Reasoning about Natural Strategic Ability

Vadim Malvone

Université d'Evry

FMAI 2019

Joint work with Wojtek Jamroga and Aniello Murano

PREFACE (1)

System Correctness

- A very important problem in critical systems:
 - Safety: errors can cost lives (e.g. Therac-25).
 - Mission: errors can cost in terms of objectives (e.g. Arianne 5).
 - Business: failure can cost in loss of money (e.g. Denver airport).
- In such systems failure is not an option.

Preface (1)

System Correctness

- A very important problem in critical systems:
 - Safety: errors can cost lives (e.g. Therac-25).
 - Mission: errors can cost in terms of objectives (e.g. Arianne 5).
 - Business: failure can cost in loss of money (e.g. Denver airport).
- In such systems failure is not an option.

Model checking: $M \models \varphi$

There are three fundamental parts:

- *M* : modeling a system;
- φ : specifying a property;
- \models : verifying that the model M satisfies the property φ .

PREFACE (2)

Multi-agent systems

- There are many agents (players) interacting among them.
- Each agent has a set of strategies.
- A *strategy* is a conditional plan that at each step of the game prescribes an action.
- The composition of strategies, one for each player, induces an unique computation.

Preface (3)

Model

A concurrent game structure is a tuple $M = \langle Ag, AP, St, s_I, Ac, \pi, tr \rangle$:

- *Ag* is a set of agents (or players);
- AP is a set of atomic propositions;
- *St* is a set of states;
- $s_I \in S$ is a designated initial state;
- *Ac* is a set of actions;
- π is a labelling function;
- *tr* is a transition function.

Preface (3)

Model

A concurrent game structure is a tuple $M = \langle Ag, AP, St, s_I, Ac, \pi, tr \rangle$:

- *Ag* is a set of agents (or players);
- AP is a set of atomic propositions;
- *St* is a set of states;
- $s_I \in S$ is a designated initial state;
- *Ac* is a set of actions;
- π is a labelling function;
- *tr* is a transition function.

Specification

Logics for the strategic reasoning such as ATL and Strategic Logic.

PREFACE (4)

Strategies

- Depending on the memory, we distinguish between:
 - *memoryless strategies* $\Rightarrow \sigma : St \rightarrow Ac$;
 - bounded strategies $\Rightarrow \sigma : St^{\leq g} \to Ac$;
 - memoryfull strategies $\Rightarrow \sigma : St^+ \to Ac$.
- In the memoryless case, the players take a decision by considering the actual state of the game.
- In the bounded case, the players take a decision by considering a partial history of the game.
- In the memoryfull case, the players take a decision by considering the full history of the game.

BETWEEN MATHEMATICS AND REAL LIFE

- Strategies are *mathematical creatures* ⇒ *functions* from system states to actions.
- This makes sense for robots or programs, but not for humans!
- Strategies for humans should be simple in order for the person to *understand* it, *memorize* it, and *execute* it.

NATURAL STRATEGIES [JMM17]

A natural memoryless strategy s_a for agent a is a list of condition-action rules

(cond, act)

such that:

- cond is a boolean combination of propositions,
- *act* is an available action in every state $q \models cond$,
- the last pair on the list is $(\top, idle)$.

[JMM17] W. Jamroga, V. Malvone, and A. Murano.

Reasoning about natural strategic ability. In AAMAS, pages 714–722, 2017.

NATURAL STRATEGIES: EXAMPLE

Consider the following strategy for buying a train ticket:

- (¬ticket ∧ ¬selected, select);
- **2** (\neg ticket \land selected, pay);
- 3 $(\top, idle)$.

NATURAL STRATEGIES: COMPLEXITY

The complexity of strategy s_a (*compl*(s_a)) can be defined by:

- Number of used propositions $\Rightarrow |dom(s_a)|$;
- Largest condition $\Rightarrow \max\{|\phi| \mid (\phi, \alpha) \in s_a\};$
- Total size of the representation $\Rightarrow \sum_{(\phi,\alpha) \in s_a} |\phi|$.

REASONING ABOUT NATURAL ABILITY: NATATL

Syntax

A formula in NatATL is defined as:

$$\varphi ::= \mathbf{p} | \neg \varphi | \varphi \wedge \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} X \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} \varphi U \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} \varphi W \varphi.$$

where $p \in AP$, $k \in \mathbb{N}$, and A is a set of agents.

REASONING ABOUT NATURAL ABILITY: NATATL

Syntax

A formula in NatATL is defined as:

$$\varphi ::= \mathbf{p} | \neg \varphi | \varphi \wedge \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} X \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} \varphi U \varphi | \langle\!\langle A \rangle\!\rangle^{\leq k} \varphi W \varphi.$$

where $p \in AP$, $k \in \mathbb{N}$, and A is a set of agents.

Semantics

 $M, q \models \langle \langle A \rangle \rangle^{\leq k} \gamma$ iff there is a natural strategy s_A such that $compl(s_A) \leq k$, and for each path $\lambda \in out(q, s_A)$ we have $M, \lambda \models \gamma$.

WHAT'S THE USE?

Reasoning about usability, example: ticket vending machine

- It is not enough that a customer has a strategy to buy the ticket $(\langle c \rangle)$ Fbuy).
- If the strategy is too complex, people won't use it anyway.
- Instead, we should require $\langle\!\langle c \rangle\!\rangle^{\leq k}$ Fbuy for a reasonably low k.

Vadim Malvone Université d'Evry

WHAT'S THE USE?

Reasoning about usability, example: ticket vending machine

- It is not enough that a customer has a strategy to buy the ticket $(\langle c \rangle F \text{buy})$.
- If the strategy is too complex, people won't use it anyway.
- Instead, we should require $\langle\langle c \rangle\rangle^{\leq k}$ Fbuy for a reasonably low k.

Gaming

- The designer can define the *game level* by the *complexity of the smallest winning strategy* for the player.
- Formally, the level k iff $\langle \langle a \rangle \rangle \leq k F \text{win} \wedge \neg \langle \langle a \rangle \rangle \leq k-1 F \text{win}$.

NATURAL STRATEGIES WITH RECALL

- Similar to memoryless strategies, but the conditions are given by *regular expressions* over Boolean formulas.
- Example: a strategy for a Wild West explorer:

```
1 (safe*, digGold);
2 (safe* \cdot (¬safe \wedge haveGun), shoot);
3 (safe* \cdot (¬safe \wedge ¬haveGun), run);
4 (\top* \cdot (¬safe) \cdot (¬safe), hide);
5 (\top*, idle).
```

Vadim Malvone Université d'Evry

RELATIONSHIPS BETWEEN TYPES OF NATURAL STRATEGIES

Theorem

The following results hold in NatATL:

1 For all M, q, and all formulas $\varphi = \langle \! \langle A \rangle \! \rangle^{\leq k} \gamma$, it holds that:

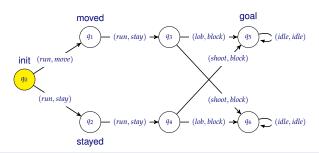
$$M, q \models_r \varphi \text{ implies } M, q \models_R \varphi$$

2 There exist M, q, and a formula $\varphi = \langle \langle A \rangle \rangle^{\leq k} \gamma$, such that:

$$M, q \models_R \varphi$$
 and not $M, q \models_r \varphi$

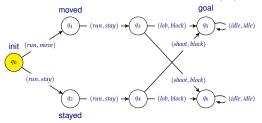
*r = strategies without recall (memoryless) and R = strategies with recall.

EXAMPLE: SOCCER SCENARIO (1)



- The attacker is running towards the goal with the ball.
- The goalkeeper can either stay close to the goal line or move towards the attacker.
- Then, after one more step, the attacker can either shoot straight or lob the ball over the goalkeeper.

EXAMPLE: SOCCER SCENARIO (2)

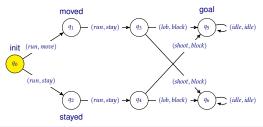


A strategy with recall for the attacker to score the goal can be:

- **1** (init, run);
- **2** (init \cdot (moved \vee stayed), run);
- $(\top^* \cdot \mathsf{moved} \cdot \top, \mathit{lob});$
- **4** $(\top^* \cdot \text{stayed} \cdot \top, shoot);$
- **6** $(\top^*, idle)$.

The complexity of the strategy is 22.

EXAMPLE: SOCCER SCENARIO (3)



- Then, $\varphi = \langle \langle 1 \rangle \rangle^{\leq 22}$ Fgoal is true for strategies with recall.
- On the other hand, φ is false for memoryless strategies.
- In fact, the formula is false for any bound k.
- To see that, recall that conditions in natural memoryless strategies can only refer to boolean properties of the current state.
- Then, it is impossible to define two different behaviors in states q_3 and q_4 within a natural memoryless strategy.

VERIFICATION OF NATURAL STRATEGIES

Model checking NatATL_r

- **P** for fixed or bounded *k*;
- $\mathbf{P}^{NP} = \Delta_2^P$ -complete when k is a parameter of the problem.

VERIFICATION OF NATURAL STRATEGIES

Model checking NatATL_r

- **P** for fixed or bounded *k*;
- $\mathbf{P}^{NP} = \Delta_2^P$ -complete when k is a parameter of the problem.

Model checking NatATL_R

- $\Delta_2^{\mathbf{P}}$ for fixed or bounded k;
- *PSPACE* when *k* is a parameter of the problem.

CONCURRENT GAME WITH OBJECTIVES [JMM19]

A *concurrent game* is a tuple $G = (M, q_0, \Phi)$, where:

- *M* is a concurrent game structure,
- $q_0 \in St$ is a state in M,
- $\Phi: Ag \to \mathcal{L}_{LTL}$ assigns each agent with an *LTL* formula.

[JMM19] W. Jamroga, V. Malvone, and A. Murano.

Natural strategic ability.

Artificial Intelligence (AII), (to appear).

Artificial Intelligence (AIJ), (to appear,

DECISION PROBLEMS: SURELY WINNING (1)

Definition

Given a concurrent game G, a subset of agents $A \subseteq Ag$, a natural number $k \in \mathbb{N}$, and a natural collective strategy s_A of A, we say that:

 s_A is surely winning in $G \Leftrightarrow \forall \lambda \in out(q_0, s_A)$ and $a \in A$: $\lambda \models \Phi_a$

Moreover, coalition A surely wins in G under bound k iff it has a sure winning strategy of size at most k.

DECISION PROBLEMS: SURELY WINNING (2)

```
Algorithm SureWin(G, A, k):
s_A = GuessStrat(G, A, k);
Prune M according to s_A, obtaining model M'; return mCheck_{CTL^*}(M', q_0, \mathbf{A} \bigwedge_{i \in A} \Phi_i);
```

DECISION PROBLEMS: SURELY WINNING (2)

Algorithm SureWin(G, A, k):

```
s_A = GuessStrat(G, A, k);
Prune M according to s_A, obtaining model M';
return mCheck_{CTL^*}(M', q_0, \mathbf{A} \bigwedge_{i \in A} \Phi_i);
```

Hint for lower bound

We show a reduction from model checking LTL.

DECISION PROBLEMS: SURELY WINNING (2)

Algorithm SureWin(G, A, k):

```
s_A = GuessStrat(G, A, k);
Prune M according to s_A, obtaining model M';
return mCheck_{CTL^*}(M', q_0, \mathbf{A} \bigwedge_{i \in A} \Phi_i);
```

Hint for lower bound

We show a reduction from model checking LTL.

Complexity

SureWin is PSPACE-complete.

DECISION PROBLEMS: NASH EQUILIBRIUM (1)

Definition

Given a concurrent game G and a profile $s_{Ag} = (s_1, \dots, s_i, \dots, s_{|Ag|})$ of natural strategies under bound $k \in \mathbb{N}$:

 s_{Ag} is a Nash Equilibrium in $G \Leftrightarrow \forall i \in Ag$, s_i is a best response.

DECISION PROBLEMS: NASH EQUILIBRIUM (1)

Definition

Given a concurrent game G and a profile $s_{Ag} = (s_1, \dots, s_i, \dots, s_{|Ag|})$ of natural strategies under bound $k \in \mathbb{N}$:

 s_{Ag} is a Nash Equilibrium in $G \Leftrightarrow \forall i \in Ag$, s_i is a best response.

Best response

Given G, a player i, and a profile $s_{Ag} = (s_1, \dots, s_i, \dots, s_{|Ag|})$ under bound $k \in \mathbb{N}$, s_i is a *best response* in s_{Ag} if and only if:

$$path(s_{Ag}) \not\models \Phi_i \Rightarrow path((s_1, \dots, s_{i-1}, s_i', s_{i+1}, \dots, s_{|Ag|})) \not\models \Phi_i$$

for all $s_i' \in \Sigma_i^r$ such that $compl(s_i') \leq k$.

DECISION PROBLEMS: NASH EQUILIBRIUM (2)

```
Algorithm IsNotNash(G, s_{Ag}, k):

for every i \in Ag do

if path(s_{Ag}) \not\models \Phi_i then

Guess s_i' with compl(s_i') \leq k;

if path((s_1, \dots, s_{i-1}, s_i', s_{i+1}, \dots, s_{|Ag|})) \models \Phi_i then return (true); return (false);
```

Vadim Malvone Université d'Evry

DECISION PROBLEMS: NASH EQUILIBRIUM (2)

```
Algorithm IsNotNash(G, s_{Ag}, k):

for every i \in Ag do

if path(s_{Ag}) \not\models \Phi_i then

Guess s_i' with compl(s_i') \leq k;

if path((s_1, \dots, s_{i-1}, s_i', s_{i+1}, \dots, s_{|Ag|})) \models \Phi_i then return (true);

return (false);
```

Hint for lower bound

We use a reduction from SAT.

DECISION PROBLEMS: NASH EQUILIBRIUM (2)

```
Algorithm IsNotNash(G, s_{Ag}, k):

for every i \in Ag do

if path(s_{Ag}) \not\models \Phi_i then

Guess s_i' with compl(s_i') \leq k;

if path((s_1, \dots, s_{i-1}, s_i', s_{i+1}, \dots, s_{|Ag|})) \models \Phi_i then return (true);

return (false);
```

Hint for lower bound

We use a reduction from SAT.

Complexity

IsNotNash is **NP**-complete \Rightarrow *IsNash* is co**NP**-complete.

CONCLUSIONS

- We proposed the concept of natural strategies, based on an intuitive representation of conditional plans.
- We proposed how to measure the complexity of such strategies.
- We defined NatATL, a variant of alternating-time temporal logic to reason about natural strategic ability.
- We studied the complexity of NatATL model checking.
- We considered two main cases here: memoryless strategies and strategies with recall of the past.
- We showed that the relationship between natural strategies with recall and memoryless is more intricate than normally in ATL.
- We investigated some decision problems for natural abilities of agents in concurrent games with LTL winning conditions.