Knowledge and Distributed Coordination

Yoram Moses
Technion

FMAI 2019

Background

- Knowledge affects action in multi-agent systems
- We apply epistemic reasoning to the design and analysis of distributed protocols
- Basic tool modelling using interpreted systems [HM'90, FHMV'95]
- The protocol (or strategies) agents use play a major role
- Today a discussion on the value of silence

Silence

Guy Goren & Yoram Moses

PODC 2018 best student paper presentation

Communication is Expensive

The number of messages sent over the network is a hindering factor for large scale systems

Clocks and Bounded Communication

i receives no message from j by time $t + \Delta$

 \implies i receives a "null message" from j at time t.

[Lamport '85]

△ – upper bound on message transmission

The "Sound" of Silence

i receives no message from j by time $t + \Delta$ $\implies i$ receives a "null message" from j at time t.

A null message provides knowledge But only when an alternative exists

Silence can serve to transfer costs among scenarios

The "Sound" of Silence

Assume a bound of $\Delta = 1$ time unit

• Suppose j always sends i a message at time m iff ϕ is false.

• If i hears nothing from j at time m+1, then i knows φ . $(K_i\varphi)$

The Effect of **Possible** Failures

If *i* hears nothing from *j* at time $m + 1 \dots \implies K_i \varphi$??

j may be silent because it is faulty

The Effect of **Possible** Failures

From j's silence we learn: $K_i(\varphi \cap K_j)$

Can we silently transmit a fact φ ?

Silent Choirs

Assume a bound of f on the number of possible failures

(f + 1 cannot all fail)

Silent Broadcast

The Silent Choir Theorem

Theorem: If $K_i(v_j = 1)$ holds at time m then

- a) A message chain from process *j* to *i* has been completed, or
- b) A silent choir of processes who know $v_j = 1$ is constructed by time m-1.

Silent Choirs in the Literature

Byzantine agreement: Amdur, Weber, Hadzilacos [AWH'92]
 Hadzilacos & Halpern [HH'93]

Atomic commitment: Guerraoui & Wang [GW'17]

An Application: Atomic Commitment (AC)

Each process starts with a vote in favor of commit (1) or abort (0), and every process that does not crash must decide. Moreover,

Agreement - All decisions must be identical;

If any of the votes is 0 then decisions must be to 0;

• If all of the votes are 1 and nobody crashes, then decisions must be 1.

Optimizing for the Common Case

Nice runs: all votes are 1 and no failure occurs

We optimize AC for nice runs

Silence in Message-Optimal AC

Theorem [GW '17]: (n + f - 1) messages must be sent in nice runs of AC

[Guerraoui and Wang '17]

Theorem: Any message-optimal **AC** protocol must use silent choirs

- Every committing process must know the initial values of all others
- All-to-all message chains require at least 2n-2 messages ($\geq n+f-1$)
- By the silent choir theorem, some knowledge is attained through silent choirs

Message-Optimal AC [GW '17]

STEALTH: Time-Optimal Message-Optimal AC

Summary

- Knowledge can be transmitted silently in the presence of failures
- Silent choirs can be used to obtain optimally efficient protocols

More generally:

- There are many models of distributed computing
- Studying problems in terms of knowledge applies to many models
- We study the interaction between knowledge, time, communication and strategic behavior

Thanks!

