- printer actions: \{ \mathbf{n} (do-nothing), \mathbf{p} (print) \}
- user actions: $\{\mathbf{n}$ (do-nothing), \mathbf{j} (send-a-job) $\}$ pe-ATL abilities
- avoid errors can be expressed in standard ATL contains $j<i$ jobs)
- queue is emptied infinitely often
(Büchi \mapsto parity)
- users send infinitely many jobs \Rightarrow queue is filled up infinitely often
(fairness \mapsto parity)
- devices' turnover

Outline

(1) Introduction and motivations

(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4 Conclusions

pe-ATL: syntax and models

- Syntax. The same as atL
- Models. pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)
- energy condition

pe-ATL: syntax and models

- Syntax. The same as atL
- Models. pe-CGS = CGS + parity + energy conditions

$$
\langle G, p\rangle
$$

- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)
- parity condition
- energy condition

pe-ATL: syntax and models

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions

- initial energy level \mathcal{E}_{0}
- energy range $[a, b]$
- vertices labeled by atomic propositions
- in vertices agents choose actions
- possible combinations \rightarrow transitions (edges of the graph)
- parity condition
- energy condition

pe-ATL: (intuitive) semantics

Collective (p, e)-strategy for the proponent team to guarantee φ holds

$\langle\langle A\rangle\rangle \square \varphi \quad$ always
$\langle\langle\boldsymbol{A}\rangle\rangle \varphi \mathcal{U} \psi \quad$ until ψ
regardless of actions performed by other agents (opponent)

pe-ATL: (intuitive) semantics

Collective (p, e)-strategy for the proponent team to guarantee φ holds
$\langle\langle A\rangle\rangle \bigcirc \varphi \quad$ next
$\langle\langle A\rangle\rangle \square \varphi \quad$ always
$\langle\langle\boldsymbol{A}\rangle\rangle \varphi \mathcal{U} \psi \quad$ until ψ
regardless of actions performed by other agents (opponent)
strategies must be (p, e)-strategies, i.e., they only produce plays satisfying parity and energy conditions

Outline

(1) Introduction and motivations
(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4 Conclusions

The printing system scenario

agents $=\left\{p_{1}, p_{2}, u\right\}$
actions
$\left.\begin{array}{c|c|c|c||c} & p_{1} & p_{2} & u & \text { joint actions } \\ \hline 0 & \mathbf{n} & \mathbf{n} & \mathbf{n j} & \begin{array}{c}\{\mathbf{n n n}, \mathbf{n n j}\} \\ 1\end{array} \\ \mathbf{n p} & \mathbf{n p} & \mathbf{n j} & \left\{\begin{array}{c}\mathbf{n n n}, \mathbf{n n j}, \mathbf{n p n}, \mathbf{n p j}, \\ \mathbf{p n n}, \mathbf{p n j}, \mathbf{p p n}, \mathbf{p p j}\end{array}\right\}\end{array}\right\}$
energy weights $\quad w(\mathbf{n n} x)=w(\mathbf{p p} x)=0$
$w(\mathbf{p n} x)=+1$
$w(\mathbf{n p} x)=-1$
energy range $=[0,1]$
initial energy level $\mathcal{E}_{0}=0$

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg e r r$
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg$ err
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

0

$\in[0,1]$

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg$ err
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

0

$\in[0,1]$

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg e r r$
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

0

$\in[0,1]$

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg$ err
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

0

$\in[0,1]$

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg$ err
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

The printing system scenario

$\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg$ err
\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$
01 \quad \in[0,1]
$$

The printing system scenario

$010 \in[0,1]$

The printing system scenario

$0101 \in[0,1]$

The printing system scenario

$01010 \in[0,1]$

The printing system scenario

$010101 \in[0,1]$

The printing system scenario

$0101010 \in[0,1]$

The printing system scenario

$$
\mathcal{G}, 0 \models\left\langle\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle\right\rangle \square \neg e r r
$$

\exists joint strategy for p_{1} and p_{2} s.t.:

- error state is avoided (temporal)
- if user sends infinitely many jobs, then queue is filled up infinitely often (parity)
- printers alternate (energy)

Outline

(1) Introduction and motivations

(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4) Conclusions

The model checking problem

Definition (pe-ATL model checking problem)

Given a pe-CGS $\mathcal{G}=\langle G, p, e\rangle$ and a pe-ATL formula φ, establish whether $\mathcal{G} \vDash \varphi$

We consider the following cases:

- unbounded energy range $[-\infty,+\infty]$
- bounded energy range $[a, b] \in \mathbb{Q}$
- left-bounded energy range $[a,+\infty]$ (right-bounded is symmetric)

Outline

(1) Introduction and motivations
(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4 Conclusions

Unbounded energy range $[-\infty,+\infty]$

- Reduction to p-ATL (just ignore the energy condition)
- Reduction to the case of bounded energy range $[a, b]$

Bounded energy range $[a, b]$

- $a \neq-\infty, b \neq+\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level $\left(\mathcal{E}^{\text {init }} \in \mathbb{Z}\right)$
- weights over transitions are integers as well

Lemma (positional strategies)

- a ($p, e)$-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)-strategy exists iff a memoryless one exists (unbounded instance)

Bounded energy range $[a, b]$

- $a \neq-\infty, b \neq+\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level (\mathcal{E} init $\in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

- a ($p, e)$-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)-strategy exists iff a memoryless one exists (unbounded instance)

(Un)Bounded energy range $[a, b]$: Complexity

- uniform strategies are positional in $Q \times[a, b]$
- exponentially many positions (q, energy-level) when a and b are in binary-thanks to normalization
- memoryless strategies are positional in Q
- polynomially many positions q

A non-deterministic algorithm:

- guess the strategy
- return true when a loop with even parity is detected while staying within energy range
- stop at the first loop: only one position is visited twice
- bounded case: exponential time
- unbounded case: polynomial time

Outline

(1) Introduction and motivations
(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range

4 Conclusions

Left-bounded energy range $[a,+\infty]$

(right-bounded energy range $[-\infty, b]$ is symmetric)

- Model-theoretic argument (technically quite involved)
- Difficulty: the space of positions (q, energy-level) is infinite
- We define suitable structures (witnesses)
- compact representations for strategies
- polynomially bounded size
- we prove it to be complete for strategies
- A non-deterministic algorithm guesses one such structure and check that it is indeed a witness for the desired strategy

Key ideas

- A witness (for a $\langle\langle A\rangle\rangle \square \psi$ formula) is a pair of graphs
$\left(S_{1}, S_{2}\right)$
- S_{1} represents the strategy for parity
S_{2} contains increasing loops to increase the energy levels
- Elements of such granhs are positions (a. energy-leve/)
$(q$, energy-level) $\in S \quad$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ
- Left-bounded range ensures monotonicity

- Thus, only the smallest energy level appears in S_{1} and S_{2} for each q

Key ideas

- A witness (for a $\langle\langle A\rangle\rangle \square \psi$ formula) is a pair of graphs

$$
\left(S_{1}, S_{2}\right)
$$

- S_{1} represents the strategy for parity
S_{2} contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)
$(q$, energy-level) $\in S \quad$ iff
there is a winning strategy for A, i.e.,
a (p, e)-strategy that guarantees the invariant ?
- Left-bounded range ensures monotonicity

- Thus, only the smallest energy level appears in S_{1} and S_{2} for each q

Key ideas

- A witness (for a $\langle\langle\boldsymbol{A}\rangle\rangle \square \psi$ formula) is a pair of graphs

$$
\left(S_{1}, S_{2}\right)
$$

- S_{1} represents the strategy for parity
S_{2} contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)
$(q$, energy-level) $\in S \quad$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ
- Left-bounded range ensures monotonicity

- Thus, only the smallest energy level appears in S_{1} and S_{2} for each q

Key ideas

- A witness (for a $\langle\langle\boldsymbol{A}\rangle\rangle \square \psi$ formula) is a pair of graphs

$$
\left(S_{1}, S_{2}\right)
$$

- S_{1} represents the strategy for parity
S_{2} contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)
$(q$, energy-level) $\in S \quad$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ
- Left-bounded range ensures monotonicity

- Thus, only the smallest energy level appears in S_{1} and S_{2} for each q

Key ideas

- A witness (for a $\langle\langle\boldsymbol{A}\rangle\rangle \square \psi$ formula) is a pair of graphs

$$
\left(S_{1}, S_{2}\right)
$$

- S_{1} represents the strategy for parity
S_{2} contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)
$(q$, energy-level $) \in S \quad$ iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant ψ
- Left-bounded range ensures monotonicity
a strategy exists from (q, energy-level)
a strategy exists from (q, E) for all $E \geq$ energy-level
- Thus, only the smallest energy level appears in S_{1} and S_{2} for each q

$$
\left|S_{1}\right| \leq|Q|, \quad\left|S_{2}\right| \leq|Q|
$$

From witnesses to strategies

- internal constraints
- e.g., elements of S_{1} and S_{2} satisfy the invariant ψ in a formula $\langle\langle\boldsymbol{A}\rangle\rangle \square \psi$
- diagonal constraints
- e.g., elements of S_{1} with low energy level also occur as (and can be merged with) elements of S_{2}
- the unfolding/merging of S_{1} and S_{2} corresponds to the outcome of a winning strategy for A

From strategies to witnesses

Witness construction
(from the tree \mathcal{T} of outcomes of a winning strategy for A)

- q appears in the witness iff it appears in the tree \mathcal{T}
- suitably cut tree \mathcal{T} into a finite (not bounded) prefix
- for every q, a representative node in the cut of \mathcal{T} is chosen
- based on their topological order and their energy level in the tree
- energy level and outgoing transition for q in the witness are determined by its representative in the cut of \mathcal{T}

Outline

(1) Introduction and motivations

(2) The logic pe-ATL

- pe-ATL at work
(3) Model checking pe-ATL
- Unbounded $[-\infty,+\infty]$ and bounded $[a, b]$ energy range
- Left-bounded $[a,+\infty]$ and right-bounded $[-\infty, b]$ energy range
(4) Conclusions

Conclusions

- pe-ATL: coalitional abilities to pursue temporal goals while satisfying qualitative (parity) and quantitative (energy) conditions
- pe-ATL model checking problem

Theorem

The model checking problem for pe-ATL is:

- in NEXPTIME if the energy range is bounded ($[a, b]$)
- in NPTIME if the energy range is unbounded ($[-\infty,+\infty]$)
- in NPTIME if the energy range is left- or right-unbounded

$$
([a,+\infty] \text { or }[-\infty, b])
$$

Notice that ATL* is 2EXPTIME-complete

Future work

Open theoretical issues

- to establish thigh complexity bounds (parity game complexity)
- to synthesize parity and energy conditions to express desirable properties of a system
- expressiveness issues
- comparison with other logics, e.g., ATL*, Strategy Logic (SL)

Possible variations/extension of the multi-agent scenario

- energy level evolves along the entire game
- limit opponent power with parity and energy conditions as well
- multiple quantitative dimension (several resources besides energy)

The end

Thank you!

