
Timeline-based Planning:
Expressiveness and Complexity
Nicola Gigante

FMAI 2019 - Second Workshop on Formal Methods and AI
Rennes, France - May 1–4, 2019

Automated planning

Automated planning is a field of Artificial Intelligence that studies
how to design systems that, given a description of the world, can
autonomously obtain a given goal.

Automated Planning is one of the oldest fields of AI:
1 Tracing back to the ’60s
2 Efficient systems developed over the last decades
3 Successful employment in a variety of application domains
4 Most common planning languages (i.e. PDDL) are action-based

Automated planning

Automated planning is a field of Artificial Intelligence that studies
how to design systems that, given a description of the world, can
autonomously obtain a given goal.

Automated Planning is one of the oldest fields of AI:
1 Tracing back to the ’60s
2 Efficient systems developed over the last decades
3 Successful employment in a variety of application domains
4 Most common planning languages (i.e. PDDL) are action-based

Timeline-based planning

Timeline-based planning is an approach to AI planning originally
introduced in the context of planning and scheduling of
space operations.

Muscettola (1994)
N. Muscettola (1994). “HSTS: Integrating Planning and Scheduling.” In: Intelligent
Scheduling. Ed. by Monte Zweben and Mark S. Fox. Morgan Kaufmann. Chap. 6,
pp. 169–212

Timeline-based planning

Timeline-based planning is mostly focused on temporal reasoning:
no clear separation between actions, states, and goals;
planning problems are modeled as systems made of a number
of independent, but interacting, components;
components are described by state variables;
the timelines describe their evolution over time;
the evolution of the system is governed by a set of
temporal constraints called synchronization rules.

Timeline-based planning shines when modeling systems made of
many components, rather than the behavior of a single agent.

Example

A switch (component y) reacts to an alert signal (component x).

x

y

� good
� bad
� critical

� on
� off

Example

A switch (component y) reacts to an alert signal (component x).

x

y

� good
� bad
� critical

� on
� off

1 The switch must eventually be turned on (y = �)
some time after the signal becomes bad (x = �),

2 The switch must turn on no later than ten time steps
after the signal becomes critical (x = �)

3 The switch cannot turn off (y = �) before at least ten time steps
after the signal became good again (x = �).

Example

A switch (component y) reacts to an alert signal (component x).

x

y

� good
� bad
� critical

� on
� off

We can express these constraints with synchronization rules:
if a token a where x = � starts, a token b with y = � starts as well;
if a token a where x = � starts, a token b with y = � starts as well
at most 10 steps after the start of a;
any token a where y = � starts at least 10 steps after a the start
of a token b with x = �;

Example

A switch (component y) reacts to an alert signal (component x).

x

y

� good
� bad
� critical

� on
� off

We can express these constraints with synchronization rules:

if a token a where x = � starts, a token b with y = � starts as well;

if a token a where x = � starts, a token b with y = � starts as well
at most 10 steps after the start of a;

a[x = �] −→ ∃b[y = �] . start(a) ⩽[0,10] start(b)

Example

A switch (component y) reacts to an alert signal (component x).

x

y

� good
� bad
� critical

� on
� off

Trigger-less rules for goals, invariants, etc…

⊤ −→ ∃a[x = �]b[x = �]c[x = �] .
end(a) ⩽ start(b)∧ end(b) ⩽ start(c)

Timeline-based planning problems

Timeline-based planning problems
Given a problem P = (SV, S), where SV is a set of state variables, and
S is a set of rules over SV, find a set of timelines over SV that satisfy
the rules in S.

Timelines and space exploration
Timeline-based planning has been (and still is) used in actual
mission planning and scheduling systems, both on-board and
on-ground.

HSTS (Muscettola 1994) APSI-TRF (Fratini and Donati 2011)
EUROPA (Bedrax-Weiss et al. 2005) GOAC (Fratini, Cesta, et al. 2011)

ASPEN (Chien et al. 2000)

Timelines and space exploration
Timeline-based planning has been (and still is) used in actual
mission planning and scheduling systems, both on-board and
on-ground.

Recent notable examples:

Rosetta (ASPEN)
Steve A. Chien, Gregg Rabideau, Daniel Tran, Martina Troesch, Joshua Doubleday,
Federico Nespoli, Miguel Perez Ayucar, Marc Costa Sitja, Claire Vallat, Bernhard Geiger,
Nico Altobelli, Manuel Fernandez, Fran Vallejo, Rafael Andres, and Michael Kueppers
(2015). “Activity-Based Scheduling of Science Campaigns for the Rosetta Orbiter.” In:
Proceedings of the 24th International Joint Conference on Artificial Intelligence. Ed. by
Qiang Yang and Michael Wooldridge. AAAI Press, pp. 4416–4422. url:
http://ijcai.org/Abstract/15/655

Mars Express (APSI)
Amedeo Cesta, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone Fratini,
Angelo Oddi, Nicola Policella, Erhard Rabenau, and Jonathan Schulster (2007). “Mexar2:
AI Solves Mission Planner Problems.” In: IEEE Intelligent Systems 22.4, pp. 12–19. doi:
10.1109/MIS.2007.75

http://ijcai.org/Abstract/15/655
https://doi.org/10.1109/MIS.2007.75

What was missing?

Despite the great practical success of timeline-based systems, very
little was known about the paradigm from a formal perspective.

In contrast, theory about action-based planning is well understood.

Our contribution

Our goal
To provide a comprehensive theoretical understanding of the
timeline-based approach to planning.

In our recent works, we provided several results towards this goal:
Expressiveness comparison with action-based languages
Computational complexity of the planning problems
Expressiveness of the language in logical terms

Expressiveness

We started our study from the expressiveness side.
How do these problems relate to the action-based counterparts
(e.g. PDDL)?
Which problems can be expressed with timelines vs. actions
and vice versa?

Critical syntactic elements

Timeline-based planning is a rich formalism.
Many elements non-trivially affect expressiveness and complexity:

the bound on the solution horizon, given as input;
unbounded temporal relations, such as

start(a) ⩽[0,+∞] start(b)

tokens of unbounded length, i.e. variables
x = (Vx, Tx,Dx,γx) where D(v) = (0,+∞) for some v ∈ V;
constrained syntactic structure of the synchronization rules:

a0[x0 = v0] −→ ∃a1[x1 = v1] . . .an[xn = vn] . E1 ∨ · · ·∨ Em

In particular:
fixed ∀∃ quantification scheme
only top-level disjunctions
no negation

Timelines vs. Actions

It turns out that timeline-based planning problems can fully capture
temporal PDDL with:

only tokens of bounded length;
only bounded relations:

start(a) ⩽[0,+∞] start(b)start(a) ⩽[0,+∞] start(b)

Note: these restrictions are quite artificial, but they give us the
smallest (yet) expressive enough instance of the problem.

Theorem
Given a temporal PDDL problem T, a timeline-based planning
problem P can be built in polynomial time, such that:

T admits a solution plan if P does as well
a solution plan for T can be extracted in polynomial time from a
solution plan for P, and vice versa

Timelines vs. Actions

It turns out that timeline-based planning problems can fully capture
temporal PDDL with:

only tokens of bounded length;
only bounded relations:

start(a) ⩽[0,+∞] start(b)start(a) ⩽[0,+∞] start(b)

Note: these restrictions are quite artificial, but they give us the
smallest (yet) expressive enough instance of the problem.

TIME 2016
Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, and Andrea Orlandini (2016).
“Timelines Are Expressive Enough to Capture Action-Based Temporal Planning.” In:
Proceedings of the 23rd International Symposium on Temporal Representation and
Reasoning. Ed. by Curtis E. Dyreson, Michael R. Hansen, and Luke Hunsberger. IEEE
Computer Society, pp. 100–109. doi: 10.1109/TIME.2016.18

https://doi.org/10.1109/TIME.2016.18

Complexity of timeline-based planning

Computational complexity was the most important theoretical
property that we wanted to study.

Finding a solution plan for a classical PDDL problem is
PSPACE-complete (Bylander 1994)
How about finding solution plans for a timeline-based planning
problem P = (SV, S)?

Complexity results

results complexity
unbounded horizon EXPSPACE-complete
bounded horizon NEXPTIME-complete
infinite horizon EXPSPACE-complete

ICAPS 17
Nicola Gigante, Angelo Montanari, Marta Cialdea Mayer, and Andrea Orlandini (2017).
“Complexity of Timeline-Based Planning.” In: Proceedings of the 27th International
Conference on Automated Planning and Scheduling. Ed. by Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press, pp. 116–124. url:
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758

https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758

Complexity results

results complexity
unbounded horizon EXPSPACE-complete
bounded horizon NEXPTIME-complete
infinite horizon EXPSPACE-complete

KR 2018
Dario Della Monica, Nicola Gigante, Angelo Montanari, and Pietro Sala (2018). “A Novel
Automata-Theoretic Approach to Timeline-Based Planning.” In: Proceedings of the
16th International Conference on Principles of Knowledge Representation and
Reasoning. Ed. by Michael Thielscher, Francesca Toni, and Frank Wolter. AAAI Press,
pp. 541–550. url:
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024

Complexity results

results complexity
unbounded horizon EXPSPACE-complete
bounded horizon NEXPTIME-complete
infinite horizon EXPSPACE-complete

There are also interesting undecidability results on dense-time by
Bozzelli et al. (2018).

Tools from Formal Methods

We’ll give a brief look at two results that involved tools from
logic and formal methods.

a logical characterization of timeline-based planning problems
a game-theoretic approach to timeline-based planning with
uncertainty

Timelines and Temporal Logic

Logical characterization of planning problems

Let’s go back to expressiveness issues.

We wanted to capture timeline-based planning problems with a
well-behaved logical language.

Why?
Logical characterizations are available:

for STRIPS-like planning (Cialdea Mayer et al. 2007) and
for temporal planning (Cimatti et al. 2017)

Easier to compare the expressiveness of different languages if
they are reduced to commonly known logics.
Easier to think about the synthesis of controllers if the
specification language is a well-defined logical formalism.

The result

We introduced a new logic,

Bounded TPTL with Past (TPTLb + P)

showing that:
its satisfiability problem is EXPSPACE-complete, and
it can capture a notable subset of the general formalism:

given a problem P, there is a TPTLb + P formula ϕP
such that ϕP is satisfiable iff there is a solution plan for P.

IJCAI 2017
D. Della Monica, N. Gigante, A. Montanari, G. Sciavicco, and P. Sala (2017). “Bounded
Timed Propositional Temporal Logic with Past Captures Timeline-based Planning with
Bounded Constraints.” In: Proc. of the 26th International Joint Conference on Artificial
Intelligence, pp. 1008–1014

Timed Propositional Temporal Logic

The TPTL logic was originally introduced for the verification
of real-time systems (Alur and Henzinger 1994).

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2︸ ︷︷ ︸
↑

Linear Temporal Logic
temporal operators

Formulae are interpreted over timed words (σ, τ),
i.e., each state σi is associated with a timestamp τi.

Example
p must hold infinitely often:

LTL : GFp

Timed Propositional Temporal Logic

The TPTL logic was originally introduced for the verification
of real-time systems (Alur and Henzinger 1994).

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2︸ ︷︷ ︸
↑

Linear Temporal Logic
temporal operators

Formulae are interpreted over timed words (σ, τ),
i.e., each state σi is associated with a timestamp τi.

Example
p must hold infinitely often and at least every five timesteps:

TPTL : Gx.Fy.(p∧ y ⩽ x+ 5)

Timed Propositional Temporal Logic

The TPTL logic was originally introduced for the verification
of real-time systems (Alur and Henzinger 1994).

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2︸ ︷︷ ︸
↑

Linear Temporal Logic
temporal operators

The freeze quantifier binds the timestamp of the current state to a
variable, used in the evaluation of the timed constraints.

Timed Propositional Temporal Logic

The TPTL logic was originally introduced for the verification
of real-time systems (Alur and Henzinger 1994).

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2︸ ︷︷ ︸
↑

Linear Temporal Logic
temporal operators

The satisfiability problem for TPTL is EXPSPACE-complete.

Why TPTL?

The freeze quantifier and timed constraints allow one to
compactly express constraints of this kind:

a

b

c

[0, 5] [0, 5]

[0, 7]

a[. . .] −→ ∃b[. . .]c[. . .] . start(a) ⩽[0,5] start(b)∧
start(b) ⩽[0,5] start(c)∧ start(a) ⩽[0,7] start(c)

G ta.(pa −→ F tb.(pb ∧ tb ⩽ ta + 5∧
F tc.(pc ∧ tc <= tb + 5∧ tc <= ta + 7)))

Why TPTL?

The freeze quantifier and timed constraints allow one to
compactly express constraints of this kind:

a

b

c

[0, 5] [0, 5]

[0, 7]

b[. . .] −→ ∃a[. . .]c[. . .] . start(a) ⩽[0,5] start(b)∧
start(b) ⩽[0,5] start(c)∧ start(a) ⩽[0,7] start(c)

But what if the trigger was token b?

TPTL with Past

We need past operators to encode synchronization rules,
which can talk about future and past interchangeably.

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2 | Yϕ1 |ϕ1 S ϕ2︸ ︷︷ ︸
↑

future (X, U) and past (Y, S)
temporal operators

Unfortunately, however, past operators make the satisfiability problem
become non elementary.

TPTL with Past

We need past operators to encode synchronization rules,
which can talk about future and past interchangeably.

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xϕ1 |ϕ1 U ϕ2 | Yϕ1 |ϕ1 S ϕ2︸ ︷︷ ︸
↑

future (X, U) and past (Y, S)
temporal operators

Why? Together with the freeze quantifier, we can simulate
first-order existential quantification.

∃xϕ(x) ≡ y. F x.P z.(y = z∧ ϕ(x))

Bounded TPTL with Past

To recover an acceptable complexity while being still able to use
past operators, we restricted the temporal operators with a bound w.

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xw ϕ1 |ϕ1 Uw ϕ2 | Yw ϕ1 |ϕ1 Sw ϕ2︸ ︷︷ ︸
↑

MTL-like temporal operators
w∈N∪{∞}

The bound limits the timestamp of the states,
e.g., X5ϕ holds at state σi iff ϕ holds at σi+1 and τi+1 − τi ⩽ 5.

Bounded TPTL with Past

To recover an acceptable complexity while being still able to use
past operators, we restricted the temporal operators with a bound w.

ϕ := p | ¬ϕ1 |ϕ1 ∨ ϕ2 |

freeze quantifier
↓︷︸︸︷

x.ϕ1 |

timed constraints
c∈Z
↓︷ ︸︸ ︷

x ⩽ y+ c | x ⩽ c

| Xw ϕ1 |ϕ1 Uw ϕ2 | Yw ϕ1 |ϕ1 Sw ϕ2︸ ︷︷ ︸
↑

MTL-like temporal operators
w∈N∪{∞}

The bound can be omitted (i.e., w = ∞) only if the underlying formulae are
closed, i.e., they do not refer to variables quantified outside.

TPTLb + P Example

Now the previous example can be encoded in both cases:

a

b

c

[0, 5] [0, 5]

[0, 7]

a[. . .] −→ ∃b[. . .]c[. . .] . start(a) ⩽[0,5] start(b)∧
start(b) ⩽[0,5] start(c)∧ start(a) ⩽[0,7] start(c)

G ta.(pa −→ F10 P10 tb.(pb ∧ F10 P10 tc.(pc ∧
tb ⩽ ta + 5∧ tc ⩽ tb + 5∧ tc ⩽ ta + 7)))

TPTLb + P Example

Now the previous example can be encoded in both cases:

a

b

c

[0, 5] [0, 5]

[0, 7]

b[. . .] −→ ∃a[. . .]c[. . .] . start(a) ⩽[0,5] start(b)∧
start(b) ⩽[0,5] start(c)∧ start(a) ⩽[0,7] start(c)

G tb.(pb −→ F10 P10 ta.(pa ∧ F10 P10 tc.(pc ∧
tb ⩽ ta + 5∧ tc ⩽ tb + 5∧ tc ⩽ ta + 7)))

The encoding

Thus, the encoding generally works this way. Given a rule:

a[x = v] −→ ∃b[y = v ′]c[z = v ′′] . C

We decompose the corresponding rule graph into its bounded
components
If the unbounded edges between the components form a tree,
we can encode the rule in TPTLb + P
Each component is found by a combination of bounded
operators
The different components are related by means of unbounded
operators

Complexity of TPTLb + P

The complexity of TPTLb + P is proved by providing two tableau methods.
An adaptation of the graph-shaped tableau for TPTL by
Alur and Henzinger (1994)
An adaptation of the one-pass tree-shaped tableau for LTL by
Reynolds (2016)

LPAR-21
Nicola Gigante, Angelo Montanari, and Mark Reynolds (2017). “A One-Pass Tree-Shaped
Tableau for LTL+Past.” In: Proceedings of the 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning. Ed. by Thomas Eiter and
David Sands. Vol. 46. EPiC Series in Computing. EasyChair, pp. 456–473. url:
http://www.easychair.org/publications/paper/340363

GandALF 2018
Luca Geatti, Nicola Gigante, Angelo Montanari, and Mark Reynolds (2018). “One-Pass
and Tree-Shaped Tableau Systems for TPTL and TPTLb+Past.” In: Proceedings of the
9th International Symposium on Games, Automata, Logics, and Formal Verification.
Ed. by Andrea Orlandini and Martin Zimmermann. Vol. 277. EPTCS, pp. 176–190. doi:
10.4204/EPTCS.277.13

http://www.easychair.org/publications/paper/340363
https://doi.org/10.4204/EPTCS.277.13

Timeline-based planning
with uncertainty

Timeline-based planning with uncertainty

Real-world scenarios need to account for the inherent uncertainty
and nondeterminism coming from the interaction with the
environment.

Timeline-based systems handle temporal uncertainty by means of
flexible plans:

envelopes of plans that differ in the precise timing of events
dynamic controllability checking ensures execution
re-planning occurs when the planner’s predictions fail

Game-theoretic approach

We propose to approach timeline-based planning with uncertainty in
game-theoretic terms.

We define the timeline-based planning game as a
two-player game;
the controller tries to satisfy the given set of
synchronization rules;
the environment plays arbitrarily.

Timeline-based games

A timeline-based game is a tuple G = (SVC, SVE, S,D).
Two players, Charlie (the controller) and
Eve (the environment);
players play by starting and ending tokens, building a plan;
Charlie can start tokens for variables in SVC,
Eve those for variable in SVE;
Charlie decides when to stop controllable tokens, while
Eve decides when to stop uncontrollable ones;
Charlie tries to satisfy the set S of system rules,
whatever the behavior of Eve;
both players are assumed to play as to satisfy the set D of
domain rules.

Strategies

We want to guarantee the existence of a winning strategy for Charlie.
a strategy is a function σ that given a partial plan gives the next
move of the player (i.e. which token to start/end, if any).
a strategy σ is admissible if any play played according to σ will
eventually satisfy D.
a strategy σC for Charlie is winning if, for any admissible strategy
σE for Eve, any play played according to σC and σE is going to
satisfy S ∪ D.

Winning strategies

Charlie has a winning strategy if he can play to satisfy the rules no
matter what Eve does, supposing rules in D are satisfied.

a general form of nondeterminism is handled in this way, not
only temporal uncertainty;
no need for re-planning, as the winning strategy can already
handle any behavior of Eve;
greater modeling flexibility: domain rules allow to describe
complex interactions between the agent and the environment;
provably subsumes the approach based on dynamically
controllable flexible plans;

Finding a winning strategy

How hard is to find a winning strategy?
2EXPTIME-complete

Finding a winning strategy

The decision procedure is based on ATL* model-checking over
concurrent game structures (Alur, Henzinger, and Kupferman 2002):

concurrent game structures (CGS) are a general formalism to
represent multi-agent concurrent systems.
Alternating-time Temporal Logic (ATL) and its generalization
ATL*, are interpreted over CGSs;
ATL and ATL* are similar to CTL and CTL*, but branching
modalities quantify over paths played according to specific
strategies of a specific set of players;

Finding a winning strategy

A doubly exponential size (turn-based synchronous) CGS can be
built to represent the game;

nodes are partial plans, edges labeled by players moves;
particular attention to guarantee a finite state space;
states where D and S are satisfied are labelled, respectively, by
proposition letters d and w;
The winning condition is then encoded in ATL* as follows:

ϕ ≡ ⟨⟨1⟩⟩
(
Fd → Fw

)
Model-checking a fixed-size ATL* formula over a CGS can be
done in polynomial time, hence the 2EXPTIME complexity.
Hardness proved with a reduction from a particular
domino-tiling game.

Making the state space finite

Abstractly, the state space of the game is infinite:
each synchronization rule can in principle be affected by
anything happening arbitrarily far in the past or in the future;
but we do not really need to keep track of all the history;

bounded contraints can be checked locally;
for unbounded constraints we can just keep in mind what
happened in the past or not, instead of when;

Making the state space finite

Abstractly, the state space of the game is infinite:
each synchronization rule can in principle be affected by
anything happening arbitrarily far in the past or in the future;
but we do not really need to keep track of all the history;
a suitable compact representation [π] of a partial plan π can be
built such that:

1 we can decide if π satisfies the rules looking only at [π];
2 given a round ρ of the game we can build [ρ(π)] from [π];

then, states of the game are all the possible [π];
a single state encapsulates all important data about the history of
the game: the game is positional;

size of [π] is exponential, hence the state space is doubly
exponential.

Conclusions

Timeline-based planning is a rich formalism, with interesting formal
properties.

we provided the first thorough theoretical investigation of
timeline-based planning problems and languages
expressiveness and computational complexity
logical characterization
game-theoretic approach to timeline-based planning with
uncertainty

Future work

There are many open questions and future paths:
logical characterization for the full problem
synthesis of controllers for timeline-based games
comparison of timeline-based games with FOND planning and
similar
extension of timeline-based games to more complex scenarios
(multi- player, distributed, probabilistic, …)

Thank you
Questions?

Bibliography

Alur, R. and T. A. Henzinger (1994). “A Really Temporal Logic.” In: Journal of the ACM 41.1, pp. 181–204.
doi: 10.1145/174644.174651. url: http://doi.acm.org/10.1145/174644.174651.

Alur, R., T. A. Henzinger, and O. Kupferman (2002). “Alternating-time Temporal Logic.” In: Journal of
the ACM 49.5, pp. 672–713.

Bedrax-Weiss, Tania, Conor McGann, Andrew Bachmann, Will Edgington, and Michael Iatauro (2005).
EUROPA2: User and contributor guide. Tech. rep. NASA Ames Research Center.

Bozzelli, Laura, Alberto Molinari, Angelo Montanari, and Adriano Peron (2018). “Decidability and
Complexity of Timeline-Based Planning over Dense Temporal Domains.” In: Proceedings of the
16th International Conference on Principles of Knowledge Representation and Reasoning. Ed. by
Michael Thielscher, Francesca Toni, and Frank Wolter. AAAI Press, pp. 627–628. url:
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17995.

Bylander, T. (1994). “The Computational Complexity of Propositional STRIPS Planning.” In: Artificial
Intelligence 69.1-2, pp. 165–204.

Cesta, Amedeo, Gabriella Cortellessa, Michel Denis, Alessandro Donati, Simone Fratini, Angelo Oddi,
Nicola Policella, Erhard Rabenau, and Jonathan Schulster (2007). “Mexar2: AI Solves Mission
Planner Problems.” In: IEEE Intelligent Systems 22.4, pp. 12–19. doi: 10.1109/MIS.2007.75.

Chien, Steve A., Gregg Rabideau, Daniel Tran, Martina Troesch, Joshua Doubleday, Federico Nespoli,
Miguel Perez Ayucar, Marc Costa Sitja, Claire Vallat, Bernhard Geiger, Nico Altobelli,
Manuel Fernandez, Fran Vallejo, Rafael Andres, and Michael Kueppers (2015). “Activity-Based
Scheduling of Science Campaigns for the Rosetta Orbiter.” In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence. Ed. by Qiang Yang and
Michael Wooldridge. AAAI Press, pp. 4416–4422. url: http://ijcai.org/Abstract/15/655.

Cialdea Mayer, Marta, Carla Limongelli, Andrea Orlandini, and Valentina Poggioni (2007). “Linear
temporal logic as an executable semantics for planning languages.” In: Journal of Logic,
Language and Information 16.1, pp. 63–89. doi: 10.1007/s10849-006-9022-1.

https://doi.org/10.1145/174644.174651
http://doi.acm.org/10.1145/174644.174651
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17995
https://doi.org/10.1109/MIS.2007.75
http://ijcai.org/Abstract/15/655
https://doi.org/10.1007/s10849-006-9022-1

Bibliography

Cimatti, A., A. Micheli, and M. Roveri (2017). “Validating Domains and Plans for Temporal Planning
via Encoding into Infinite-State Linear Temporal Logic.” In: Proc. of the 31st AAAI Conference on
Artificial Intelligence, pp. 3547–3554.

Della Monica, D., N. Gigante, A. Montanari, G. Sciavicco, and P. Sala (2017). “Bounded Timed
Propositional Temporal Logic with Past Captures Timeline-based Planning with Bounded
Constraints.” In: Proc. of the 26th International Joint Conference on Artificial Intelligence,
pp. 1008–1014.

Della Monica, Dario, Nicola Gigante, Angelo Montanari, and Pietro Sala (2018). “A Novel
Automata-Theoretic Approach to Timeline-Based Planning.” In: Proceedings of the 16th
International Conference on Principles of Knowledge Representation and Reasoning. Ed. by
Michael Thielscher, Francesca Toni, and Frank Wolter. AAAI Press, pp. 541–550. url:
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024.

Fratini, Simone, Amedeo Cesta, Andrea Orlandini, Riccardo Rasconi, and Riccardo De Benedictis
(2011). “APSI-based Deliberation in Goal Oriented Autonomous Controllers.” In: ASTRA 2011.
Vol. 11. ESA.

Fratini, Simone and L. Donati (2011). APSI Timeline Representation Framework v. 3.0. Tech. rep.
European Space Agency - ESOC.

Geatti, Luca, Nicola Gigante, Angelo Montanari, and Mark Reynolds (2018). “One-Pass and
Tree-Shaped Tableau Systems for TPTL and TPTLb+Past.” In: Proceedings of the 9th International
Symposium on Games, Automata, Logics, and Formal Verification. Ed. by Andrea Orlandini and
Martin Zimmermann. Vol. 277. EPTCS, pp. 176–190. doi: 10.4204/EPTCS.277.13.

Gigante, Nicola, Angelo Montanari, Marta Cialdea Mayer, and Andrea Orlandini (2016). “Timelines
Are Expressive Enough to Capture Action-Based Temporal Planning.” In: Proceedings of the 23rd
International Symposium on Temporal Representation and Reasoning. Ed. by Curtis E. Dyreson,
Michael R. Hansen, and Luke Hunsberger. IEEE Computer Society, pp. 100–109. doi:
10.1109/TIME.2016.18.

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18024
https://doi.org/10.4204/EPTCS.277.13
https://doi.org/10.1109/TIME.2016.18

Bibliography

Gigante, Nicola, Angelo Montanari, Marta Cialdea Mayer, and Andrea Orlandini (2017). “Complexity
of Timeline-Based Planning.” In: Proceedings of the 27th International Conference on
Automated Planning and Scheduling. Ed. by Laura Barbulescu, Jeremy Frank, Mausam, and
Stephen F. Smith. AAAI Press, pp. 116–124. url:
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758.

Gigante, Nicola, Angelo Montanari, and Mark Reynolds (2017). “A One-Pass Tree-Shaped Tableau for
LTL+Past.” In: Proceedings of the 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning. Ed. by Thomas Eiter and David Sands. Vol. 46. EPiC Series
in Computing. EasyChair, pp. 456–473. url:
http://www.easychair.org/publications/paper/340363.

Muscettola, N. (1994). “HSTS: Integrating Planning and Scheduling.” In: Intelligent Scheduling. Ed. by
Monte Zweben and Mark S. Fox. Morgan Kaufmann. Chap. 6, pp. 169–212.

Reynolds, Mark (2016). “A New Rule for LTL Tableaux.” In: Proceedings of the 7th International
Symposium on Games, Automata, Logics and Formal Verification. Vol. 226. EPTCS, pp. 287–301.
doi: 10.4204/EPTCS.226.20.

https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758
http://www.easychair.org/publications/paper/340363
https://doi.org/10.4204/EPTCS.226.20

	Timelines and Temporal Logic
	Timeline-based planningwith uncertainty

