
Val Goranko
1 / 22

Generalising the Dining Philosophers problem:
Competitive dynamic resource allocation in

multi-agent systems

Valentin Goranko
Department of Philosophy, Stockholm University

Joint work with Riccardo De Masellis, Stefan Gruner, and Nils Timm

FMAI 2019
Rennes, May 2, 2019

Val Goranko
2 / 22

Dining philosophers problem

Generalising:

• Philosophers are agents

• Forks are resources

Val Goranko
3 / 22

Generic dining philosophers games

A GDP game is a tuple

G = (Agt,Res, d ,Acc ,Act,Rules) where:

• Agt is a set of agents;

• Res is a set of resource units;

• d : Agt → IN+ is a demand function;

• Acc ⊆ Agt × Res is a
resource accessibility relation.

• Act is a set of possible actions;

• Rules is a set of transition rules;

Example

a1

a2

a3

r1
r2
r3
r4
r5
r6

d(ai) = 2
for i ∈ {1, 2, 3}

The intended goal for each agent ai is to acquire d(ai) resource units
(needed to carry out its task).

The actions and rules will be specified later.

Val Goranko
4 / 22

Objective of this work

To develop a formal framework for specifying and verifying relevant
individual and collective strategic abilities of agents in GDP games,
such as ”no deadlocks”, or ”no starvation”, or e.g.:

“a1 and a2 can act collaboratively so as to guarantee that
a2 reaches its goal (collects d(a2) resource units) infinitely often?”

Val Goranko
5 / 22

Actions

Actions:

• reqa
r agent a requests resource r ;

• relar agent a releases resource r ;

• relaall agent a releases all resources it holds;

• idlea agent a does nothing.

An action profile is a mapping ap : Agt → Act.

Val Goranko
6 / 22

Configurations

A possible state of the game
is called a configuration

c : Res → Agt+

Example

Given G as before the figure

a1

a2

a3

r1
r2(a1)
r3
r4(a2)

r5(a2)
r6

graphically represents configuration
where r2 is held by a1, r4 is held by
a2 and r5 by a2.

Remark
The number of configurations in a GDP game is, in general,
exponential in the number of resources.

Val Goranko
7 / 22

Transition rules and system dynamics
Given a configuration c and an action profile ap, (c , ap, c ′) is a step if:

1. ap can be executed in c , meaning:
• agents can request only resources available in c ;
• if an agents a holds number d(a) resources, it must perform relaall ;

2. and the resulting configuration c ′ is such that:
• the released resources become available in c ′;
• if a resource is requested by one agent only, than that agent acquires

it, otherwise no agent gets it.

Example

a1

a2

a3

r1
r2(a1)
r3
r4(a2)

r5(a2)
r6

ap(a1) = reqa1
r3

ap(a2) = rela2all

ap(a3) = reqa3
r6

⇒

a1

a2

a3

r1
r2(a1)

r3(a1)
r4
r5
r6(a3)

Val Goranko
8 / 22

Configuration graph

• Transition function of G is the set ρ(G) of all game steps;

• G = (Conf , ρ(G)) is the configuration graph of G

• a play is an infinite sequence of configurations in G.

Val Goranko
9 / 22

Competition and cooperation in GDP games

A GDP game is a both competitive and cooperative scenario,
where agents may, but need not to, cooperate in pursuing their goal.

• On the one hand, each agent is interested in reaching their
individual goal.

• However, that may become impossible if each agents acts selfishly
(follows a greedy strategy), as that may lead to blocking resources.

• Thus, it is sometimes preferable for agents to cooperate by releasing
resources before having reached their individual goals.

• Furthermore, some of them may wish to join forces and act in a
coordinated way, as a coalition.
That, inter alia, makes the analysis of GDP games quite non-trivial.

• Hence, the need for formal specification and algorithmic verification.

Val Goranko
10 / 22

Logic for verifying GDP games

Our language LGDP is a slight variation of ATL:

ϕ ::= gai | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕ1 Uϕ2

where A ⊆ Agt
and gai means that agent ai currently holds at least d(ai) resource units
(and has, therefore, reached its goal).

Val Goranko
11 / 22

Strategies

For our language it suffices to consider positional strategies.

• a (positional) strategy for an agent a

σa : Conf → Act

which prescribes executable actions to the agent.

• a joint (positional) strategy for A = {a1, . . . , ar} ⊆ Agt:

σA(σai , . . . , σar)

is a tuple of individual strategies σai , for each ai ∈ A.

Function out(c , σA) returns the set of all plays in Conf ω that can occur
when agents in A follow the joint strategy σA from configuration c on.

Val Goranko
12 / 22

Formal semantics

LGDP is interpreted in GDP games as follows:

• G, c |= gai iff the number of resources ai holds is ≥ d(ai);

• ∧, ∨ and ¬ are treated as usual;

• G, c |= 〈〈A〉〉Xϕ iff there is a joint strategy σA, such that
G, π[1] |= ϕ for every path π ∈ out(c , σA);

• G, c |= 〈〈A〉〉Gϕ iff there is a joint strategy σA, such that
G, π[i] |= ϕ for every path π ∈ out(c , σA) and for every i ∈ IN;

• G, c |= 〈〈A〉〉ϕ1 Uϕ2 iff there is a joint strategy σA, such that
for every path π ∈ out(c , σA):
there exists i ≥ 0 such that G, π[i] |= ϕ2 and
G, π[j] |= ϕ1 for all j such that 0 ≤ j < i .

Val Goranko
13 / 22

Example

c1 =

a1

a2

a3

r1
r2
r3
r4
r5(a3)
r6

G, c1 |= 〈〈a1, a3〉〉G (〈〈a1〉〉 (¬ga2) U ga1)

Val Goranko
14 / 22

Model checking

ATL provides an algorithm for solving the global model checking problem:

Inputs:

• formula ϕ

• a GDP problem G
Output:

• the state extension of ϕ in G

[[ϕ]]G = {c ∈ Conf : G, c |= ϕ}

Complexity

The ATL algorithm for global model checking problem applied to LGDP

has worst-case time complexity exponential in the number of resources.

Since the number of resources can be large, this can be a problem.

Val Goranko
15 / 22

Can we be more efficient?

Idea:

• Define a suitable abstraction: equivalence relation ∼
on configurations, that preserves truth of LGDP formulae;

• build the global model checking procedure to use that abstraction.

Val Goranko
16 / 22

A natural abstraction

Observation:

• our logic cannot distinguish on atomic level configurations where
agents hold the same number of resources

So, can we use

ci ∼# cj

iff

for each agent a,
the number of resources a holds in ci

is the same it holds in cj?

No! This is too coarse.

Val Goranko
17 / 22

The abstraction ∼# is too coarse

Example

c1 ∼# c2

c1 =

a1

a2

a3

r1
r2
r3
r4
r5(a3)
r6

G, c1 |= 〈〈a3〉〉X ga3 True

c2 =

a1

a2

a3

r1
r2
r3
r4
r5
r6(a3)

G, c2 |= 〈〈a3〉〉X ga3 False

Val Goranko
18 / 22

A correct abstraction
A finer abstraction is required.

1. We first define an equivalence relation on resources

ri ≈ rJ

iff
ri and rj are accessible by the same subset of agents

2. We then define
c1 ∼ c2

iff
for each agent a and

for each equivalence class of resource R ∈ Res/ ≈
the number of resources from R

that a holds in c1 is the same as in c2

Val Goranko
19 / 22

A sound and complete abstraction

Example

c1 ≈ c2

c1 =

a1

a2

a3

r1
r2
r3
r4
r5(a3)
r6

G, c1 |= 〈〈a3〉〉X ga3 True

c3 =

a1

a2

a3

r1
r2
r3
r4(a3)
r5
r6

G, c3 |= 〈〈a3〉〉X ga3 True

Val Goranko
20 / 22

Interval expressions

We symbolically represent sets of configurations with expressions:

α ::=
∧

a∈Agt

∧
R∈R

(a,R)[laR , l
a
R] | α1 ∨ α2

and ‖α‖G denotes the set of configurations “contained” in α

Example

a1

a2

a3

r1
r2(a1)
r3
r4(a2)

r5(a2)
r6

R1

R2

R3

R4

is contained in:

(a1,R1)[1, 1] ∧ (a1,R2)[0, 0] ∧
(a2,R2)[0, 0] ∧ (a2,R3)[2, 2] ∧
(a3,R3)[0, 0] ∧ (a3,R4)[0, 0]

Val Goranko
21 / 22

A symbolic model checking algorithm for LGDP

We develop a symbolic global model checking algorithm for LGDP.

Given
• a game G
• a formula ϕ

it returns
• the interval constraint expression α(G, ϕ)

Theorem

For each game G and formula ϕ ∈ LGDP we have:

c ∈ [[ϕ]]G iff c ∈ α(G, ϕ)

Complexity

The symbolic global model checking algorithm runs in time at most
double exponential in the number of agents but polynomial in the
number of resources.

Val Goranko
22 / 22

Concluding remarks: future work

• To obtain more refined complexity results.
(The double exponential case seems to never actually happen.)

• Can we do better? Is our algorithm optimal?

• To extend the framework to one where resources are autonomous
agents themselves. Clients/Bankers problem.

• To explore the case with agents’ incomplete information.

THE END

Questions?

