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INTRODUCTION

The Bray–Liebhafsky (BL) reaction is the decom�
position of hydrogen peroxide into the water and oxy�
gen in the presence of iodate and hydrogen ions:

2H2O2  O2 + 2H2O. (D)

This apparently simple reaction is a highly nonlinear
process that comprises a complex homogeneous cata�
lytic oscillatory evolution involving numerous iodine
intermediates [1, 2].

Oscillatory dynamics of the BL reaction is best
described by the model consisted of eight reactions:

 + I– + 2H+  HIO + HIO2, (R1), (R�1)

HIO2 + I– + H+  I2O + H2O, (R2)

I2O + H2O  2HIO, (R3), (R�3)

HIO + I– + H+  I2 + H2O, (R4), (R�4)

HIO + H2O2  I– + H+ + O2 + H2O, (R5)

I2O + H2O2  HIO + HIO2, (R6)

HIO2 + H2O2   + H+ + H2O, (R7)

 + H+ + H2O2  HIO2 + O2 + H2O. (R8)

Three of them are reversible. Nevertheless, for
numerical simulations of the system behavior in the
continuous stirred tank reactor (CSTR) the reactions
due to flow of hydrogen peroxide through the system
and outflow of all species from the reaction vessel
must be added. The resulting model for the BL reac�
tion in the CSTR and rate constants are given in [3].

H+, IO3
–

IO3
–

IO3
–

IO3
–

Different variants of the model are additionally elab�
orated in [4, 5].

With increasing flow rate j0, in numerical simula�
tions based on this model, various simple, complex,
and chaotic oscillations were observed [6].

For complex oscillation description, many differ�
ent methods were applied on BL reaction such as firing
numbers, power spectra and Poincaré section [6]. The
appearance of deterministic chaos in the experimental
and simulated BL reaction was also confirmed and
proven by the determination of positive values of the
maximal Lyapunov exponents for the sequences of
flow rate values as the control parameter [3]. Although
typical for chaos quantification, fractal properties of
the BL reaction were not tested ever before.

An object (function, set of phase space points or
simply data) is usually referred to as fractal if its graph
displays such characteristics as (local) selfsimilarity,
irregularity, fine structure, and fractional dimension
[7]. Dissipative dynamical systems that exhibit chaotic
behavior, often has strange attractor in phase space [8].
Strange attractors are typically characterized by fractal
dimension D [9] which is smaller than the number of
degrees of freedom F (D < F). Moreover, different parts
of an attractor may be characterized by different value
of the fractal dimension. In such situation, a single
value of some fractal dimension is not sufficient to
characterize the attractor adequately. For example,
two quite different attractors might have the same cor�
relation dimension, but they still could differ widely in
their “appearance.” One can visualize this multifractal
object as a collection of overlapping fractal objects,
each with its own fractal dimension [10].

Multifractal techniques and notions are increas�
ingly widely recognized as the most appropriate and
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straightforward framework to analyze scale depen�
dency of the data, but also their extreme variability
over a wide range of scales [11]. However, fractal
dimension is measure of global scaling property but
multifractality depends on local scaling properties of
the object, and therefore, obviously, there is a need for
some other quantity to qualify the system. Hence, the
basic numerical expression used in the multifractal
analysis is so�called Hölder exponent, α [12]. The
Hölder exponent of a data is a local characteristic
value calculated at each point in time series. It reflects
the decay rate of the amplitude of the function fluctu�
ation µ, in the neighborhood of the point j as the size ε
of the neighborhood shrinks to zero:

(1)

A highly irregular point (or singularity) in a data is
characterized by a lower value of Hölder exponent and
a smoother portion of a data will have a higher value of
Hölder exponent. A time series may have different
Hölder exponents at different points due to a variation
in the local degree of irregularity (or singularity).

The number of intervals N(α) where the time
series has Hölder exponents between α and α + dα
scale as [13]

(2)

where f(α) can be considered as the generalized fractal
dimension of the set of boxes with singularities α. The
multifractal spectrum is graph, where abscissa repre�
sents the Hölder exponent in the signal and the ordi�
nate is the generalized fractal dimension f(α) which
measures the extent by which a given singularity is
encountered. Multifractal spectrum can be evaluated
directly from equations given above (1) and (2) (and
actually it is calculated this way in Large deviation
spectrum calculations) but it is hard task. More usual
and easier procedure for multifracatal spectrum anal�
ysis is indirect one, based on generalization of the
measure of signal variation to so called partition sum:

(3)

where q is a real parameter that indicates the order of
the moment of the measure. The parameter q can be
considered as a powerful microscope, able to enhance
the smallest differences of two very similar maps [14].
Furthermore, q represents a selective parameter: high
values of q enhance boxes with relatively high values
for µj(ε); while low values of q favor boxes with rela�
tively low values of µj(ε). Partition sum Z scales as

(4)

where τ(q) is the correlation exponent of the q�th
order moment defined as [15]

(5)

µj ε( ) ε
αj.∝

N α( ) ε f α( )–
,∼

Z q ε,( ) µi
q
,

i 1=

N ε( )

∑=

Z q ε,( ) ετ q( )
,∼

τ q( ) q 1–( )Dq=

and Dq is generalized dimensions that can be calcu�
lated from [16]

(6)

The generalized dimension Dq is a monotonic
decreasing function for all real values of q within the
domain [–∞, +∞].

The connection between the power exponents f(α),
which can be considered as the generalized fractal
dimension of the set of boxes with singularities α, and
τ(q) is made via the Legendre transformation [13, 15]:

(7)

and

(8)

Therefore, the multifractal spectrum f(α) is usually
obtained from evaluation of generalized dimension Dq
and subsequent Legendre transformation of τ(q) using
Eqs. (7) and (8). The fL(α) is a concave downward
function with a maximum at q = 0 and it describes
properties of multifractal. Single humped function
f(α) obtained for multifractal spectrum is very useful
and easily discussed in terms of capacity, information,
and correlation dimension. Therefore it is widely
applied [17–19]. However, its shape is mainly conse�
quence of the applied Legendre transform. Actual dis�
tribution of the points with various Hölder exponents
could be obtained through the Large deviation spec�
trum.

The large deviation spectrum fG(α) which is based
on the Cramér theory of large Deviations [15, 20] is, in
accordance with Eqs. (1) and (2), defined as:

(9)

The function fG(α) reflects the exponentially

decreasing rate of  which is the number of inter�

vals having a Hölder exponent, , close to a Hölder
exponent α up to a precision δ when the resolution n
(the number of intervals in the α space) approaches ∞.
The fG(α) yields the large deviations from the “most
frequent” singularity exponent and thus displays
information about the occurrence of rare events such
as bursts (small α).

For detailed comparison of various chaotic states,
multifractal analysis is used here, rather than local
fractal dimension evaluation, since it may yield
additional insight into the complex nature of the
chaotic dynamical state [10]. The large deviation
spectrum yields information about the statistical
behavior of the probability of finding a point with a
given Hölder exponent in the signal under changes
of resolution [17].

Dq
1

q 1–
��������� Z q ε,( )log
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METHODS

Deterministic simulations were performed using
the MATLAB program package using the ode15s
solver. For the numerical calculation of the large devi�
ation spectrum, the FRACLAB toolbox has been used
[21].

The Bray–Liebhafsky oscillatory reaction, was
conducted in CSTR. The procedure is described in
more detail earlier [3]. The initial experimental condi�
tions were: [KIO3]0 = 5.9 × 10–2 mol dm–3, [H2SO4]0 =
5.5 × 10–2 mol dm–3, [H2O2]0 = 2.0 × 10–1 mol dm–3,
T = 48.6°C. The specific flow rate was 5.03 × 10–3 min–1.
Temporal evolution of the BL system was monitored
potentiometrically by Pt (Metrohm�6.0301.100) elec�
trode versus a double junction Ag/AgCl (Metrohm�
6.0726.100) electrode as the reference.

RESULTS AND DISCUSSION

Generally, multifractal analysis is the method for
examination of time series with highly irregular oscil�
lation periods and their amplitudes. The BL reaction
in chaotic regime also have the irregular time series,
but with two types of oscillations with significantly dif�
ferent periods and amplitudes. Moreover, the ampli�
tudes of large oscillations are almost same whereas the
amplitudes of small oscillations are different between
themselves.

The model of the BL reaction system in chaotic
regime appears to be very sensitive to changes of the
control parameter (similar to the experimental one)
and complex dynamic states appear in a very narrow
region of flow rates, j0. In much wider oscillatory
region, for low values of j0 only large amplitude relax�
ation oscillations are observed. Between complex
dynamic states and bifurcation to steady state at high
j0, there is a region of j0 values where only small�
amplitude oscillations are found. The mixed�mode
oscillations consist of these two kind of simple sus�
tained oscillations (large�amplitude relaxation and

small�amplitude, nearly sinusoidal ones) involved one
into the other. The mixed�mode dynamic states
appear in the form evolving with flow rate from X1 to
1Y, which denote the number of large and small ampli�
tude oscillations in one sequence, respectively. Among
them, windows of more complex dynamic states such
as the mixture of regular mixed�mode oscillations,
period doubling, and deterministic chaos are found.

The insets at the Fig. 1 illustrate two kinds of com�
plex oscillations with dominating X1 (Fig. 1a) and 1Y

(Fig. 1b) forms of dynamics. We applied both, the Leg�
endre spectrum and the large deviation spectrum on
these chaotic time series and results are shown in Fig. 1.
Well defined multifractal type spectra were obtained in
both cases. By application of large deviation spectrum
on these chaotic time series obtained at different flow
rates we have found one kind of bimodal distribution
which depends on fraction of large and small ampli�
tude oscillations. Legendre spectrum which is more
usual in multifractal analysis shows here skewed form
with maximum near to the second peak of the large
deviation spectrum. Lower Hölder exponents wing of
the large deviation spectrum is not covered with Leg�
endre spectrum, indicating significant information
lost, which is more pronounced for lower values of the
flow rate, where the dynamic state is typically of the X1

form. Therefore, we decided to use the large deviation
spectrum in the multifractal analysis of time series
from numerical simulations of the BL reaction.

At lower flow rates (j0 = 4.82592 × 10–3 min–1) large
deviation spectrum gives higher contribution of lower
Hölder exponents that correspond to situation when
fraction of large amplitude oscillations is higher. The
situation is opposite at higher flow rates (j0 = 5.0812 ×
10–3 min–1). The large deviation spectrum is analyzed
for several values of the flow rate as the control param�
eter in simulation, keeping all other parameters con�
stant. The intensities of the two peaks, corresponding
to the low and high Hölder exponent values, are pre�
sented in Fig. 2, in function of the flow rate.
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Fig. 1. (1) Large deviation and (2) Legendre spectrum for the time series from the simulations in the function of the flow rate as
a control parameter: (a) 4.82592 × 10–3, (b) 5.0812 × 10–3 min–1; α is Hölder exponent.
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From Fig. 2 we can see that contribution of lower
exponent peak decreases, while higher one increases,
with increasing flow rate. It is similar to the pattern
followed by the fractions of large and small oscilla�
tions, respectively. It can be concluded that, from the
statistical point of view, given by large deviation spec�
trum analysis, the level of singularity in the analyzed
numerical time series, continuously decreases with
increasing flow rate. Since the large oscillation frac�
tion also decreases in the same direction, it can be
connected with measured irregularities in time series.
Roughly speaking, in our case, large oscillations cor�
respond to the large fluctuations and therefore to the
large concentration of the measure µ and therefore to
large q values and small Hölder exponent values.

Since the applicability of the large deviation spec�
trum is approved in the numerical simulations of the
BL reaction, the same method is also used here to test
the data obtained from the experimental record of the
Pt electrode potentiometric measurements in BL
reaction under CSTR conditions. Results for both
Legendre spectrum and the large deviation spectrum
of the sample experimental time series are presented in
Fig. 3.

The same type of spectra is obtained for the exper�
imental record, as previously for the numerical simu�
lations. Relatively good agreement between two spec�
tra is typical for the form of the X1 dynamical state.
The shape of the spectra indicates multifractal nature
of the time series and of corresponding attractor in
phase space. The maximum of both spectra almost
coincide in this case, and it takes Hölder exponent
value significantly lower then one, demonstrating
highly irregular, chaotic behavior of the BL reaction in
CSTR.

CONCLUSIONS

Time series were obtained by numerical integration
of the ordinary differential equations for the Bray–
Liebhafsky oscillatory reaction model in the CSTR
reactor under the conditions of the deterministic
chaos and mixed mode periodic oscillations. The
applicability of the multifractal analysis in comparison
of various chaotic states was demonstrated. For the
low flow rate value, smaller Hölder exponents domi�
nate, indicating appearance of signal fractality, while
for the increased flow rate values higher Hölder expo�
nents are more pronounced. Established multifractal
analysis method is also successfully applied on the
experimentally recorded time series from the BL reac�
tion in CSTR and multifractal nature of the record is
confirmed.
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