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Two mathematical methods to quantify adulterations of extra virgin olive oil (EVOO) with refined olive
oil (ROO), refined olive-pomace oil (ROPO), sunflower (SO) or corn (CO) oils have been described here.
These methods are linear and non linear models based on chaotic parameters (CPs, Lyapunov expo-
nent, autocorrelation coefficients and two fractal dimensions) which were calculated from UV–vis scans
(190–900 nm wavelength) of 817 adulterated EVOO samples. By an external validation process, linear
and non linear integrated CPs/UV–vis models estimate concentrations of adulterant agents with a mean
correlation coefficient (estimated versus real concentration of cheaper oil) greater than 0.80 and 0.97
ractal dimension
yapunov exponent
utocorrelation function
V–vis
dulteration
live oils

and a mean square error less than 1% and 0.007%, respectively. In the light of the results shown in this
paper, the adulteration of EVOO with ROO, ROPO, SO and CO can be suitably detected by only one chaotic
parameter integrated on a radial basis network model.

© 2010 Elsevier B.V. All rights reserved.
unflower oil
orn oil

. Introduction

For centuries, the adulteration of food products with cheaper
nd more readily available substitutes has been a worldwide prob-
em. Currently, adulteration of foods is more and more prevalent,

ainly in those products with relatively high prices such as extra
irgin olive oil (EVOO). Due to this, a large number of cases of
dulteration of oily juice have been detected recently. The sub-
titution or adulteration of EVOO with cheaper ingredients is not
nly economic fraud, but may also on occasion have severe health
mplications for consumers. An example being the Spanish toxic
il syndrome resulting from the consumption of aniline denatural-
zed rapeseed oil that involved more than twenty thousand people,
ausing serious illness and even death [1–3].

To fight against the increase in these fraudulent activities two
easures are being taken. The chemical compositions of specific

live oils have been qualified and protected by certificates of
rotected designation of origin issued by a government body. Ana-
ytical techniques, physicochemical parameters, indexes, etc. [4–6]
nd their integration with mathematical algorithms [7,8] have also
een proposed. In the latter group, several techniques based on
hemometric tools and analytical techniques have been devel-
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oped to authenticate and detect olive oil adulteration. One good
example is the chromatographic techniques, including gas chro-
matography (GC) [9–11], gas chromatography–mass spectrometry
[12–14], high-performance liquid chromatography [15–17]. Other
examples are nuclear magnetic resonance spectroscopy [18–20] or
Fourier transformed infrared spectroscopic method [21]. The com-
bination of the aforementioned techniques and DSC has also been
used to carry out quality control and detect the adulteration of edi-
ble oils [22–24]. Although these methods are widely used to detect
low concentrations of adulterating agents, they require compli-
cated and expensive laboratory facilities. In addition, given that
their sampling times are habitually higher than the sample prepa-
ration time, these techniques cannot be applied to control on-line
the quality of the EVOO during the manufacturing process. Con-
sidering these important requirements and the associated risks of
adulteration of foods, the development of a simple, cheap, and rapid
alternative to detect the adulterating agent in EVOO is necessary.

Regretfully, the ideal tool for the detection of minute con-
centration of every possible adulterant product is not reality.
Nevertheless, currently, chemometric tools based on partial least
squares [25], principal component analysis [9], neural networks

[7,8], or even chaotic parameters present the most successful and
promising results [26].

Recently, it has been more apparent that most chaotic regions
can represent dynamical systems, and as they are tools, based on
chaotic parameters (CPs), they can detect slight variations in initial
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Table 1
Type of edible oils used to adulterate the extra virgin olive oil samples provided
by Aceites Borges Pont SAU (2008–2009 harvest season), brand and number of
adulterated oil samples used in the learning, verification and validation samples.

Type of adulterated oils Number of samples Brand
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Table 2
Meanings of maximum Lyapunov exponent (MLE) [16].

MLE < 0 Stable fixed
Refined olive oil 205 KOIPE, SOS Cuétara SA
Refined olive-pomace oil 204 Aceites Pina SA
Sunflower oil 204 KOIPE, SOS Cuétara SA
Corn oil 204 KOIPE, SOS Cuétara SA

xperimental conditions [27–29]. Models based on CPs could be
uitable to determine trace chemicals in real samples. Neverthe-
ess, in the chemical field, these types of chaotic models have been
escribed in few manuscripts [27,30]. Although to the best of our
nowledge, in the oleic field, there is only one publication where
odels based on chaotic parameters are shown [26]. The successful

esults achieved here and in other scientific fields lead us to think
hat a model based on chaotic parameters would be appropriate
o quantify the adulteration of foods. For this reason, the adulter-
tion of commercial EVOO with refined olive oil (ROO) or refined
live-pomace oil (ROPO), sunflower (SO) or corn (CO) oils has been
tudied here using linear models based on chaotic parameters and a
adial basis network model (RBN) based on a fractal dimension (vide
nfra) of UV–vis scans of adulterated EVOO samples. Taking into
ccount that an analytical technique which presents a sampling
reparation time less than the process sampling time is required,
he UV–vis spectroscopy technique has been applied here. To sum
p, a simple and rapid analytical technique, but which is insuffi-
ient for the determination of chemicals in real samples, combined
ith a powerful chemometric tool to correct this lack and create a

uitable tool to detect adulterant agents in EVOO.

. Materials and methods

.1. Instrumentation and oil samples

A Varian Cary 1E UV–vis spectrophotometer was employed for
bsorbance measurements from 190 to 900 nm using quartz cells of
cm path length. In the determination of absorbance, the expanded
ncertainty in the experimental measurement has been found to
e less than 0.03. All stock solutions were prepared using an AG
45 Mettler Toledo analytical balance (precision 0.01 mg).

The botanical origin and quality of all samples of extra virgin
live oil were guaranteed by the suppliers (Table 1). The EVOO
amples used here came from the same oil producer and corre-
ponded to the 2008–2009 harvest season. In addition, samples of
OO, ROPO, SO and CO have been provided by Spanish companies,
hich are shown in Table 1. All were stored in the dark at room tem-
erature until the time of analysis which was prior to their date of
xpiry. To estimate and detect the adulteration of EVOO with other
ow cost oils, binary mixtures containing EVOO and ROO, ROPO, SO
r CO were prepared. Following the procedure shown in the Offi-
ial Journal of the European Union (Commission Regulation (EC)
o. 640/2008, Annex IX), all samples were prepared and diluted in

sooctane (C8H18 ≥ 99.5% purity, from MERCK).

.2. Chaotic parameters used

To detect low grade oils (ROO, ROPO, SO and CO) in the
VOO, several chaotic parameters (Lyapunov exponent, autocorre-
ation functions and fractal dimensions) have been calculated from

V–vis scans of adulterated EVOO samples.

Lyapunov exponent (LE) provides additional useful informa-
ion about the system studied [28]. This can be used to measure
he sensitivity of a system’s behavior under initial conditions. LE
lso characterizes the dynamic of a complex process, quantifies the
MLE = 0 Stable limit cycle
MLE = ∞ Noise
0 < MLE < ∞ Chaos

average growth of infinitesimally small errors at initial points and
describes the rate of separation of infinitesimally close trajectories.
The Lyapunov exponent is defined by Eq. (1) [31].

Lyapunove exponent =
∑m

k=1log2L(�k)/L(�k−1)

��m
(1)

where ��m, k and L(�k) are the prediction wavelength inter-
vals, the wavelength and the Euclidean distance between the
developed points in the space, respectively. For instance, consider-
ing p1 at (�k−1, Absorbancek−1) and p2 at (�k, Absorbancek),
the Euclidean distance between p1 and p2 (L(�k−1)) is√

(�k−1 − �k)2 + (Absorbancek−1 − Absorbancek)2 (Fig. 1) This
parameter is one of the most sensitive to determine the chaotic
dynamic of processes [28]. Depending on the sign of the maximal
LE (MLE), different types of attractors (dynamical systems evolve
after a long period of time) can be found (Table 2). A positive
value of the maximal Lyapunov exponent means chaos, that is, the
neighbouring points of trajectories in the space diverge [32].

Autocorrelation functions (R��). These parameters measure lin-
early how strongly, on average, each data point is correlated with
wavelength lag (��). These are the ratio of the autocovariance to
the variance of the data. In general, R�� is between 1 (small ��)
and 0 (large ��) [28]. R�� is defined by the following equation [32]:

R�� =
∑N−k

n=1 (Xn − X̄)(Xn−k − X̄)

z

√∑N−k
n=1 (Xn − X̄)

∑N−k
n=1 (Xn−k − X̄)

(2)

where X, X̄ and N represent the absorbance set of the measurements
by UV–vis spectrophotometer, their average and the total number
of datasets, respectively. Given that the �� value ranges between 0
and 650 wavelength with �� = 50, 14 parameters have been calcu-
lated. For instance, in the case of �� = 50 or �� = 150, throughout
the work R�� have been referred to as R50 or R150, respectively.

Fractal dimensions. One of the most descriptive definitions of
fractal is “A fractal is a subset of Rn which is self-similar and whose
fractal dimension exceeds its topological dimension” [29]. Apparently,
there are no relations between dynamic systems and fractal geom-
etry. In classical geometry, the dimension of a line is one, and the
square and volume are two and three, respectively, but what is the
dimension of the Koch curve or Sierpinski triangle? It is certain that
fractal images do not fit into the aforementioned notions of geomet-
rical dimensions. In the Sierpinski triangle, the fractal dimension
can be calculated by Eq. (3). This triangle can be subdivided into
three triangles (P = 3) and can be magnified by a factor (M) of two.
With these considerations, the dimension of Sierpinski triangle is
equal to 1.584 [29].

Fractal dimension = log(P)
log(M)

(3)

The problem becomes more complex when the fractal dimension of
experimental curves is required. In these cases, the fractal dimen-
sions are numbers that quantitatively describe how an object fills
its space. This dimension can be calculated by the slope between

the number of circles (N(d)) necessary to fill an experimental curve
and their diameters (d) (Fig. 2). In plane geometry, objects are solid
and continuous and given that they have no holes, they have inte-
ger dimensions. Fractals are rough and often discontinuous, and
so, they present non integer dimensions (vide infra). From a frac-
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Fig. 1. UV–vis scans of binary mixtures composed of extra virgin olive oil and ROO
(
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i=1
— 0.882%, RD = 1.1891 and — 6718%, RD = 1.1275, a), ROPO (— 0.834% RD = 1.1829
nd — 7.224%, RD = 1.1159, b), SO (— 0.787% RD = 1.1813 and — 6.959%, RD = 1.1205,
) CO (— 1.087% RD = 1.1873 and — 7.335%, RD = 1.1396, d).

al geometry point of view, the fractal dimension is a measure of

omplexity which is used to describe the irregular nature of lines,
urves, planes or volumes.

In this work, the regularization dimension (RD) and the box
imension (BD) using the plain box method have been computed
83 (2010) 404–409

by Fraclab version 2.0 (Toolbox of Matlab version 7.01.24704, R14).
Considering the original signal as fractal, its graph will have an infi-
nite length. Taking into account RD and that all regularized versions
have a finite length, the RD measures the speed at which this con-
vergence to the infinite takes place. To calculate BD, the software
works in exactly the same way as when computing the regular-
ization dimension except that in this case different box sizes are
tested. In almost all cases, the estimation of fractal dimension by
the box method is less accurate than the calculation by the regular-
ization method. All necessary parameter values to calculate RD and
BD were selected by default configuration settings of the software
used [33].

2.3. Learning, verification and validation sample

Every dataset of the learning and verification samples is
composed of seventeen aforementioned chaotic parameters (a Lya-
punov exponent, 14 autocorrelation parameters, and two fractal
dimensions) with their respective concentration of low grade oil in
percentage (ROO, ROPO, SO or CO). Experimentally, for every adul-
terant oil (ROO, ROPO, CO or SO oils), 22 different concentrations
of adulterating oils have been homogenously distributed from 0%
(EVOO pure) to 10%. Every sample has been made three times and
each sample has been UV–vis scanned three times. These parame-
ters were calculated from the UV–vis scans from all binary mixtures
composed of EVOO and ROO, ROPO, SO or CO. As an example, in
Fig. 1, eight UV–vis scans selected from 817 scans which composed
the database used to design the linear and non linear models in this
work can be seen. Although the EVOO samples adulterated with
ROPO and SO are more similar, all profiles with similar concentra-
tion values are comparable. The learning and verification samples
are composed of 756 datasets, which were distributed in 189 for
EVOO + ROO, 189 for EVOO + ROPO, 189 for EVOO + SO and 189 for
EVOO + CO. The only difference between the verification and learn-
ing samples is that the latter is composed of 80% (605 datasets)
of data and the former of the remaining 20%. Taking into account
that every datum of the verification sample should be interpo-
lated within the learning range, the data were randomly distributed
between both samples [34].

On the other hand, with relation to the external validation pro-
cess, the above mentioned chaotic parameters have been calculated
using different UV–vis scans from binary mixtures composed of
EVOO and ROO (16 samples), ROPO (15 samples), SO (15 sam-
ples) or CO (15 samples). Using these chaotic parameters and their
respective adulterating oil concentration, external validation sam-
ples have been made. These external validation samples present
the same format as the learning and verification samples [34].

2.4. Linear models

The linear models tested in this work are considered linear in the
parameters, also called statistically linear [35]. Linear and multiple
linear regressions are the most widely used and known modelling
methods. They have been adapted to a broad range of situations. In
a multivariate case, when there is more than one independent vari-
able, the regression line cannot be visualized in two-dimensional
space. In this case, a linear equation containing all those variables
can be constructed, Eq. (4):

y = ˇ0 +
n∑

ˇixi + ε (4)
where, y, n, ˇi (ˇ0, ˇ1, . . . , ˇn), xi (i = 1, 2, . . . , n) and ε represent
response variable, number of observations, parameters of the
model, independent variables, and random error, respectively [36].
The error term is an unobservable random variable that represents
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he residual variation and will be assumed to have zero mean, con-
tant variance and a normal distribution. The linear models are not
imited to lines or planes, but include a fairly wide range of shapes
36]. In this work, the linear models and statistical analyses were
arried out by SPSS version 15.0.1.

.5. Radial basis network model

The radial basis model consists of three layers: the input, hidden
adial basis and output linear, Fig. 3. The input layer has no calcu-
ation power and serves as an input distributor to the hidden radial
asis layer. The input to the hidden radial basis neuron is the vector
istance between its weight vector, w (self-adjustable parameter of
he net), and the input vector, p, multiplied by the bias (the two last
ayers have biases, Fig. 3). The transfer function of radial basis neu-
ons is a Gaussian function, Eq. (5). The radial basis function has a
aximum of 1 when its input is 0. As the distance between w and
decreases, the output increases. The bias allows the sensitivity of

he radial basis neuron to be adjusted. The operation of the output
ayer is a linear combination of the radial basis units according to
q. (6) [37].

j(x) = 1

ex2
(5)

k(x) =
nh∑
j

wjk · Gj(x) + wk (6)
In Eqs. (5) and (6), yk is the kth output unit for the input vector
, nh is the number of hidden radial basis units, wjk is the weight
etween the jth hidden and the kth output neurons, Gj is the nota-
ion for the output of the jth radial basis unit, and wk is the bias.

p yk

Output
linear layer

Input
layer

Wjk

xkΣ

Hidden radial basis
layer

1

1

Fig. 3. Diagram of calculation of Radial basis network ( –d bias node).
istance, diameter and the number of object necessary to fill the curve, respectively).

The type of network used here is the radial basis network exact
fit. Apart from the spread constant parameter (vide infra), taking
into account that the performance error is equal to zero, the RBN
model is able to optimize all other adjustable parameters itself [37],
and therefore, this type of model is simple to use. It depends on a
matrix of input vectors, a matrix of target class vectors and a spread
of radial basis functions (spread constant). The radial basis network
algorithm provides a new exact radial basis network.

As the spread constant (SC) is the only parameter of the RBN
which can be optimized, this was done by testing different spread
constant values between 0.001 and 15 [37]. The response variables
were the mean prediction error (MSE, %), Eq. (7), and the correlation
coefficient (R2, predicted vs. experimental values).

MSE = 1
N

∑
n

(rn − yn)2 (7)

In Eq. (7), N, yn, and rn, are the number of observations, neural net-
work model estimation and real value, respectively. The design was
analyzed taking into account that the estimations should be carried
out with the need to achieve the lowest MSE and the highest values
of correlation coefficient. The RBN used in this work was designed
using Matlab version 7.01.24704 (R14) [37].

3. Results and discussion

A database formed by the percentage of adulterating agents
ROO, ROPO, SO or CO in EVOO and the chaotic parameters (Lya-
punov exponent, autocorrelation coefficients (14 parameters) and
two fractal dimensions) calculated by their UV–vis scans were
made. This was divided into two databases viz., learning and ver-
ification samples (vide supra). Both linear and non linear models
were optimized, verified and validated using the same learning,
verification and validation databases, respectively. In this work,
all statistical results shown were calculated using these two latter
databases.

Firstly, the adulteration of EVOO was studied by linear models.
Then, in order to improve the statistical results, a non linear model
based on the RBN model has been applied. Finally, both linear and
non linear models were externally validated [34].

3.1. Linear modelization of the adulteration of EVOO

To find the most suitable model to estimate the concentration
of adulterating agents (dependent variable) and as a consequence
of the combination of the aforementioned 17 chaotic parameters
(independent variables), 262,144 models were designed. Here, six
models with the best statistical results using six respective groups
formed by 1 to 6 independent variables and their statistical results
are shown in Table 3. As expected, the models, which use more
independent variables, can better explain the response surface.
Thus, the statistical results improved when more independent vari-
ables were used, Table 3. It is worth mentioning that RD is one

independent variable in all proposed models to estimate the adul-
terating agent concentration. And a correlation coefficient value
higher than 0.82 can be achieved using only this parameter.

Although the aforementioned models can be used to easily
determine the adulteration of EVOO with ROO, ROPO, SO or CO,
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Table 3
Estimation of adulterating agents of EVOO by linear regression models.

˛0 ˛1 ˛2 ˛3 ˛4 ˛5 ˛6 R2a MSE (%)b

116.135 −96.776 RD – – – – – 0.827 1.273
129.128 −9.479 R350 −103.376 RD – – – – 0.872 0.960
118.006 2.551 R50 −7.856 R500 −95.595 RD – – – 0.881 0.899
120.893 −16.734 R100 19.262 R250 −3.987 106 Lia −100.089 RD – – 0.897 0.788
94.335 −17.853 R100 18.714 R250 −3.722 106 Lia −89.252 RD 15.750 BD – 0.903 0.753
91.498 28.459 R250 −11.801 R350 16.733 R450 −6.181 106 Lia −90.647 RD 16.894 BD 0.910 0.713
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Table 4
Optimized parameters of RBN model and statistical results calculated by verification
sample.

Parameter Optimized value

Number of input node 1
Number of output neurons 1
Spread constant 1.3 × 10−3

Statistical results
Correlation coefficient 0.989

RBN model than by the linear model (equation 8). In particular, the
correlation coefficient improves from 0.710 for the linear model
to 0.966 in the RBN model. The MSE from linear to RBN models
decreases by nearly twenty times, Table 5. In the light of these

Table 5
Statistical results of the external validation processes of linear and RBN models.
a The [Adulterating agent] =
∑

i=0

˛i.

b Eq. (7).

n order to find the most statistically reliable model using the sev-
nteen independent variables, the model with the best statistical
esults was selected. It is formed by 10 of them, Eq. (8).

Adulterating agent] = 83.681 + 8.482 · R150 + 37.841 · R250

+ 18.295 · R450 − 23.070 · R500

+ 10.322 · R550 − 0.777 · R600

− 4.367 · R650 − 4.654 × 106 · Lia

− 86.111 · RD − 17.919 · BD (R2 > 0.923;

MSE < 0.643%) (8)

Different combinations of all chaotic parameters presented here
re suitable to quantify the ROO, ROPO, SO or CO concentrations as
dulterating agents of EVOO when the former concentration is less
han 10%. To sum up, linear models based on the chaotic parameters
alculated by the UV–vis scans of adulterated EVOO samples can
e applied to detect and quantify adulterating agents. It is notice-
ble that by increasing the number of independent variables of the
inear models, the statistical results of the model do not improve
ufficiently to justify these steps, mainly from models with six to
en independent variables. Therefore, another type of model was
ested.

Better statistical results could be achieved establishing non lin-
ar models between the aforementioned chaotic parameters and
dulterating agent concentrations, but the model, and so, its cal-
ulation procedure is relatively more complex. However, the poor
tatistical results aforementioned led us to test a non linear model
hich was based on radial basis network.

.2. Non linear modelization of the adulteration of EVOO

Taking into account that a further step in the complexity of the
odel used has been taken, in an attempt to find the simplest non

inear model, the least number of independent variables to describe
he adulteration of EVOO studied has been selected. Because of this,
iven that the regularization dimension (fractal dimension) linearly
escribes the adulteration of EVOO with low cost oils studied with
orrelation coefficients higher than 0.82 (Table 3), the non linear
odel has been designed using only this independent variable. In

ine with this, the radial basis network model consists of only one
nput node (RD) and the output neuron is designed by the require-

ent of the model, that is, as the RBN model is designed to estimate
he calculation of the adulterating agent concentration, it has one
utput neuron. The hidden neuron number is designed by the RBN

odel itself.
The only adjustable parameter of the RBN model is the spread

onstant (SC, vide supra). The SC was selected in the RBN opti-
isation and no experimental design was necessary. The spread

onstant was analysed taking into account that the estimations
MSE (%)a 0.005

a Eq. (7).

should be carried out using the lowest possible MSE (Eq. (7))
and highest correlation coefficient values. The optimised values
for the model are shown in Table 4. Although the RBN model is
more complex than the linear model, in comparison with other
neural network models, the optimization of this RBN model is cur-
rently one of the most simple of all existing neural network models
[37].

Comparing the performance of linear and non linear mod-
els, using the verification sample, the correlation coefficient has
increased from 0.92 to 0.99, respectively, but in the case of MSE
the improvement is even higher, from 0.64% to 0.005%, Eq. (8) and
Table 4, respectively. In principle, these statistical results are rela-
tively good, but to guarantee the linear and non linear models as
suitable to estimate the concentrations of adulterating agent con-
centrations, these models require to be externally validated [34].

3.3. External validation of the linear and non linear models

To validate the linear model described by equation 8 and the RBN
model, a new database have been used (vide supra). It consists of
chaotic parameters calculated by 61 datasets (10% of the number of
UV–vis scans used in the learning sample), which consist of UV–vis
scans from new samples constituted by EVOO and ROO, ROPO, SO
or CO oils with concentrations ranging between 0% and 10% [34].

As can be seen in Fig. 4, the adulteration of EVOO with ROO,
ROPO, SO or CO oils can be more adequately detected using the
Linear models RBN model

Correlation coefficient 0.710 0.966
MSE (%)a 1.005 0.051

a Eq. (7).
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2009, http://www.itl.nist.gov/div898/handbook.
Fig. 4. External validation of linear (a, Eq. (6)) and RBN (b) models.

esults, the RBN model is a reliable tool when detection of ROO,
OPO, SO or CO concentrations of less than 10% is required. There-

ore, it is suitable not only to detect adulterations, but also to
easure impurities when, for instance, high grade olive oil is trans-

erred to other storage tanks which had contained lower grade olive
ils and had not been adequately cleaned. In addition, given the
haracteristics of the analytical technique used, this detector can be
pplied to detect adulterations in the industrial chain of production
f extra virgin olive oil.

In the light of the statistical results, the regularization dimen-
ion, which can be calculated easily, extracts the major part of the
ssential information from huge databases such as UV–vis scans
f adulterated EVOO. In addition, the detection of the presence of
ther low cost and edible oils can be successfully carried out only
y this parameter and RBN model. This is a promising result which
ould take us closer to reaching the utopia of the ideal detector of
dulterations of extra virgin olive oil.

Nevertheless, taking the statistical results shown in this work
nto account, depending on the final application of the models,
oth models could be used. For faster computation, a linear model

escribed by equation 8 could be designed and applied using exper-

mental data to estimate with less accuracy the adulterating agents
oncentrations of EVOO. Otherwise, if the mathematical complex-
ty of the model is not important or high accuracy is necessary, RBN

odels should be adequate.

[
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