Parity-energy ATL for Qualitative and Quantitative Reasoning in MAS

D. Della Monica, A. Murano

Università degli Studi di Udine

dario.dellamonica@uniud.it

Rennes, May 3, 2019

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Outline

- Introduction and motivations
- The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

- Several agents
- Intelligent (take decisions, moves)
- Independent
- Next state univocally identified by joint moves (all agents)

COALITION - modeling collective behaviors/strategies

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle \textit{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \textit{A} \rangle \rangle \Box \varphi \mid \langle \langle \textit{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$$

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \bigcirc \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \Box \varphi \mid \langle \langle \mathbf{A} \rangle \rangle \varphi \mathcal{U} \varphi$$

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

• **Syntax.** Formulae of ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle A \rangle \rangle \bigcirc \varphi \mid \langle \langle A \rangle \rangle \Box \varphi \mid \langle \langle A \rangle \rangle \varphi \mathcal{U} \varphi$$

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)

$$\langle\langle A \rangle\rangle \bigcirc \varphi$$
 next

$$\langle\langle {\it A}\rangle\rangle\bigcirc\varphi \qquad {\rm next}$$

$$\langle\langle {\it A} \rangle\rangle\Box \varphi$$
 always

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

Collective strategy for the proponent team to guarantee φ holds

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

regardless of actions performed by other agents (opponent)

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- n + m agents (*n* printers + *m* users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

pe-ATL abilities

- avoid errors (i printers do print and queue only contains j < i jobs)
 - (safety \mapsto coalition+temporal)

queue is emptied infinitely often

- (Büchi → parity)
- ullet users send infinitely many jobs \Rightarrow queue is filled up infinitely often
 - $(fairness \mapsto parity)$

devices' turnover

(alternation → energy)

- ATL = coalition abilities + temporal goals
- pe-ATL = ATL + qualitative (parity) + quantitative (energy)

Sample scenario:

- printing system: n printers + shared bounded printing queue
- n + m agents (n printers + m users/environment)
- printer actions: { n (do-nothing), p (print) }
- user actions: { n (do-nothing), j (send-a-job) }

pe-ATL abilities

- avoid errors can be expressed in standard ATL contains j < i jobs) (safety \mapsto coalition+temporal)
- queue is emptied infinitely often

(Büchi → parity)

ullet users send infinitely many jobs \Rightarrow queue is filled up infinitely often

 $(fairness \mapsto parity)$

devices' turnover

(alternation → energy)

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATI
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- ▶ in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

- Syntax. The same as ATL
- Models. pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

- Syntax. The same as ATL
- **Models.** pe-CGS = CGS + parity + energy conditions

- vertices labeled by atomic propositions
- in vertices agents choose actions
- ▶ possible combinations → transitions (edges of the graph)
- parity condition
- energy condition

Collective (p, e)-strategy for the proponent team to guarantee φ holds

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

regardless of actions performed by other agents (opponent)

Collective (p, e)-strategy for the proponent team to guarantee φ holds

$$\begin{array}{ll} \langle\langle A\rangle\rangle\bigcirc\varphi & \text{next} \\ \\ \langle\langle A\rangle\rangle\Box\varphi & \text{always} \\ \\ \langle\langle A\rangle\rangle\varphi\mathcal{U}\psi & \text{until }\psi \end{array}$$

regardless of actions performed by other agents (opponent)

strategies must be (p, e)-strategies, i.e., they only produce plays satisfying parity and energy conditions

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

$$agents = \{p_1, p_2, u\}$$

	p	1	<i>p</i> ₂	и	joint actions
0	r	1	n	nj	{nnn, nnj}
1	n	р	np	nj	nnn, nnj, npn, npj, pnn, pnj, ppn, ppj
1′	n	р	np	nj	$ \left\{ \begin{matrix} \textbf{nnn}, \textbf{nnj}, \textbf{npn}, \textbf{npj}, \\ \textbf{pnn}, \textbf{pnj}, \textbf{ppn}, \textbf{ppj} \end{matrix} \right\} $
2	F)	р	nj	{ppn, ppj}
er	$r \mid \mathbf{r}$	1	n	n	{nnn}

energy weights
$$\begin{array}{c} w(\mathbf{n} \mathbf{n} \mathbf{x}) = w(\mathbf{p} \mathbf{p} \mathbf{x}) = \mathbf{0} \\ w(\mathbf{p} \mathbf{n} \mathbf{x}) = +\mathbf{1} \\ w(\mathbf{n} \mathbf{p} \mathbf{x}) = -\mathbf{1} \end{array}$$

initial energy level $\mathcal{E}_0 = 0$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\textcolor{red}{0} \hspace{0.2in} \in [0,1]$$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\textcolor{red}{0} \hspace{0.2in} \in [0,1]$$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\textcolor{red}{0} \hspace{0.2in} \in [0,1]$$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$\textcolor{red}{0} \hspace{0.2in} \in [0,1]$$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

∈ [0, 1]

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

∈ [0, 1]

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$0 \, 1 \, 0 \in [0, 1]$$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $0 \ 1 \ 0 \ 1$ $\in [0, 1]$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

$$0 \ 1 \ 0 \ 1 \ 0$$
 $\in [0, 1]$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $0 \ 1 \ 0 \ 1 \ 0 \ 1$ $\in [0, 1]$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- all jobs are processed (parity)
- printers alternate (energy)

 $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ \in [0, 1]$

$$\mathcal{G}, 0 \models \langle \langle \{p_1, p_2\} \rangle \rangle \Box \neg \textit{err}$$

 \exists joint strategy for p_1 and p_2 s.t.:

- error state is avoided (temporal)
- if user sends infinitely many jobs, then queue is filled up infinitely often (parity)
- printers alternate (energy)

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

The model checking problem

Definition (pe-ATL model checking problem)

Given a pe-CGS $\mathcal{G}=\langle \textit{G},\textit{p},\textit{e}\rangle$ and a pe-ATL formula φ , establish whether $\mathcal{G}\models\varphi$

We consider the following cases:

- unbounded energy range $[-\infty, +\infty]$
 - bounded energy range $[a, b] \in \mathbb{Q}$
 - left-bounded energy range $[a, +\infty]$ (right-bounded is symmetric)

NP

NEXPTIME

NP

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Unbounded energy range $[-\infty, +\infty]$

- Reduction to p-ATL (just ignore the energy condition)
- Reduction to the case of bounded energy range [a, b]

Bounded energy range [a, b]

• $a \neq -\infty$, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

- a (p, e)-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)-strategy exists iff a memoryless one exists (unbounded instance)

Bounded energy range [a, b]

• $a \neq -\infty$, $b \neq +\infty$

Lemma (normalization)

It is possible to focus on instances where no rationals are involved

- integer energy range $(a, b \in \mathbb{Z})$
- integer initial energy level ($\mathcal{E}^{init} \in \mathbb{Z}$)
- weights over transitions are integers as well

Lemma (positional strategies)

- \bullet a (p, e)-strategy exists iff a uniform one exists (bounded instance)
- a (p, e)-strategy exists iff a memoryless one exists (unbounded instance)

(Un)Bounded energy range [a, b]: Complexity

- uniform strategies are positional in $Q \times [a, b]$
 - exponentially many positions (q, energy-level) when a and b are in binary—thanks to normalization
- memoryless strategies are positional in Q
 - polynomially many positions q

A non-deterministic algorithm:

- guess the strategy
- return true when a loop with even parity is detected while staying within energy range
- stop at the first loop: only one position is visited twice
- bounded case: exponential time
- unbounded case: polynomial time

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Left-bounded energy range $[a, +\infty]$

(right-bounded energy range $[-\infty, b]$ is symmetric)

- Model-theoretic argument (technically quite involved)
- Difficulty: the space of positions (q, energy-level) is infinite
- We define suitable structures (witnesses)
 - compact representations for strategies
 - polynomially bounded size
 - we prove it to be complete for strategies
- A non-deterministic algorithm guesses one such structure and check that it is indeed a witness for the desired strategy

• A witness (for a $\langle\langle A \rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1,S_2)$$

- S₁ represents the strategy for parity
 S₂ contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)

```
(q, energy-level) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

a strategy exists from (q, E) for all $E \ge energy$ -leve

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

- S₁ represents the strategy for parity
 S₂ contains increasing loops to increase the energy levels
- Elements of such graphs are positions (g, energy-level)

```
(q, energy\text{-level}) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

strategy exists from
$$(q, energy-level)$$

a strategy exists from (q, E) for all $E \ge energy$ -leve

ullet Thus, only the smallest energy level appears in S_1 and S_2 for each c_1

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1, S_2)$$

- S₁ represents the strategy for parity
 S₂ contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)

```
(q, energy\text{-level}) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

```
a strategy exists from (q, energy-level) iff (q, E) for all E \ge energy-level
```

• Thus, only the smallest energy level appears in S_1 and S_2 for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(S_1,S_2)$$

- S₁ represents the strategy for parity
 S₂ contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)

```
(q, energy-level) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

a strategy exists from (q, E) for all $E \ge energy$ -level

ullet Thus, only the smallest energy level appears in S_1 and S_2 for each C_1

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

• A witness (for a $\langle\langle A\rangle\rangle\Box\psi$ formula) is a pair of graphs

$$(\textit{S}_{1},\textit{S}_{2})$$

- S₁ represents the strategy for parity
 S₂ contains increasing loops to increase the energy levels
- Elements of such graphs are positions (q, energy-level)

```
(q, energy-level) \in S iff there is a winning strategy for A, i.e., a (p, e)-strategy that guarantees the invariant \psi
```

Left-bounded range ensures monotonicity

a strategy exists from
$$(q, energy-level)$$
 iff (q, E) for all $E \ge energy-level$

Thus, only the smallest energy level appears in S₁ and S₂ for each q

$$|S_1| \le |Q|, \qquad |S_2| \le |Q|$$

From witnesses to strategies

- internal constraints
 - e.g., elements of S_1 and S_2 satisfy the invariant ψ in a formula $\langle\langle A\rangle\rangle\square\psi$
- diagonal constraints
 - e.g., elements of S₁ with low energy level also occur as (and can be merged with) elements of S₂
- the unfolding/merging of S₁ and S₂ corresponds to the outcome of a winning strategy for A

From strategies to witnesses

Witness construction (from the tree T of outcomes of a winning strategy for A)

- ullet q appears in the witness iff it appears in the tree ${\cal T}$
- ullet suitably cut tree ${\mathcal T}$ into a finite (not bounded) prefix
- for every q, a representative node in the cut of T is chosen
 - based on their topological order and their energy level in the tree
- energy level and outgoing transition for q in the witness are determined by its representative in the cut of \mathcal{T}

Outline

- Introduction and motivations
- 2 The logic pe-ATL
 - pe-ATL at work
- Model checking pe-ATL
 - Unbounded $[-\infty, +\infty]$ and bounded [a, b] energy range
 - Left-bounded $[a, +\infty]$ and right-bounded $[-\infty, b]$ energy range
- Conclusions

Conclusions

- pe-ATL: coalitional abilities to pursue temporal goals while satisfying qualitative (parity) and quantitative (energy) conditions
- pe-ATL model checking problem

Theorem

The model checking problem for pe-ATL is:

- in NEXPTIME if the energy range is bounded ([a, b])
- in NPTIME if the energy range is unbounded ($[-\infty, +\infty]$)
- in NPTIME if the energy range is left- or right-unbounded

 $([a,+\infty] \text{ or } [-\infty,b])$

Notice that ATL* is 2EXPTIME-complete

Future work

Open theoretical issues

- to establish thigh complexity bounds (parity game complexity)
- to synthesize parity and energy conditions to express desirable properties of a system
- expressiveness issues
 - comparison with other logics, e.g., ATL*, Strategy Logic (SL)

Possible variations/extension of the multi-agent scenario

- energy level evolves along the entire game
- limit opponent power with parity and energy conditions as well
- multiple quantitative dimension (several resources besides energy)

The end

Thank you!