
Overview and main functionalities of Fraclab

Jacques Lévy Véhel 22 June 1998

This section presents an overview of the features available in Fraclab. A general presentation is made, followed

by a brief explanation of the functionalities associated with each menu.

Contents

1 Overview 2

2 Description of Fraclab Functionalities 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The main window of �tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Pop-up Menus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.2 Fractal and Multifractal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.4 Miscellaneous tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The View menu 5

3.1 The Figure sub-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 The Image mode sub-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 The Tools sub-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 General conventions and remarks 8

5 Known bugs 9

6 Homework 9

6.1 Analysis of a stock market log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6.2 Synthetic Aperture Radar image denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.3 Optical image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Conclusion 15



8 References 15

1 Overview

Fraclab is general purpose signal processing toolbox based on fractal and multifractal methods. It allows

to perform many basic tasks in signal processing, including estimation, detection, regularization, denoising,

modeling, segmentation and synthesis. Let us stress that Fraclab is not intended to process "fractal"

signals (whatever meaning is given to this word), but rather to apply fractal tools to the study of irregular

but otherwise arbitrary signals : just as e.g. gradient-based algorithms are often successfully applied for

image segmentation even when there are no mathematical or physical reasons for the original signal to

possess an ordinary derivative, a fractal analysis may yield useful insights for non �fractal� data. Of course,

it does not in general give relevant indications when the signal is mainly regular or smooth, and reveals its

interest only if there is enough singularity in the data.

A comparison with classical signal processing may be in order to make things clearer. In many cases, one

assumes that the meaningful information is regular in essence, and that the irregular aspect of the observed

data is due to noise coming from various sources: captor, thermal, coding, etc. A most useful tool is then

�ltering, using for instance Fourier analysis, in order to get rid of the noise. This approach has of course

proven extremely valuable in many applications.

However, there are cases where the irregular part of the observed data contains useful information that

cannot be recovered if only the smooth part is kept. It can even be the case that most or all of the relevant

information is carried in the singular structure of the observation. Let us give some examples. It is well

known that some useful information about a heart condition is contained in the �fractal dimension� (more

precisely the correlation dimension, a feature related with the irregularity of the signal) of the ECG. The

lower this dimension, the worse the condition of the heart. Although it is possible to assess the heart

condition using classical methods, a regularity analysis seems to be a good alternative in this case. A second

example is the case of radar images. These are di�cult to process because of the presence of a speci�c

noise, the speckle ("chatoiement" in French). However, speckle is not pure noise, but rather a genuine part

of the signal, caused by the interferometric nature of radar images. In this respect, it contains information

which is essential about the imaged region. Although removing the speckle can be useful for purposes of e.g.

segmentation, analyzing it is a necessary task for other applications, as for instance classi�cation, simply

because the smoothed signal does not contain the necessary information. From a broader point of view, one

may even argue that, though many image processing techniques aim at getting rid of irregularities in the

data, the segmentation of simple, non noisy optical images should more logically be based on singularity

analysis: one is indeed mostly interested in singularities, since edges are basically discontinuities in the grey

levels. In that respect, the classical approaches, based on smoothing, do not appear as natural as is usually

assumed.

Many tools in Fraclab are thus designed to measure di�erent kinds of irregularity, and use these measures

to perform signal processing. The regularity is analyzed either from a global point of view, or from a local

one. In the �rst case, Fraclab allows to compute various fractional dimensions. In the second case, the

Holder exponent is used. The exploitation of this local singularity information for signal processing can be

performed in two di�erent ways in Fraclab :



p

� By keeping all the information, which basically means that, starting from the signal s(t), one builds a

new function a(t) which gives the Holder exponent of s at t. This is useful either when the singularity

function a(t) is simpler than the original signal, or for purposes of e.g. detection or denoising.

� By using a global description of the singularity : while the use of fractional dimensions, such as the box

or regularization dimension will be su�cient if the signal is �fractally homogeneous�, in more general

situations, a �ner analysis is needed: Multifractal analysis aims at extracting higher level information

from the singularity function associated with the signal, in cases where a(t) is as complex as, or more

complex than s(t) (this happens for instance for self-a�ne functions), or if keeping trace of the singu-

larity information at each point is not relevant (this is the case for instance in issues of classi�cation):

In these situations, one computes a multifractal spectrum, which yields a global characterization of

the singularity structure. Usually, statistical or geometrical descriptions are used, leading to various

multifractal spectra. These multifractal spectra are for instance useful in classi�cation problems or in

image segmentation.

2 Description of Fraclab Functionalities

2.1 Introduction

Fraclab can be approached from three di�erent perspectives : synthesis of fractal signals , fractal analysis ,

and signal processing . This separation is arti�cial in a sense, since the tools associated with these three

streams overlap greatly, but it is conceptually helpful. Most functionalities can be accessed either from a

fractal analysis or from a signal processing point of view, and this help �le will re�ect this situation.

In order to make Fraclab user-friendly, a graphic interface, called �tool, is provided with this version. We

describe brie�y in the next sections the general organization of �tool, as well as the main features of the

synthesis, analysis and signal processing tools, as they appear in the menus of �tool.

2.2 The main window of �tool

Once you launch �tool, the main window appears. It is divided into four zones :

� UPPER PART : the pop-up menus

The pop-up menus allows to perform the various processings available in Fraclab. These are brie�y

described in sections 2.3 below and detailed in the corresponding parts of this help.

� UPPER MIDDLE PART : the Variables and Details windows

The basic elements one manipulates in Fraclab are structures : The synthesis and the analysis tools all

produce and process structures. A structure is a composite piece of information which may comprise

matrices of di�erent size and other more complex elements. The upper middle part of the �tool

graphic interface is composed of two windows : the Variables window, which will display the name

of the structures generated in the course of using Fraclab. The highlighted name corresponds to the

current active structure (i.e. the one on which the processings are made). The Details window shows

the building blocks of the structure currently highlighted in the Variables window. To select a block,



p

i.e. a sub-element of the structure (which may for instance be a matrix), just highlight it. This is

useful for instance for purposes of visualization or if one wants to extract a particular building block

from a composite structure.

� LOWER MIDDLE PART : �les manipulation

Scan Workspace allows you to transfer �les from your matlab environment (workspace) into the �tool

environment, while Load allows you to transfer �les from your �le system into the �tool environment.

Files formats that are currently recognized include mat-�les, 1D ASCII signals and 2D tif images. Save

allows you to save structures from �tool into your �le system. Finally, Clear removes structures from

both the �tool and the matlab environment.

� LOWER PART : Miscellaneous tools

View : This important menu allows to perform various display-related operations which are detailed

below.

Help lists most of the routines available in Fraclab. To get a detailed help on a particular function,

double click on it.

Quit is what you guess.

Finally, you may want to check the Message zone often, as error messages are usually displayed here.

In many occasions, a beep is heard when a new message is sent. The Erase button lets you clear the

message zone.

2.3 Pop-up Menus Description

There are four kinds of pop-up menus : the �rst one allows to perform synthesis of "fractal" signals.

The second one deals with the fractal and multifractal analysis of signals and includes : Fractional

Dimensions , 1D Exponents Estimation, 1D signals Multifractal Spectra, and Stable Motion. The third group

is related to Signal Processing and is composed of Segmentation and Denoising . Finally, miscellaneous

tools are available, namely Time Frequency and Time Scale analysis and Misc, which allows to perform

various editing tasks. Let us describe brie�y what can be done with these various menus. More detailed

explanations are given in the appropriate sections of this help.

2.3.1 Synthesis

Two types of signals can be generated : measures (i.e. an array of non negative data that add to one) or

functions. Measures are interesting in particular when one needs to take into account the resolution in an

explicit way. For both measures and signals, either deterministic or stochastic data may be generated. By

and large, this menu allows to synthesize a substantial subset of all classical fractal models described in the

literature : 1D and 2D fBm-s, mBm-s, (generalized) Weierstrass functions, stable motions, Wavelet based

1/f process, multifractal measures, ...



2.3.2 Fractal and Multifractal Analysis

The most basic parameters that can be computed are of course fractional dimensions. In the current im-

plementation of Fraclab, only the box and regularization dimension are available. When one needs a local

characterization of the signal, Hölder exponents are more pertinent, and the menu 1D Exponents Estimation

allows to estimate both pointwise and local exponents. In addition, a long range exponent may be computed,

as well as 2-microlocal exponents. 1D signals Multifractal Spectra o�ers various estimations procedures. Note

that the computation of Multifractal Spectra for 2D data is possible using the Segmentation menu. Finally,

Stable Motion allows to test the stability of a given process and to estimate the relevant parameters.

2.3.3 Signal Processing

Segmentation allows to segment both 1D signals and images. In the former case, a modeling based on a

generalization of IFS, called weakly self a�ne functions, is used. Images are segmented into edges or regions

of given regularity through multifractal analysis. Denoising allows to regularize and denoise 1D or 2D data

using various methods.

2.3.4 Miscellaneous tools

TF-TS allows to compute various time frequency representations of a signal, while misc o�ers basic structure

manipulations such as sums, extractions, ...

3 The View menu

Clicking on the View button opens a new window, which serves as a control center for all the displays

(graphs + images) you might want to have. This window is composed of four sub-windows : Figure, Image

mode, Tools , and �nally a originally blank region which will contain the list of all opened �gures along with

the data displayed in each �gure. This list allows you to select which �gure or signal is currently active

by clicking on it. Only the active element will be a�ected by the various commands available in the other

sub-windows of the View menu.

It is important to understand the di�erence between a View and the data displayed in it. A View corresponds

to a Matlab �gure that will display one or several graphs or images. The case of several graphs corresponds

to the use of the sub-plot command in Matlab. Since, in the case of multiple plots, you might want to apply a

di�erent processing to each sub-plot, you need to tell Fraclab which sub-plot is the current one. This is why

the list at the bottom of the View window will show the name of all the opened views (i.e. Matlab �gures)

numbered in the chronological order of their appearance, and, for each of these views, the name of the signals

that are shown in this �gure as plots or sub-plots. This will allow you to select either a whole �gure or one

of its sub-plot. For instance, some viewing options such as hold , rotate or zoom are available only when a

particular signal is highlighted, and are grayed out when the whole view is highlighted. Note �nally that

clicking in the list either on a view or on one of the signals that it contains will bring the corresponding

window to the foreground, a useful feature if you have many opened windows or/and if you do not remember

which signal is which.



3.1 The Figure sub-window

view in new : opens a new �gure which will display the highlighted data in the Variables zone of the main

window.

view : displays the highlighted variable in the current �gure, i.e. the one which is highlighted in the �gures

list. Depending on whether the hold button in the Tools sub-window is selected or not, pressing view will

replace the current plot or will be placed on top of it.

close all : Usually, you will probably �nd it more convenient to keep the View window opened at all time.

However, pressing this button will close all �gures, control panels and toolbar.

3.2 The Image mode sub-window

This menu is active only when an image is selected in the list, and is grayed out when either a view is

selected (because Fraclab needs to know which image must be processed and not merely which view is the

current one) or a 1D signal is currently active (indeed, the processings in this sub-window make no sense for

1D signals).

image control opens the image control panel (note that image control is grayed out when the image control

panel is already displayed). This panel �rst recalls which data is being processed in the plot line.

The mode button then allows to choose how the data should be displayed : as an image, a contour plot,

a mesh, a surface, or as a superposition of 1D signals which might be its lines or columns. In addition, a

particular line/column might be selected for display.

colormap selects a color map for the display.

dynamic allows to toggle between a linear and a logarithmic dynamic for both the numerical and graphical

display of the data.

min level , max level : these boxes allows you to enter the interval in which the data must fall in order to be

displayed. Pixels with grey levels outside this range will be clipped.

value governs the way the data are numerically displayed, for instance in the min level and max level

boxes, or in the get point box : normalized will forces the output to be between 0 and 1, while true causes

the real values to be displayed

display toggles between a normalized and a true display for the grey levels in the image.

binary displays all the pixels with grey level between min level and max level in white and all others in

black.

reverse revert the order of the color map. This is particularly useful in conjunction with binary to toggle

between "in" and "out" pixels.

get point : pressing this button will bring the image �gure to the foreground and display a cross that you

may center at any point. Clicking will cause Fraclab to display the coordinates of the chosen point along

with its grey level in the box to the right. Whether the displayed grey level will be the true one, a normalized

one, or a binary one depends on the choices described above. Note that it is possible to zoom in the image



before activating get point to gain more precision. As said in the Message line of the main window, press

Enter in the image to get out of this mode, or click again on get point .

axis : toggles the aspect ratio between the true axis of the image and the Matlab default.

x axis - y axis : enables to load a new array to use as axes, when the data are displayed as anything but an

image.

Note that the chosen modi�cations do not result in an immediate update of the display. Rather, you need

to press Apply to see the e�ects of your choices.

The second button in Image mode is superpose. This allows to lay an image on the top of another one

with a control of the "transparency". This works like a kind of hold facility for images, with additional

functionalities. The main purpose of this is to compare an original image with e.g. its segmented version.

More generally, you'll �nd this feature helpful when you need to compare two images one of which (at least)

is "sparse" (like is a image of contours). Note however that you may perfectly use it for any kinds of images,

for instance to compare consecutive images in a sequence. In practice, this is what you do: �rst display an

image and select it in the views list. The superpose button should now be clickable. Select another image

in the Variables list of the main window and press view. A new window titled Superpose Parameters

appears, that allows to choose two parameters : the lut ratio decides how many entries in the current color

map will be available for each image, while the threshold parameter controls the "amount" of each image

that will actually be displayed. Let us detail this a little bit: The lut ratio may be varied between 0.5 and

1, i.e. the �rst image will used between one half and the whole of all available colors (or grey levels). Of

course, when lut ratio = 1, you will not see the second image. Assume to simplify that your color map has

100 entries and that lut ratio = 0.8. Then prior to displaying, the �rst image will have its grey levels linearly

re-mapped between 0 and 80, and the second one between 80 and 100. Second, if threshold is 0, only the

second image will be displayed, while if threshold is 1 - lut ratio (this is the maximum possible value), you'll

see only the �rst image. Setting threshold between these extremes allows you to balance the relative strength

of the two images. Choose values for the lut ratio and the threshold and press Apply to see the e�ects of

your selections. Experiment with other values until you are happy with the result. You may then Close the

Superpose Parameters window.

Two known bugs of the superpose mode are the following: when you press Apply, the scalings of the

axes are changed to the default matlab aspect ratio. Second, if you de-select superpose, the Superpose

Parameters window does not close. This would not be a problem, except that it will yield an error next

time you will press the Apply button. Thus, when you de-select superpose, remember to close also the

Superpose Parameters window.

3.3 The Tools sub-window

hold causes the current plot to be held, so that subsequent graphs are displayed on top of it.

rotate interactively rotates the view of a plot.

zoom allows to zoom on the current plot or image by selecting a region with the mouse.

Vsplit performs a vertical split of the �gure in as many sub-plots as are speci�ed in the box to the right.

Hsplit does the same for horizontal sub-plots. Thus, to have a �gure with m horizontal sub-plots and n

vertical sub-plots, enter m in the Hsplit box, n in the Vsplit box, select one by one the desired graphs in the



Variables window and press each time view : the data will be displayed sequentially in the corresponding

sub-plots.

Pressing axes opens the axes control panel which allows to set up various parameters : the Scale type chooses

between linear, semi-logarithmic or bi-logarithmic plots, the X range and Y range decides which parts of

the data are to be displayed. For 1D signals, various Aspect parameters can be speci�ed :

mark changes the symbol used to draw the computed points, line selects the symbol used to draw lines

between the computed points, color de�nes the color of the plot, width controls the width of the line.

Finally, the boxes red - green - blue allows to �nely adjust the color of the line.

print opens the print control panel that allows to save the �gure or print it with various options.

close �gure closes the selected view and all its sub-plots.

4 General conventions and remarks

We gather in this section a number of basic facts about the general behaviour of Fraclab.

In many instances, you will have to choose the size of the signal you want to generate or process. Most of

the time, you can either use prede�ned values (often, these will be powers of 2), or simply type any positive

integer in the appropriate zone.

When you process the signal called sig with routine rout , the output signal (if any) will be called rout_sig#,

where # is a number initially set to 0 and that increments each time you launch the same procedure on the

same input signal.

Most windows at the �nal level (i.e. the ones that will actually launch computations) display three buttons

in their lower part : Compute will launch the requested computation, Help will open a window displaying

the technical help associated with the Fraclab routine involved, and Close.

When you choose a sub-menu that will take a signal or structure as an input, Fraclab assumes most of

the times that the signal you want to process is the one that is highlighted when you call the sub-menu

window. Thus, sometimes you will get an error if you have not been careful and checked that the current

signal is in the right format for the routine. Assume for instance that you synthesize a Weierstrass function.

You will get two outputs: Wei# is a 1D signal, while GraphWei# is a graph, i.e. a structure composed of

5 elements. However, when the synthesis is completed, the current variable is GraphWei#. Thus, if you

launch for instance GIFS based estimation in the Pointwise Hölder Exponent sub-menu of the 1D

Exponents Estimation, you'll get a beep and an error message. This is becauseGIFS based estimation

only knows how to process 1D signals and cannot deal with complicated structures like GraphWei#. Thus,

you should select in the Variables list Wei# before you launch GIFS based estimation. In any case, it is

always a good idea to check theMessage zone of the main window if you suspect something �shy happened

or if you don't get what you expected. Do not forget to Erase a message once you have read it.

Finally, note that in this help �le, Fraclab commands, sub-windows names and parameters appear in

boldface, while output signals are italicized .



g

5 Known bugs

In some occasions, the whole matlab session becomes very unstable. This may happen when too many errors

have appeared, or if you have worked a long time and used a lot of memory that matlab has not been able

to free up, etc... If strange things start to happen like you cannot even synthesize a simple signal with

Fraclab or launch a simple command in matlab, it is advised that you simply quit the matlab session and

start afresh.

When you perform an invalid operation in a given window, the cursor turns into a watch when you point

inside this window, and remains so even if you subsequently launch valid computations, until you close the

window in which this happened.

For some reasons, Matlab sometimes �ips or rotates the image around before displaying it. Thus it may

happen, when you try to view the output of e.g. a denoising of an original image, that the result seems

weird. You just have to remember that the data may have been rotated.

6 Homework

In many of the help �les associated with the various menus of Fraclab, you'll �nd a "homework" section

that describes an example of application of the corresponding tools. This is intended to help you get started

with Fraclab and to show the possibilities of a fractal approach to signal processing.

In this general help, we highlight three examples taken from the following menus: 1D exponents estima-

tion, Denoising and Segmentation. See the corresponding helps for more details.

6.1 Analysis of a stock market log

The stock market is a fascinating area for fractal analysis. Many authors have argued that models based on

stochastic processes exhibiting long dependence and/or in�nite variance are relevant in this area. Fraclab

can compute both long range dependence exponents and various parameters that characterize processes

without a second moment. However, the main focus in Fraclab is on the measure of local regularity:

independently of any assumption of long dependence and/or in�nite variance, it is certainly true that stock

market logs are very irregular. Moreover, this irregularity is a function of time, and we expect that, for

instance, at "quiet" periods, the market should evolve smoothly, while krachs translate into sudden changes

in the regularity.

A nice illustration of the above intuition is provided by the analysis of the Nikkei225 index during the period

01/01/80 to 05/11/2000. The log consists in 5313 daily values corresponding to that period. Load �rst these

data into Fraclab: Press the Load button in the main window. A new window appears, showing the �les

of your current directory. Change directory to the DATA directory that comes with the Fraclab release.

Choose the �le called nikkei225.txt by clicking on it. Its name is then displayed at the top of the window,

in the Name: box. Since this �le is plain text, click on the button to the right of Load as:, and select the

item ASCII. Then press Load, and Close the loading window. The nikkei225 �le should appear in your

Variables list of the main window, under the name fnikkei225 . View this signal: Open the View window

by pressing on the View button. In the View window, click on View in new. This will open a window



displaying the stock market log. Like most data of this type, this signal is quite erratic. Other obvious

features include a steady increase at the beginning of the log, and strong discontinuities around the points

1780, 2040, 2650, 2760 or 3200. Let us see if we can highlight these and other signi�cant events with a local

regularity analysis.

Financial analysts do not work directly on the prices, but on their logarithms, so we'll �rst type lnikkei

= log(fnikkei225); in the matlab window, and import lnikkei into Fraclab. To do this, press the Scan

Workspace button in the main window. In the new windows that appears, titled Import Data from

MATLAB Workspace, locate the signal lnikkei , select it by clicking on it, and hit Import, then Close

this window. lnikkei will appear in the Variables list of the main window, under the same name.

We will now estimate the local regularity of lnikkei : Click on 1D Exponents Estimation and choose Local

Hölder Exponent then oscillation based method. In the window that appears, check that the Input

data is lnikkei . Otherwise, select lnikkei by clicking on it in the Variables list of the main window, and hit

Refresh in the Local Hölder Exponent window. Set the parameters as follows: Nmin = 1, Nmax =

8, Neighbourhood size = 16, and regression type = Least Square (see the help �le corresponding to

this menu for details on the meaning of these parameters). Hit Compute, and wait for less than a minute.

The output signal appears in the Variables list of the main window, and is called pht_lnikkei0 . View this

signal, by pressing View in new in the View menu (check that pht_lnikkei0 is selected before doing so).

As you see, most values of the local Hölder exponent are between 0 and 1, with a few peaks above 1 and

up to more than 6. Recall that a Hölder exponent between 0 and 1 means that the signal is continuous but

not di�erentiable at the considered point. In addition, the lower the exponent, the more irregular the signal.

Looking at the original signal, it appears obvious that the log is almost nowhere smooth, which is consistent

with the values of pht_lnikkei0 . What is more interesting is that important events in the log have a speci�c

signature in pht_lnikkei0 : periods where "things happen" are characterized by sudden increase in regularity,

which passes above 1, followed by very small values, e.g. below 0.2, which correspond to low regularity.

Let us take some examples. The most prominent feature of pht_lnikkei0 is the peak at abscissa 2018 with

amplitude larger than 6. Note also that the points with the lowest values in regularity of the whole log are

located just after this peak: The Hölder exponent is around 0.2 at abscissa roughly between 2020 and 2050,

and 0.05 at abscissa between 2075 and 2100. Both values are well below the mean of pht_lnikkei0 , which is

0.4 (its variance of is 0.036). As a matter of fact, only 10 percent of the points of the signal have an exponent

smaller than 0.2. Now the famous October 19 1987 krach corresponds to abscissa 2036, right in the middle

on the �rst low regularity period after the peak. The days with smallest regularity in the whole log are

thus logically located in the weeks following the krach, and one can assess precisely which days were more

erratic. However, if you go back to original fnikkei225 signal, things are not so clear: although the krach is

easily seen as a downward discontinuity at abscissa 2036, the area around this point does not appear to be

more "special" than, for instance, the last part of the log (you may zoom on the di�erent areas for easier

visualization).

Consider now another region which contains many points with low Hölder exponents with a few isolated very

regular points (i.e. with exponent larger than 1). Look at the area between abscissa 4450 and 4800: This

roughly corresponds to the "Asian crisis" period, which approximately took place between January 1997

and June 1998 (there are no exact dates for the beginning and end of the crisis. Some authors place the

beginning of the crisis mid-1997, and the end by late 1999, or even later). On the graph of the original log

of the Nikkei225, you can see that this period is quite erratic, with some discontinuities and pseudo-cycles

(this behaviour arguably seems to extend between points 3500 and maybe the end of the trace). Looking



now at pht_lnikkei0 , we notice that there are two peaks with exponents larger than one in the considered

period (there is an additional such point around abscissa 4300, which, however, is not followed by points

with low values of regularity -e.g. smaller than 0.15-, but is preceded by such points, between abscissa 4255

and 4285). The �rst peak is around 4455, and is followed by irregular points between 4465 and 4475. The

second is around 4730. This region, between abscissa 4450 and 4800, has a large proportion of irregular

points: 12 percent of its points have exponent smaller than 0.15. This is three times the proportion observed

in the whole log. In addition, this area is the one with highest density of points with exponent smaller than

0.15 (we exclude in these calculations the �rst and last points of the log, because of border e�ects). A nice

way of seeing this is to zoom on the graph of pht_lnikkei0 to display only the ordinates between, say, 0.05

and 0.2. This can easily be done using the axes control facility in the View menu of Fraclab by selecting

the appropriate Y range (don't forget to hit Apply so that your settings take e�ect).

Although the discussion above is overly simplistic, it shows that strong perturbations in this particular

�nancial log generally correspond to regions with very low values of the local regularity, with most of the

times the presence of a single or a couple of extremely regular points. Such a behaviour has been observed

in a large number of other logs. You may care to try the same kind of analysis on your own signals. Chances

are that "interesting" regions, or points, will have a speci�c signature in the regularity graph: The evolution

of the Hölder exponents brings an information which is, in some situations, perhaps more intrinsic than the

amplitude of the original signal.

Before leaving this signal, let us compute its "long range dependence" exponent. More precisely, Fraclab

allows you to compute an exponent that describes the power law behaviour of the frequency spectrum of the

increments of the signal around the origin (i.e. at low frequencies), of course assuming that such a power

law holds. If this is the case and if the exponent is larger than 1/2, one says that the data display long

range dependence (LRD), in the sense that the correlations decay "slowly" when the time lag increases.

The LRD exponent estimator in Fraclab is a wavelet-based one. Select �rst lnikkei in the Variables list,

then go to 1D Exponents Estimation and choose LRD Exponent. In the window that appears, choose

Advanced Compute. A new window pops up, titled Long Range Dependence Parameter. Check that

the Input Signal is lnikkei , and modify the Voices parameter from its default 128 to 64, just to speed up

a little bit the computations. Then hit Compute WT. This will launch the computation of the continuous

wavelet transform of lnikkei , using the complex Morlet wavelet as an analyzing wavelet, and with the various

parameters speci�ed in the window (see the help corresponding to this area of Fraclab for more). When

the computation is over, you should see a new structure in the Variables list, called cwt_lnikkei0 . This is

the continuous wavelet transform of lnikkei , that you may care to visualize in the usual way: hit View in

new in the View menu (if the View menu is not opened, hit View in the main window). cwt_lnikkei0

should also appear in the box facing Input CWT in the lower part of the Long Range Dependence

Parameter window. Now hit Compute at the bottom of this window. A new window appears, showing

a graph where abscissa represent the logarithms of the scales in the wavelet transform, and ordinates are

estimates of the logarithms of the energy in the signal at the corresponding scale. The red line is the least

square regression line corresponding to the displayed circles. You'll see that the linear �t is poor when the

whole graph is considered, as it is here. Since we are interested in LRD, we should however restrict our

attention to large scales. Using the black cross that appears when you point inside the graphic window,

select the region between abscissa 3 and 7: put the pointer at any point above abscissa 3, click, then put

the pointer at any point above abscissa 7, and click again. The red line should now �t approximately the

part of the graph above these abscissa. The Estimated Global Scaling Exponent displayed above the



graph should be around 0.56. You may try to compute the least square regression line above other parts of

the graph by repeating the same steps. When you're �nished, hit Return on your keyboard, as indicated

on the lower right part of the graphic window. This will make the cross disappear and will display the last

estimated value of the exponent at the bottom of the Long Range Dependence Parameter window, in

the box facing Scaling Exponent. To make the graphic window go away, close it manually in the usual

way (i.e. not with the help of the View menu). According to this estimate, thus, our �nancial log exhibit a

slight long range dependence, because the exponent is a bit above 0.5.

6.2 Synthetic Aperture Radar image denoising

SAR images are generally di�cult to read and to analyze because they contain a large amount of a speci�c

noise, called speckle. Dozens of methods have been proposed to enhance their quality. Some use precise

knowledge about, e.g., the statistics of the noise, while other are rather generic. The fractal denoising method

is based on the following simple observation : consider an image I, and its noisy version J. Pick a particular

location (x,y) at random in the image. Then, chances are that the local regularity of I around (x,y) will be

larger than the one of J. Of course, this statement is rather imprecise if we do not de�ne how we measure

regularity. We will however content ourselves here with the intuitive fact that adding noise decreases the

local regularity at all points. Denoising can then be performed by increasing in a controlled way the local

regularity. This is exactly how the fractal method works.

To see a practical example of this, �rst load a SAR image into Fraclab by following these steps: Press

the Load button in the main window. A new window appears, showing the �les of your current directory.

Change directory to the DATA directory that comes with the Fraclab release. Choose the �le called sar.tif

by clicking on it. Its name is then displayed at the top of the window, in the Name: box. Check that the

Load as: box displays the item image, and press Load. Then Close the loading window. The sar image

should appear in your Variables list of the main window, under the name im2d_0 (or im2d_1 , etc...).

View this image: Open the View window by pressing on the View button. In the View window, click on

View in new. This will open a window displaying the SAR image. As you'll see, this image appears very

noisy, and does not seem to hold any useful information. However, this is not quite true, as this scene does

contain a river �owing from North to South. Our aim here is to perform a pre-processing that will enhance

the image so that it will be possible to detect automatically the river. Such a procedure is used by the IRD,

a French agency, which, in this particular application, is interested in monitoring water resources in this

region of Africa.

Go to Denoising, and choose Multifractal Pumping. In the new window that appears, check that the

name appearing in the Analyzed signal box is im2d_0 . Then choose a Spectrum shift value, either by

using the sliders or by entering directly a value. A value of 1.5 will give you an interesting result at this

stage. Press Compute. The processing is fast (probably less than a second). You should see a new signal in

the Variables list, called den_im2d_00 . Display this image by clicking View in new in the View menu.

If everything went right, you should be able to distinguish some structures on the processed image. Most

prominently, the river now appears, �owing from the top of the image and assuming roughly an inverted

"Y" shape. Other values of the Spectrum shift value around 1.5 may give more visually pleasing results.

Here are some other tests worth trying. A characteristic feature of the Multifractal Pumping is that it

is invertible. A striking illustration is to denoise the SAR image with a large Spectrum shift value, say

5. You obtain as an output the "enhanced" image den_im2d_01 , say. View den_im2d_01 , and notice



that it is very blurred, and thus seems to contain even less information than the original data. Now, with

den_im2d_01 selected in the Variables list, hit Refresh in the denoising window, so that Fraclab knows

that you want to process this new signal. Enter -5 as Spectrum shift value (that is, instead of denoising,

you "increase the noise"). View the output, called den_den_im2d_010 . You'll see that this last image

exactly coincides with im2d_0 .

A �nal test is to compare thisMultifractal Pumping with the classical wavelet shrinkage method. Wavelet

shrinkage is a denoising procedure that gives excellent results for data corrupted with independent additive

noise, provided the original signal has some minimum regularity. In our case, the noise is non additive and

strongly correlated with the signal, which, furthermore, has no a priori regularity. Thus, we do not expect

this method to behave well here. Go to Denoising, and open the Wavelet shrinkage window. Check

that the name appearing in the Analyzed signal box is im2d_0 . Otherwise, select the signal im2d_0 in

the Variables list and hit Refresh in the Wavelet shrinkage window. Choose a threshold value and

hit Compute. No matter which value you choose for the threshold, the output signal never appears really

"denoised".

6.3 Optical image segmentation

This is intended to show how multifractal analysis may be used for edge detection. Very roughly speaking,

the multifractal analysis of a signal or an image consists in two steps: One �rst compute the Hölder exponents

of each point in the signal. Second, one groups all points with the same exponent, say t, to form a set E(t).

The multifractal spectrum is the function that associates to each t the "dimension" of the set E(t). In other

words, multifractal analysis computes, for each singularity exponent, the "size" of the set of points in the

image where this exponent is found.

To apply multifractal analysis to edge detection, we thus start by characterizing the local regularity of the

image around each point by its Hölder exponent. Edge points are usually irregular points, so we expect them

to have low Hölder exponent. This is true however when one measures the local regularity in the "usual

way", i.e. by comparing the grey levels in a given zone with the size of this zone. In this experiment, we use

a di�erent measure of regularity: We associate to each region in the image the maximum of its grey levels,

and we record the regularity of this quantity. More precisely, we do the following: Around each point in the

image, we center windows of increasing size. We "measure" the content of each window by the maximum

of the grey levels in the window. The regularity exponent is then obtained by evaluating the scaling law

between the logarithms of the maxima and those of the window sizes. It is easy to see that smooth regions

will now have a low regularity exponent, while textured zones have a large exponent. For instance, in a zone

with constant grey levels, the maximum will not depend on the window size, thus the scaling exponent is 0

(see the references given in the help �le of the Segmentation menu for more).

Let us try this on an optical image. Load �rst the image called door.tif into Fraclab by following these

steps: Press the Load button in the main window. A new window appears, showing the �les of your current

directory. Change directory to the DATA directory that comes with the Fraclab release. Choose the �le

called door.tif by clicking on it. Its name is then displayed at the top of the window, in the Name: box.

Check that the Load as: box displays the item image, and press Load. Then Close the loading window.

The door image should appear in your Variables list of the main window, under the name im2d_0 (or

im2d_1 , etc...). View this image: Open the View window by pressing on the View button. In the View

window, click on View in new. This will open a window displaying the door image. This is an image of a



Japanese door (more precisely, a toryi).

Click on the Segmentation pop-up menu and select Image multifractal segmentation. In the new

window that appears, click on Refresh on the �rst line, in front of Analyzed (check before that im2d_0

was selected in the Variables list of the main window). im2d_0 should appear on the �rst line, meaning

the it will be the analyzed image. Ignore the three lines below, and move the Pointwise Hölder exponent

zone. Note that the max capacity is selected: This corresponds to the fact that we will be measuring the

content of a region by its maximum grey level, as explained above. You will now change the max size

parameter from 5, its default, to 3. Do this by selecting 3 in the pop-up list that appears when you click

on 5. Next, hit Compute Hoelder. After a few seconds, a new signal should appear in your Variables

list, called hld2dCoef_im2d_00 . This is the image of the Hölder exponents. You can view this image by

clicking on View in new in the View menu. Notice that the image of the Hölder exponents gives a nice

representation of the main edges of im2d_0 . As explained above, pixels with low regularity, as are edges,

appear as bright points, while smooth regions have low grey levels.

Technically, however, hld2dCoef_im2d_00 does not represent an edge extraction of the original image,

because edge images are supposed to be binary images: edge points are displayed in white, while all other

points are in black. In this easy example, it seems that a simple threshold could turn hld2dCoef_im2d_00

into a binary image that would coincide more or less with the contours. We will follow another path here,

by using the second part of multifractal analysis. We thus proceed to compute the multifractal spectrum of

our image, i.e. the function that will give the dimension of the sets of pixels having a given exponent. There

are several type of multifractal spectra, and we will use the Hausdor� one, which is the default in Fraclab.

In the zone facing max boxes, replace the default 32 by 128. This will yield a more precise spectrum. Hit

Compute spectrum. The new signal hSpectrum_im2d_0_fd2d_alpha0 is added to the Variables list.

View this signal by clicking on View in new in the View menu. This is a 1D graph: abscissa represent

the various Hölder exponents present in the image, while ordinates display the associated dimensions. Thus,

for instance, the dimension 2 corresponding to the exponent 0 means that a subset of pixels of dimension 2

have exponent 0. Since no other exponent has associated dimension 2, this means that "most" points (more

precisely Lebesgue-almost all points) in the image have exponent 0. Recalling the 0 is the exponent of points

in smooth regions, we recover the visual fact that, in the door image, most points lie in smooth regions.

Notice the shape of the spectrum, which is roughly a decreasing segment starting from the point (0, 2) and

ending at (x, 0) (here, x= 0.9). This shape is characteristic of optical non noisy images when one measure

the exponents using the maxima of the grey levels. Here, we are interested in contours. Let us see how we

can detect them using the spectrum: Since contours must form a set of dimension 1 in the image (because

contours are smooth curves), and because we expect contours to be made of points which have roughly the

same regularity, we expect that edge points should be approximately characterized by those exponents t such

that the dimension of E(t) is 1. To verify this assumption, we will perform the segmentation of the image

by putting all pixels with exponent t such that E(t) has dimension close to 1 to white, and all other points

to black. To do this, go to the Segmentation part of the Multifractal Image Segmentation window,

and set the min dim. to 0.9 and the max dim. to 1.1. Hit Compute seg.. The output image, called

seg_im2d_00 appears in the Variables list. View this image by clicking on View in new in the View

menu. As you can see, we have obtained, by the very simple procedure above, a good approximation to the

edges of our original image. Notice in particular that some �ne details have been detected, such as the small

triangular holes on the right part of the door, the delicate contour of the bush, or the small sphere and the

defect in the water on the lower left part of the image. Also, the method has detected some features inside



the bush on the left part. These do correspond to some irregularities, that you can see by manipulating a

little bit the grey levels of the original image.

An interesting additional feature of this approach is that one can extract relevant subsets of points other

than the contours, again based on a dimension analysis. For instance, we expect that sets of irregular points

that lie in strongly textured region should form a set, roughly homogeneous with respect to the Hölder

exponent, and of dimension between 1 and 2: smooth contours are 1D curves, while smooth regions are

2D areas; textures form subsets which lie "in-between" those two extremes. Verify this by extracting now

those points with associated dimension between, say, 1.3 and 1.7, i.e. set min dim. to 1.3 and max dim.

to 1.7 (beware that, since Fraclab checks that min dim. is smaller than max dim., you need to enter

these values in the right order, otherwise Fraclab will return to its default values 0 and 2). Hit Compute

seg. again, and view the output. You should see in white mostly points on the water and in the bush,

with additional pixels on the door and the foreground mountains, where one can distinguish some textures.

The sky and the background mountains, which only display smoothly varying grey levels, are mostly black,

except the edge of the mountain to the right of the image. These sets of white points could rightfully be

called "textured points". Finally, if you put min dim. to 1.9 and max dim. to 2, you will verify that you

do get full 2D regions mainly composed of points in smooth regions. These three segmentations show that a

multifractal analysis of the image allows to extract several kind of points using the information contained in

the spectrum. Of course, much more re�ned methods based on the technique explained here can be applied.

See the references indicated above.

7 Conclusion

Fraclab is an open toolbox: We distribute freely both the executables and source �les. Our main objective

is to help disseminate the use of fractal methods in signal processing. We also hope to include many more

functionalities in Fraclab in a near future. Contributions of any kind are welcome: Comments, bugs reports,

new algorithms, source codes, examples of applications, etc...

We hope you'll enjoy using Fraclab.

8 References

There are many good books on the various aspects of fractal analysis, not to mention the thousands of papers

related to the subject. Here is a small selection.

(1) C. Bandt, S. Graf, M. Zähle, Eds., Fractal Geometry and Stochastics , Spinger Verlag, 1995.

(2) M. Barnsley, Fractals Everywhere, Morgan Kau�man, 1993.

(3) C. Evertsz, H.O. Peitgen, R.F. Voss, Fractal Geometry and Analysis : The Mandelbrot Festschrift,

Curacao 1995 World Scienti�c, 1996.

(4) K. J. Falconer, Fractal Geometry - Mathematical Foundations and Applications , John Wiley, 1990

(5) J. Lévy Véhel, E. Lutton, C. Tricot, Eds., Fractals in Engineering , Spinger Verlag, 1997.

(6) B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1982



(7) P. Massopust, Fractal Functions, Fractal Surfaces and Wavelets , Academic Press, 1995.

(8) H.O. Peitgen, D. Saupe, The Science of Fractal Images , Springer Verlag, 1988.

(9) C. Tricot, Curves and Fractal Dimensions , Springer Verlag, 1995


