Modal Separation Logics: Complexity and Axiomatisation

STÉPHANE DEMRI

CNRS, France

Joint works with Raul Fervari & Alessio Mansutti

Formal Methods and AI, Rennes

May 2019

Updating models

Fascinating realm of (modal) logics updating models:

logics of public announcement

[Lutz, AAMAS'06]

sabotage modal logics

[van Benthem, 2002]

relation-changing modal logics

[Fervari, PhD 2014]

one-agent refinement modal logic

[Bozzelli & van Ditmarsch & Pinchinat, TCS 2015]

separation logics

[Reynolds, LICS'02]

modal separation logic DMBI

[Courtault & Galmiche, JLC 2018]

• logics with reactive Kripke semantics [Gabbay, Book 2013]

 This work: combining separation logics with modal logics and Hilbert-style axiomatisation.

Frame rule and separating conjunction

- Separation logic:
 - Extension of Floyd-Hoare logic for (concurrent) programs with mutable data structures.
 - Introduced by Ishtiaq, O'Hearn, Pym, Reynolds, Yang.
 See also [Burstall, MI 72]
 - Extension of Hoare logic with separating connectives * and *. [O'Hearn, Reynolds & Yang, CSL'01; Reynolds, LICS'02]
- Frame rule:

$$\frac{\{\phi\} \ \mathtt{C} \ \{\psi\}}{\{\phi*\psi'\} \ \mathtt{C} \ \{\psi*\psi'\}}$$

where C does not mess with ψ' .

$$\frac{\{x \hookrightarrow 5\} \ ^*x \leftarrow 4 \ \{x \hookrightarrow 4\}}{\{x \hookrightarrow 5 * y \hookrightarrow 3\} \ ^*x \leftarrow 4 \ \{x \hookrightarrow 4 * y \hookrightarrow 3\}}$$

• $(\mathfrak{s},\mathfrak{h}) \models x \hookrightarrow 5 * y \hookrightarrow 3 \text{ implies } (\mathfrak{s},\mathfrak{h}) \models x \neq y.$

Memory states with one record field

- Program variables $PVAR = \{x_1, x_2, x_3, \ldots\}.$
- Loc: countably infinite set of locations
 Val: countably infinite set of values with Loc ⊆ Val.
- Memory state $(\mathfrak{s},\mathfrak{h})$:
 - Store $\mathfrak{s}: \mathsf{PVAR} \to \mathsf{Val}$.
 - Heap \mathfrak{h} : Loc \rightharpoonup_{fin} Val (finite domain). (richer models exist, e.g. with \mathfrak{h} : Loc \rightharpoonup_{fin} Val^k, k > 1)
 - In this talk, we assume Loc = Val = N.

Disjoint heaps

- The heaps \mathfrak{h}_1 and \mathfrak{h}_2 are disjoint iff $dom(\mathfrak{h}_1) \cap dom(\mathfrak{h}_2) = \emptyset$.
- When \mathfrak{h}_1 and \mathfrak{h}_2 are disjoint, $\mathfrak{h}_1 \uplus \mathfrak{h}_2$ is their disjoint union.

The models are forest-like structures

• A forest of tree-like structures:

A word-like structure:

Motivations for modal separation logics

- Modal separation logics: Kripke-style semantics with modal and separating connectives, as an alternative to first-order separation logic 1SL.
- To propose a uniform framework so that the logics can be understood either as modal logics or as separation logics.

- As by-products, we introduce variants of
 - hybrid separation logics [Brotherston & Villard, POPL'14]
 - relation-changing modal logics

[Fervari, PhD 2014]

Related work: description logics for shape analysis.

See e.g. [Georgieva & Maier, SEFM'05; Calvanese et al., IFM'14]

Modal separation logic $MSL(*, \diamondsuit, \langle \neq \rangle)$

[Demri & Fervari, AiML'18]

Formulae:

$$\phi ::= \mathbf{p} \mid \text{emp} \mid \neg \phi \mid \phi \lor \phi \mid \Diamond \phi \mid \langle \neq \rangle \phi \mid \phi \ast \phi$$

- Models $\mathfrak{M} = \langle \mathbb{N}, \mathfrak{R}, \mathfrak{V} \rangle$:
 - $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ is finite and weakly functional (deterministic),
 - $\mathfrak{V}: PROP \to \mathcal{P}(\mathbb{N})$.
- Disjoint unions $\mathfrak{M}_1 \uplus \mathfrak{M}_2$.
- The models have an infinite universe and a finite relation encoding the heap.

Semantics

$$\mathfrak{M}, \mathfrak{l} \models p \qquad \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \mathfrak{l} \in \mathfrak{V}(p)$$

$$\mathfrak{M}, \mathfrak{l} \models \Diamond \phi \qquad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \mathfrak{M}, \mathfrak{l}' \models \phi, \text{ for some } \mathfrak{l}' \in \mathbb{N} \text{ such that } (\mathfrak{l}, \mathfrak{l}') \in \mathfrak{R}$$

$$\mathfrak{M}, \mathfrak{l} \models \langle \neq \rangle \phi \quad \stackrel{\text{\tiny def}}{\Leftrightarrow} \quad \mathfrak{M}, \mathfrak{l}' \models \phi, \text{ for some } \mathfrak{l}' \in \mathbb{N} \text{ such that } \mathfrak{l}' \neq \mathfrak{l}$$

$$\mathfrak{M}, \mathfrak{l} \models \mathtt{emp} \qquad \stackrel{\mathtt{def}}{\Leftrightarrow} \quad \mathfrak{R} = \emptyset$$

$$\mathfrak{M}, \mathfrak{l} \models \phi_1 * \phi_2 \stackrel{\mathsf{def}}{\Leftrightarrow} \langle \mathbb{N}, \mathfrak{R}_1, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_1 \text{ and } \langle \mathbb{N}, \mathfrak{R}_2, \mathfrak{V} \rangle, \mathfrak{l} \models \phi_2,$$
 for some partition $\{\mathfrak{R}_1, \mathfrak{R}_2\}$ of \mathfrak{R}

Examples

$$\langle \mathbf{U} \rangle \phi \stackrel{\text{def}}{=} \phi \lor \langle \neq \rangle \phi$$
 size $\geq k \stackrel{\text{def}}{=} \underbrace{\neg \text{emp} * \cdots * \neg \text{emp}}_{k \text{ times}}$

Nominal x as in hybrid (modal) logics.

$$\langle \mathrm{U} \rangle (x \wedge [\neq] \neg x)$$

• The model is a loop of length 2 visiting the current location:

$$\begin{aligned} \mathtt{size} & \geq 2 \land \neg \mathtt{size} \geq 3 \land \Diamond \Diamond \Diamond \top \land \\ \neg (\neg \mathtt{emp} * \Diamond \Diamond \Diamond \top) \land \neg \Diamond (\neg \mathtt{emp} * \Diamond \Diamond \Diamond \top) \end{aligned}$$

•
$$p_1 \land \Diamond(p_2 \land \Diamond(p_3 \land \cdots \Diamond(p_n \land \Box \bot) \cdots))$$
:
$$p_1 \qquad p_2 \qquad p_n$$

$$\mathfrak{l}_1 \longrightarrow \mathfrak{l}_2 \longrightarrow \cdots \longrightarrow \mathfrak{l}_n$$

Tower-completeness of $SAT(MSL(*, \diamondsuit, \langle \neq \rangle))$

• Linear model:

$$l_0 \longrightarrow l_1 \longrightarrow \cdots \longrightarrow l_n$$

- There is a formula $\phi_{\exists 1s}$ in $MSL(*, \diamondsuit, \langle \neq \rangle)$ such that $\mathfrak{M} \models \phi_{\exists 1s}$ iff \mathfrak{M} is linear.
- Star-free expressions

$$e := a \mid \varepsilon \mid e \cup e \mid ee \mid \sim e$$

Nonemptiness problem is Tower-complete.

[Meyer & Stockmeyer, STOC'73; Schmitz, ToCT 2016]

Encoding words by linear models.

• $MSL(*, \diamondsuit, \langle \neq \rangle)$ satisfiability problem is Tower-hard.

Variants

- The satisfiability problems for $\mathrm{MSL}(*, \Diamond)$ and $\mathrm{MSL}(*, \langle \neq \rangle)$ are NP-complete. (for $\mathrm{SL}(*)$, PSPACE-completeness)
- Undecidability of $MSL(*, \lozenge, \langle \neq \rangle)$ + magic wand -*. [Demri & Fervari, AiML'18]
- Modal logic for heaps MLH(*) is TOWER-complete.
 [Demri & Deters, TOCL 2015]

Hilbert-style axiomatisation of $MSL(*, \diamondsuit)$

- Designing internal calculi for separation-like logics is not an easy task.
- Proof systems for abstract separation logics with labels or nominals:
 - Hybrid separation logics. [Brotherston & Villard, POPL'14]
 - Sequent-style calculi. [Hou et al., TOCL 2018]
 - Tableaux-based calculi. [Docherty & Pym, FOSSACS'18] See also [Galmiche & Mery, JLC 2010]
- Puristic approach: only formulae in $MSL(*, \lozenge)$ are used.
- Design a subclass of formulae in $MSL(*, \diamondsuit)$ that captures the expressive power of $MSL(*, \diamondsuit)$.
- Calculus also for $MSL(*, \langle \neq \rangle)$ by adapting Segerberg's axiomatisation for von Wright's logic of elsewhere.

See e.g. [Segerberg, Theoria 1981]

Method to axiomatise $MSL(*, \diamondsuit)$

- The Hilbert-style proof system is made of three parts:
 - 1 Axioms and rule from propositional calculus.
 - 2 Axiomatisation for Boolean combinations of core formulae.
 - 3 Axioms and rules to transform any formula into a Boolean combination of core formulae.
- Only formulae in $MSL(*, \lozenge)$ are used !
- Boolean combinations of core formulae capture $MSL(*, \lozenge)$.

Core formulae

ullet Size formulae size $\geq eta$ and graph formulae ${\cal G}$

 $p \in PROP$, \mathcal{G} contains at least one Q.

• The core formulae are logically equivalent to formulae in $MSL(*, \diamondsuit)$.

Eliminating modalities & reasoning on core formulae

Axioms and inference rules

Axioms dedicated to size formulae and inconsistencies, e.g.

$$\mathtt{size} \geq 0 \quad \mathtt{size} \geq \beta + 1 \Rightarrow \mathtt{size} \geq \beta$$

Axioms dedicated to conjunctions and negations, e.g.

$$|Q_1,...,Q_i^{\uparrow},...,Q_n| \land |Q_1',...,Q_i',...,Q_n'| \Leftrightarrow |Q_1 \land Q_1',...,Q_i \land Q_i',...,Q_n \land Q_n'|$$

Axioms and rules to eliminate ♦ and *, e.g.

$$\Diamond(|Q_1,\ldots,Q_n\rangle) \Leftrightarrow |\top,\overline{Q_1,\ldots,Q_n}| \lor |\top,Q_1,\ldots,Q_n\rangle \qquad \frac{\phi \Rightarrow \psi}{\Diamond \phi \Rightarrow \Diamond \psi}$$

• Completeness of the calculus with the additional axiom:

$$p \Leftrightarrow (|p\rangle \vee p \vee p)$$
.

[Demri & Fervari & Mansutti, JELIA'19]

Concluding remarks

- Introduction to basic modal separation logics and investigations on their complexity and axiomatisation.
- Other results: axiomatisation of MSL(*, $\langle \neq \rangle$), addition of \rightarrow , etc.... See the papers in AiML'18 and JELIA'19
- Some on-going works:
 - Complexity for $MSL(*, \diamondsuit^{-1})$ or $MSL(*, \diamondsuit^{-1}, \diamondsuit)$.
 - Relationships with QCTL, see [Bednarczyk & Demri, LICS'19]

Conclusion 18