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The Fourth Revolution

• Andrew Ng Artificial intelligence is the new electricity

• Gray Scott There is no reason and no way that a human mind can
keep up with an artificial intelligence machine by 2035

• Ray Kurzweil Artificial intelligence will reach human levels by
around 2029. Follow that out further to, say, 2045, we will have
multiplied the intelligence, the human biological machine
intelligence of our civilization a billion-fold.
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And yet it fails at basic tasks

• English: Of course, I do love you. Let’s have dinner this Friday?
See you!

• Google translate in french: (which losely reads as follows in
English) : Of course, I do not love you. See you!

So where are we?

• There has been a significant progress for tasks that were thought
to be hard

– Computer vision
– Game playing
– Machine translation

• But this progress has come at the cost of understanding of how
these systems actually work

• Eric Schmidt, 2015: There should be verification systems that
evaluate whether an AI system is doing what it was built to do.
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Imprecise systems: Adversarial Examples
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The Classical Approach

• Given a model M

– M: A neural network to label images

• Specification ϕ

– ϕ: Label stop sign as STOP

• Check whether there exists an execution of M that violates ϕ

– Given a neural network, find if there exists a minor change to a
image of stop sign such that M incorrectly classifies?

• Yes but so what?
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New Challenges

Challenge 1 How do you verify systems that are likely not 100%
accurate?

• To err is human after all and AI systems are designed
to mimic humans.

(Joint work with Teodora Baluta and Prateek Saxena)

Challenge 2 Probabililstic reasoning is a core component of AI
systems?
(Joint work with Sourav Chakraborty – focus of this talk)
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From Qualification to Quantification

• The classical verification concerned with finding whether there
exists one execution

• The Approach:

– Represent M and ϕ as logical formulas and use constraint solver
(SAT solvers)

– Given a formula, a SAT solver checks if there exists a solution
– F = (x1 ∨ x2), the SAT solver will return YES

• We now care whether there exist too many?

– Given a formula, we need to count

• Challenges: Scalability, encodings, tools, quality of
approximations.....
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Probabilistic Reasoning

• Usage of probabilsitic models such as Bayesian networks

• Samplers form the core of the state of the art probabilistic
reasoning techniques

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed over the
years.

• Often statistical tests are employed to argue for quality of the
output distributions.

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist for
their accuracy.
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Uniform Sampler for Discrete Sets

• Implicit representation of a set S : Set of all solutions of ϕ.

• Given a CNF formula ϕ, a Sampler A, outputs a random solution
of ϕ.

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a ϕ, outputs
a random element of the set S, such that, for any σ ∈ S

Pr[A(ϕ) = σ] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime
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What does Complexity Theory Tell Us

• “far” means total variation distance or the `1 distance.
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Figure: U : Reference Uniform Sampler
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Figure: A: 1/2-far from uniform
Sampler

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ε-close to uniform has query
complexity Θ(

√
|S |/ε2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a sampler is represented by 3 doubles, then
S > 2100
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Beyond Black-Box Testing
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Beyond Black Box Testing

Definition (Conditional Sampling)

Given a distribution D on S one can

• Specify a set T ⊆ S,

• Draw samples according to the distribution D|T , that is,
D under the condition that the samples belong to T .

Conditional sampling is at least as powerful as drawing normal samples.
But how more powerful is it?
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Testing Uniformity Using Conditional Sampling
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An algorithm for testing uniformity using conditional sampling:

1 Draw σ1 uniformly at random from reference uniform sampler U
and draw σ2 from sampler under test A. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
A|T .

4 The constant depend on the farness parameter.
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Barbarik

Input: A sampler under test A, a reference uniform sampler U , a
tolerance parameter ε > 0, an intolerance parmaeter η > ε, a guarantee
parameter δ and a CNF formula ϕ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is an ε-additive almost-uniform generator then
Barbarik ACCEPTS with probability at least (1− δ).

• if A(ϕ, .) is η-far from a uniform generator and If non-adversarial
sampler assumption holds then Barbarik REJECTS with probability
at least 1− δ.
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Sample complexity

Theorem

Given ε, η and δ, Barbarik need at most K = Õ( 1
(η−ε)4 ) samples for

any input formula ϕ, where the tilde hides a poly logarithmic factor of
1/δ and 1/(η − ε).

• ε = 0.6, η = 0.9, δ = 0.1

• Maximum number of required samples K = 1.72×106

• Independent of the number of variables

• To Accept, we need K samples but rejection can be achieved with
lesser number of samples.
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Empirical Results
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Experimental Setup

• Three state of the art (almost-)uniform samplers

– UniGen2: Theoretical Guarantees of almost-uniformity
– SearchTreeSampler: Very weak guarantees
– QuickSampler: No Guarantees

• Recent study that proposed Quicksampler perform unsound
statistical tests and claimed that all the three samplers are
indistinguishable
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Results-I

Instances #Solutions UniGen2 SearchTreeSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250
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Results-II

Instances #Solutions UniGen2 QuickSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250
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Take Home Message

• Barbarik can effectively test whether a sampler generates uniform
distribution

• Samplers without guarantees, SearchTreeSampler and
QuickSampler, fail the uniformity test while sampler with
guarantees passes the uniformity test.
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Conclusion

• We need methodological approach to verification of AI systems

• Need to go beyond qualitative verification

• Sampling is a crucial component of the state of the art
probabilistic reasoning systems

• Traditional verification methodology is insufficient

• Property testing meets verification: Promise of strong theoretical
guarantees with scalability to large instances

• Extend beyond uniform distributions
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Backup
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What about other distributions?
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Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ε.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.
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Testing Uniformity Using Conditional Sampling
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1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution D. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
D|T .

4 The constant depend on the farness parameter.
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CNF Samplers

• Input formula: F over variables X

• Challenge: Conditional Sampling over T = {σ1, σ2}.
• Construct G = F ∧ (X = σ1 ∨ X = σ2)

• Most of the samplers enumerate all the points when the number of
points in the Domain are small

• Need way to construct formulas whose solution space is large but
every solution can be mapped to either σ1 or σ2.
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Kernel

Input: A Boolean formula ϕ, two assignments σ1 and σ2, and desired
number of solutions τ
Output: Formula ϕ̂

1 τ = |Rϕ̂|
2 Supp(ϕ) ⊆ Supp(ϕ̂)

3 z ∈ Rϕ̂ =⇒ z↓S ∈ {σ1, σ2}
4 |{z ∈ Rϕ̂ | z↓S = σ1}| = |{z ∈ Rϕ̂ | z↓S ∩ σ2}|, where

S = Supp(ϕ).

5 ϕ and ϕ̂ has similar structure
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Non-adversarial Sampler

Let (ϕ̂) obtained from kernel(ϕ, σ1, σ2,N) such that there are only two
set of assignments to variables in ϕ that can be extended to a satisfying
assignment for ϕ̂

Definition

The non-adversarial sampler assumption states that the distribution
of the projection of samples obtained from A(ϕ̂) to variables of ϕ is
same as the conditional distribution of A(ϕ) restricted to either σ1 or
σ2

• If A is a uniform sampler for all the input formulas, it satisfies
non-adversarial sampler assumption

• If A is not a uniform sampler for all the input formulas, it may not
necessarily satisfy non-adversarial sampler assumption
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