(1) T. Lundahl , W.J. Ohley, S.M. Kay, R. Siffert, Fractional Brownian motion: A Maximum Likelihood Estimator and Its Application to Image Texture, IEEE Transactions on medical imaging, vol MI-5,3,pp 152-161,September,1986.
(2) K.J. Falconer, J. Lévy Véhel, Horizons of fractional Brownian surfaces, Proc. of the Royal Math. Soc. To appear.
(3) R. Peltier, J. Lévy Véhel, Multifractional Brownian Motion : definition and preliminary results, Inria Research Report 2645
(4) G. Wornell, Wavelet-Based Representation for the 1/f Family of Fractal Processes, Proc. IEEE, Vol 81, pp 1428-1450, Oct. 1993
(5) L. Belkacem, alpha-SDE and Option Pricing Model, Fractals in Engineering (J. Lévy Véhel, E. Lutton and C. Tricot Eds.), Springer Verlag, 1997.
(6) J. Lévy Véhel and K. Daoudi, Generalized IFS for Signal Processing, IEEE DSP Workshop, Loen, Norway. September 1-4, 1996.
(7) K. Daoudi, J. Lévy Véhel, Y. Meyer, Construction of continuous functions with prescribed local regularity, Constructive Approximation, 014(03), pp. 349-385, 1998.
(8) G.H. Hardy, On Weierstrass' Non-Differentiable Function, Trans. Am. Math. Soc., 17:301-325, 1916.
(9) B. Pesquet Popescu, P Larzabal, 2D Self Similar processes with Stationary Fractional Increments, Fractals in Engineering (J. Lévy Véhel, E. Lutton and C. Tricot Eds.), Springer Verlag, 1997.
(10) M. Barnsley, Fractal Functions and Interpolation, Constructive Approximation, 1985.
(11) B.B. Mandelbrot, A class of multinomial multifractal measures with negative (latent) values for the dimension, Fractals physical origin and properties, Proc. Erice meeting, L. Pietronero, Ed., Plenum Press, 3-29, 1989.
(12) G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures , J. Stat. Phys. T.66, pp.775-790, 1992.