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Electrochemical noise analysis of corroding surfaces provides useful information regarding the temporal
changes in material degradation, corrosion mechanisms and condition monitoring. In this study, we ana-
lyzed the electrochemical potential and current noise originating from the corrosion of carbon steel
(ASTM A106) in distilled water using multifractal analysis. The empirical Legendre spectrum and large
deviation singularity spectrum are determined for the electrochemical noise at different stages of corro-
sion. A wavelet-based multifractal model is introduced to describe the multiscaling behaviour.
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1. Introduction

Corrosion is deterioration of essential properties in a material
due to reactions with its surrounding [1,2]. It is an electrochemical
process whereby metal reacts with its environment to form an
oxide or other compound. When metal is exposed to an electrolyte,
the metal atoms at the anode site lose electrons and these elec-
trons are then absorbed by other metal atoms at the cathode site.
There are many techniques to monitor corrosion processes, which
can be classified in two ways – intrusive/non-intrusive and direct/
indirect methods [3,4]. An intrusive and direct technique requires
entry into the process stream and measures the direct result of cor-
rosion. Examples of such methods include the corrosion coupons,
electrical resistance, linear polarization resistance, electrochemical
noise analysis, etc. Techniques such as ultrasonic testing and radi-
ography are considered as indirect corrosion monitoring tech-
niques as they could only measure the outcome of the corrosion
process. One of the versatile direct techniques mentioned above
is the electrochemical noise (EN) analysis which has been proved
useful for studying corrosion processes. EN is generally defined
as random fluctuations of the potential or current observed in cor-
rosion processes [5–7]. The fluctuation can be regarded as a result
of the random nature of the corrosion reactions. This method is
attractive in corrosion monitoring applications because of the
non-intrusive measurement technique.

However, the interpretation of data from electrochemical noise
measurement requires detailed analysis as it often contains com-
plex superposition of different signatures and irregular fluctua-
tions. In terms of signal’s characteristic harmonics, these may
ll rights reserved.
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refer to low-frequency (large time scale) and high-frequency
(small time scale) information contents. The presence of various
mechanisms with broad range of time scales is likely to complicate
the analysis of EN signals. The main objective of this study is to
analysis the electrochemical potential and current noise originat-
ing from the corrosion of carbon steel (ASTM A106) in distilled
water using multiscaling analysis, namely qth order wavelet scalo-
gram [8] and multifractal analysis [9,10]. One of the main results of
the study is the introduction of multifractal wavelet model for sim-
ulating small time scale fluctuation using beta-distributed random
multiplicative cascade process [11]. The paper is organized as fol-
lows. In Section 2, we briefly introduce the corrosion monitoring
techniques with emphasize on EN. Characterization of EN signals
using Fourier power spectral density and wavelet scalogram based
on spectral amplitudes, spectral exponents, Hurst or Holder expo-
nents and fractal dimensions are described in Section 3. The exper-
imental setup for measuring the EN potential and current noise is
given in Section 4. Scaling behaviour of EN signals from the per-
spective of fractal and multifractal theories are described in Section
5. The results of the parameters estimation and simulation are dis-
cussed in Section 6 before the conclusion.
2. Corrosion monitoring using EN

Various studies have indicated that the EN is able to provide
valuable information about corrosion types and mechanisms
[12–21]. Basically, there exist two general classes of corrosion,
namely the uniform and the localized corrosion. Uniform corrosion
takes place evenly across the entire exposed surface of the metal.
Localized corrosion in contrast, is concentrated to small areas of
exposed surface and often results in deep penetration of the mate-
rial. Since the net corrosion rate is lower than that of uniform
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corrosion, detailed analysis techniques are needed for monitoring
localized corrosion. In order to understand the mechanism of cor-
rosion, the source of EN can be traced to three main components,
namely the charge carrier effects, surfaces processes and environ-
mental changes. Carrier induced noise originates mainly from the
discrete nature of charge and its thermal agitation. Noise due to
surface processes occurs on the electrodes and specifically to their
heterogeneity. Variations in the physical and chemical parameters
of the observed system contribute to the very slow fluctuations of
the electrode potential.

Uniform corrosion of iron and iron alloy in various saline solu-
tions have been extensively studied based on EN characteristics by
Legat and Zevnik [22] and many others [23,24]. Corrosion process
tends to be localized when the solution is still, while in system
with strong movement of electrolyte, the tendency is towards uni-
form corrosion [25]. Corrosion of metals and alloys by pitting con-
stitutes one of the serious material damages. Pitting is an
electrochemical process in which small holes grow rapidly in a me-
tal surface under the influence of a electrolytic anion and an elec-
tric field. The origin of the nucleation site depends on a number of
factors regarding the system. EN based techniques are proven to be
sensitive for detecting spontaneous changes in the corrosion pro-
cesses namely the initiation of pitting and cavitations attack
[26,27]. Some metallurgical microstructural or microcompositional
features may induce pitting preferentially, for example in stainless
steel in chloride solution, where as in the case of aluminium ion
migration under the electric field is required [28,29]. Other forms
of corrosion include crevice corrosion, intercrystalline corrosion,
stress corrosion cracking, etc. [30].

As this study is focusing on corrosion in carbon steel, some re-
cent findings related to EN are briefly described. Carbon steel ac-
counts for approximately 85% of the annual steel production
worldwide and becomes the most widely used engineering mate-
rial, despite its relatively limited corrosion resistance [31]. Mild
steel and high carbon steels are classified as ferrous metals (with
large percentage of iron) which can be further subdivided as (a)
mild or low carbon steel (0.08–0.30% carbon), (b) medium carbon
steel (0.3–0.5% carbon) and high carbon steel (0.55–1.40% carbon).
While they may occur small changes in the general corrosion
behaviour among the different types of carbon steel, small addi-
tions of copper, chromium, nickel and phosphorous are known to
produce significant reduction in corrosion rate in certain environ-
ments. Aqueous corrosion of carbon steel under different experi-
mental conditions can be found in [22,32–34]. Corrosion of pipes
carrying tap water has been found to be accelerated by increase
in both the temperature and the oxygen content of the water
and sometimes by changes in its chemical composition. The corro-
sion rate of carbon steel is also observed to be strongly dependent
on the pH and fluid velocity [35]. Characteristic of EN in carbon
steel corrosions in the presence of different corrosion inhibitors
have been considered in [36–39]. The atmospheric corrosion of
carbon steel depends on relative humidity and time of exposure
in the environment containing corrosive gases such as SO2, NOx,
CO2, O3, NH3, etc. [40]. Reduction in the atmospheric corrosion rate
of carbon steel has been observed by alloying the steel with copper,
nickel, silicon, chromium and phosphorous. We end this section
with a remark that very little is known about corrosion in carbon
steel in distilled water. Therefore, this study is hoped to highlight
some non-trivial aspects of EN signals in such a system, in partic-
ular the scaling behaviour.

3. Scaling approaches in EN analysis

There are various types of time series analysis techniques devel-
oped to extract useful information such as corrosion types and cor-
rosion rate from the electrochemical signals. Among the commonly
used EN analysis approaches are time-domain statistics [5,7] such
as mean, variance, skewness, kurtosis, root-mean-square and the
frequency domain power spectrum density [41]. Pujar et al. [42]
used standard deviation of current noise versus time to assess
intergranular corrosion in 316(N) stainless steel. Hladky and Daw-
son [41] showed that the amplitude of EN power spectrum at low-
frequency is correlated to the rate and mode of corrosion attack.
Moreover, a characteristic roll-off slope of the power spectral den-
sity was shown to be related to the type of corrosion [41,43,44]. For
example, in [41], a roll-off of �20 dB/decade was associated to with
pitting attack while a much steep roll-off �40 dB/decade was ob-
served in cases where general corrosion processes are predomi-
nant. From the perspective of fractal geometry, the roll-off slope
refers to power-law type scaling phenomenon [9,45]. Hence, the
spectral exponent b of the power spectral density can be related
to the fractal dimension D through a relation D = (5 – b)/2. A con-
crete fractal stochastic process that exhibits such a ubiquitous
characteristic is fractional Brownian motion parameterized by
self-similar exponent H (also known as Hurst exponent), where
0 < H < 1 [46]. The Hurst exponent is related to fractal dimension
by relation D = 2 – H or with spectral exponent b by b = 2H + 1. Esti-
mation of Hurst exponent can be done based on linear regression
of log–log plot of power spectral density or using the rescaled-
range (R/S) analysis. R/S analysis has been used to study spontane-
ous voltage fluctuation in 7039-T64 and 2519 aluminium alloy
specimens in aerated NaCl solution [47]. The fractal dimension
and the Hurst exponent were then compared with the results of
electrochemical impedance spectroscopy and surface microscopy
to determine the severity of localized attack of aluminium. Follow-
ing the interpretation of a fractal stochastic process with long-
range dependence, the noise is said to be anti-persistent when
H < 1/2 and persistent when H > 1/2. The crossover from persistent
to anti-persistent is observed at large time scales in the corrosion
of aluminium in electrolyte containing NaCl [48]. The anti-persis-
tent nature of pitting above the crossover time indicates that each
pit influences the potential such a way that it impedes the forma-
tion of a new pit. Despite the success of power spectral density
analysis for EN characterization, the method has a serious limita-
tion, namely it is valid only when the signal is stationary. Most of-
ten, the EN signals are highly non-stationary with complex scaling
behaviour, especially when the localized corrosion starts to occur
with pitting initiation and pitting propagation. To overcome the
limitations of fast Fourier transform-based approaches, one can re-
sort to the more powerful wavelet-based analysis which enables
the characterization of non-stationary properties of the EN signal
such as local point-wise regularity [8], and also capable of provid-
ing time-varying spectral analysis.

The multiresolution property of wavelet analysis is a powerful
tool to detect local regularity and self-similar scaling features.
There are a number of studies that have already highlighted the
fractal characteristic of EN using wavelet analysis [49–52]. In the
investigation of inhibitor and surface stability effect in the corro-
sion process, Liu et al. [52] suggested the use of wavelet standard
deviation exponent, which is determined from the slope of log–
log plot of standard deviation of wavelet coefficient versus the
scales to describe the fractal characteristic of EN signal. They
claimed that the wavelet standard deviation exponent describes
the corrosion dynamics better than the conventional wavelet expo-
nent [53] and the Hausdoff exponent [9]. More recently, Planinšič
and Petek [54] have used the power-law relationship between the
variance of wavelet coefficients and scales to extract the fractal
dimension of the EN for characterization of the associated corrosion
processes. They found that general corrosion can be treated as a
stationary random process with weak persistence and pitting corro-
sion as a non-stationary random process with long-memory, while
passivity is modelled as a Brownian motion-like non-stationary
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process. A common assumption of fractal approaches is that EN is
a homogenous fractal process (monofractal) having the same
scaling exponent across all time scales. From the intermittent and
bursty non-Gaussian behaviour and the heavy-tailed probability
distribution of the fluctuations, EN seems to exhibit inhomoge-
neous fractal characteristics with non-linear exponents for qth
order structure functions or with time-dependent scaling expo-
nents. One possible interpretation of this inhomogeneity in a fractal
process can be attributed to multifractality, which can be thought of
as a complex set of interwoven scaling subsets that cannot be de-
scribed by single exponent like the fractal dimension or the Hurst
exponent [10,11].

In this study, we first demonstrate that EN is not a homoge-
neous fractal signal by using wavelet scalogram analysis. The mul-
tifractality of EN is then examined using Legendre spectrum (LS)
and large deviation spectrum (LDS). We propose the application
of a multiplicative multifractal wavelet model (MWM) to describe
the general multifractal characteristics of EN. MWM was devel-
oped by Riedi et al. [11] for the modelling of network traffic. Like-
wise, it is assumed here that the EN is generated by a
multiplicative cascade process with long-range dependence. At
the microscopic time scale, the EN may be viewed as the result
of aggregation of a large number of independent individual sources
switching between ’ON’ and ’OFF’ states. The empirical data used in
this study are obtained from zero-resistance ammeter (ZRA) mea-
surement of EN signals of ASTM A106 carbon steel specimens
undergoing corrosion in distilled water at room temperature.

4. Corrosion experiment

Two cylindrical electrodes made from A106 mild steel (wt.%: C
0.35, Mn 0.29–1.06, P 0.025, S 0.025, Si 0.1 and Fe remaining) with
0.8 cm2 surface area are embedded inside a resin filled cylindrical
probe. An electrochemical cell is formed together with an addition
Ag/AgCl reference electrode cell with saturated KCl as filling solu-
tion. The exposed surfaces of both working electrodes are first
abraded with emery paper (1500 grade) and polished with deag-
glomerated alumina. The polished surfaces are rinsed with distilled
water and acetone. The electrode probe is then connected to the
potentiostat and active surface is immersed in a cell filled with dis-
tilled water and maintained at room temperature (27 �C). EN data
are recorded using Gamry Ref600 zero-resistance ammeter (ZRA)
with three-electrode configuration. The data sampling frequency
is set at 1 Hz and the recording is done for duration of 24 h. From
the continuous electrochemical noise time series, we arbitrarily
choose four temporal regimes for the potential and current fluctu-
ation signals, namely at 0–2 h, 4–6 h, 10–12 h and 20–22 h to
study the multifractal characteristics of EN. The regimes are loosely
chosen as to capture different stages of the corrosion. At the first
hour, the corrosion rate appeared to be very slow, while at the last
hours, the top surface of the sample is completely covered with
oxide layer. The morphologies of the carefully cleaned surfaces at
these four selected durations are shown in Fig. 1. The bright areas
Fig. 1. Morphologies of corroded surface at (a) 0
in the images are the corroded regions. One may also notice dark
spots at the centre of these bright areas, which are most likely
the pitting sites. Detailed study of the microstructure using SEM
and AFM will be reported elsewhere. In this work, we shall confine
the analysis to the EN signals. The potential and current noise sig-
nals are shown in Fig. 2 and Fig. 3, respectively.

5. Theory and methods

5.1. Fractal and multifractal signals

A random process XðtÞ is said to be self-similar with the Hurst
index Hð> 0Þ if it satisfies the scale invariance relation XðktÞ �
kHXðtÞ for any k > 0, (where � stands for equality in the sense of
distribution for a fixed t and k) [9,46]. This implies that the sample
paths ðt;XÞ and (kt; ð1=kÞHXÞ are statistically equivalent to each
other.

One of the most quoted examples of Gaussian self-similar pro-
cesses with stationary increments is the fractional Brownian mo-
tion (FBM) [46] indexed by H 2 ½0;1�. The increment processes of
FBM are associated with the fractional Gaussian noise (FGN) that
exhibits interesting behaviour at different regimes of the Hurst
exponents. FGN is said to be anti-persistent or exhibiting short-
memory (analogous to the notion of sub-diffusion in transport
phenomena) for 0 < H < 0:5, while 0:5 < H < 1 refers to persistent
or long-memory (or super-diffusion). FBM reduces to the standard
Brownian motion when H ¼ 0:5 with the increment processes
corresponding to the uncorrelated Gaussian white noise. The sta-
tionary increment property together with self-similarity allows
one to define power spectral density with power-law behaviour
Sðf Þ � jf j�b, where b = 2H + 1 is the spectral exponent mentioned
earlier [55]. Even though the FBM and FGN have been very success-
ful in the modelling of monofractal processes with a single Hurst
exponent or fractal dimension, they are not suitable for scaling
phenomena with non-Gaussian behaviour or transient processes
with complicated local scaling features.

A generalization of the monofractal concepts is provided by
multifractal analysis [10]. A process XðtÞ is said to be a multifractal
if it has stationary increments and the qth order moment of XðtÞ
satisfies E½jXðtÞjq� ¼ bðqÞsðqÞþ1, where sðqÞ is called the scaling func-
tion or generalized Hurst exponent of the multifractal process.
Monofractal is a degenerative case of the multifractal process with
scaling function sðqÞ ¼ qH � 1, where H is the Hurst exponent. The
Legendre spectrum fL :¼ s�ðaÞ is obtained from the Legendre trans-
form of the scaling function. Let us recall the definition of the local
Hölder exponent of a function or distribution f at point t0.
Assuming there exists a constant C and a polynomial PnðtÞ of order
n such that t is in a neighbourhood of t0, one then has
jf ðtÞ � Pnðt � t0Þj 6 Cjt � t0ja, where a is the local Hölder exponent.
The Hölder exponent quantifies the scaling properties of a process
at point t0 such that the lower values correspond to the more irreg-
ular variations. A multifractal process can be considered as a con-
tinuum of fluctuations of diverse local scales, and this feature is
–2 h, (b) 4–6 h, (c) 10–12 h and (d) 20–22 h.
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Fig. 2. Electrochemical potential signals at different temporal stages of corrosion: (a) 0–2 h, (b) 4–6 h, (c) 10–12 h and (d) 20–22 h.
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characterized by the smooth Legendre spectrum which represents
the distribution of Hölder exponents.

Another way to obtain the multifractal spectrum is through the
large deviation spectrum derived from Cramèr’s theorem of large
deviations [56,57]. This definition offers a good compromise be-
tween accuracy and computational complexity. The large deviation
spectrum is defined as

fgðaÞ ¼ lim
e!0

lim
n!1

lnNn
e ðaÞ

� ln dn
; ð1Þ

where

Nn
e ðaÞ ¼ # an

e a� an
i

�� �� < e
� �

: ð2Þ

Nn
e ðaÞ denotes the number of intervals having a coarse grain Hölder

exponent an
i , close to a Hölder exponent a up to a precision e. The

term in the denominator dn is related to the partition defined by
the measure at nth resolution. The fgðaÞ spectrum is then estimated
using a kernel-density-based method [58]. Contrary to the Legendre
spectrum of a multifractal process which is a concave function, the
large deviation spectrum does not need to be concave, thereby is
more appropriate in a general setting. The multifractal formalism
essentially holds for both singularity spectra, but fg contain more
information than fL. It can be proven that fL is the concave hull of
fg , thus fgðaÞ 6 fLðaÞ [59].

5.2. Wavelet scalogram

In our work, we use the discrete wavelet transform for multi-
scale analysis of EN. According to the theory of multiresolution
analysis, a discrete sequence XðtÞ of length N ¼ 2J can be repre-
sented in terms of orthogonal bases ðuj;kðtÞ ¼ 2j=2uð2jt � kÞ;
wj;kðtÞ ¼ 2j=2wð2jt � kÞÞ constructed from dilation and shift opera-
tion of the father scaling function uðtÞ and mother wavelet wðtÞ
[60]. Thus, one can write the multiscale decomposition of XðtÞ as

XðtÞ ¼
X2J0�1

k¼0

UJ0 ;kuJ0 ;k
ðtÞ þ

XJ

j¼J0

X2j�1

k¼0

Wj;kwj;kðtÞ; ð3Þ

where the scaling coarse coefficients Uj;k and the wavelet detail
coefficients Wj;k at particular scale index j and position index k
are given by

Uj;k :¼
Z

XðtÞuj;kðtÞdt; ð4Þ

and

Wj;k :¼
Z

XðtÞwj;kðtÞdt; ð5Þ

respectively. The qth order scalogram at scale j is then given by

SqðjÞ ¼
1
Nj

X2j�1

k¼0

jWj;kjq; ð6Þ

where Nj is the length of the detail coefficient vector used to nor-
malize the generalized ‘wavelet energy’. If XðtÞ is scaling signal,
then SqðjÞ obeys a power-law relation

SqðjÞ � ð2�jÞ1ðq;HÞ ð7Þ

For a homogeneous fractal signal (i.e. monofractal), fðq;HÞ ¼ qH
and the scaling exponent (or Hurst exponent) can be determined
from the slope of log2 SqðjÞ versus j plot. On the contrary, fðq;HÞ
exhibits a complex non-linear dependence on q for inhomogeneous
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Fig. 3. Electrochemical current signals at different temporal stages of corrosion: (a) 0–2 h, (b) 4–6 h, (c) 10–12 h and (d) 20–22 h.
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scaling or multifractal signals. The qth order wavelet scalogram
will be used to justify the non-uniform in the scaling behaviour
of the EN signals.

5.3. Wavelet transform modulus maxima method

The wavelet transform modulus maxima (WTMM) method [10]
is used in this study to estimate the empirical multifractal spec-
trum of EN. By choosing an appropriate wavelet w, one can elimi-
nate the polynomial behaviour of a function, so as to analyze its
regularity. If the first (nþ 1) moments of w are zero, then it is
known that the wavelet transform of X denoted as Tw½X�ðt0; a

j
0Þ

scales as ðaj
0Þ

hðt0Þ [10]. Thus, the local singular behaviour of X
around t0 is characterized by a power-law scaling exponent hðt0Þ
of the wavelet transform of X at the point t0 when the scale aj

0 goes
to 0. The WTMM method can be considered as the generalization of
classical box-counting technique. The key feature of this method is
the scaling behaviour of partition function defined in terms of
wavelet coefficients,

Zðq; aj
0Þ ¼

X
i2Lðaj

0Þ

sup
ðt;ajl

0Þ2l

Tw½X� t; ajl
0

� ����
���

2
4

3
5

q

� ðaj
0Þ

sðqÞ
; ð8Þ

where q 2 R. The sum is taken over the wavelet transform’ skeleton
defined at each scale aj

0 by the local maxima of jTw½X�ðt; aj
0Þj. There

WTMM are disposed on connected curves called maxima lines
and the set of Lðaj

0Þ of all maxima lines that exist at scale aj
0 indi-

cates how to position the wavelets in order to obtain a partition
at this scale. The scaling exponent sðqÞ is obtained from the slope
of log partition function versus log scale. The singularity spectrum
fLðaÞ is then obtained by Legendre transform of sðqÞ, namely
fLðaÞ ¼ min

q
ðqa� sðqÞÞ. Homogeneous fractal functions are charac-

terized by a linear sðqÞ spectrum (i.e. function with constant Hölder
exponent). On the contrary, a non-linear sðqÞ spectrum implies
multifractal properties (i.e. function with fluctuating Hölder expo-
nents). For certain values of q, sðqÞ have some well-known interpre-
tations. For example, sð0Þ can be identified as the fractal dimension
(capacity) of the set where X is not smooth, sð1Þ is related to the
capacity of the graph of the function and sð2Þ is related to the scal-
ing exponent b of spectral density CBðf Þ / jf j�b, with b ¼ 2þ sð2Þ.
One can related this property to the presence of long-range correla-
tion in the time series.

5.4. Multifractal wavelet model

The multifractal wavelet model (MWM) is a multiplicative cas-
cade model that uses the inherent scaling properties of the wavelet
basis to generate a multifractal process. Using this model, one can
synthesize a time series that exhibits long-range dependence, hav-
ing a non-Gaussian probability density function and non-linear
scaling of the qth order structure function.

In the MWM construction, one starts from the coarsest scale
coefficient, UJ0 ;0 which is then multiplied by a random multipliers
Aj;k with constraint such that the detail coefficient Wj;k is given
by Wj;k ¼ Aj;kUj;k for k ¼ 0; . . . ;2j � 1 [11]. The scale coefficient for
the next scale is calculated through iteration rules: Ujþ1;2k ¼
2�1=2ðUj;k þWj;kÞ and Ujþ1;2kþ1 ¼ 2�1=2ðUj;k �Wj;kÞ. The iterative pro-
cess is repeated until the finest scale j ¼ J. The output of MWM is
the finest-scale coefficients, CðJÞ½k� ¼ 2�J=2UJ;k, k ¼ 0; . . . ; 2J � 1.
The random multipliers Aj;k are independent random variables
symmetrically distributed over (�1, 1) and generated from beta
distribution with a probability density function given by [61]

gðAÞ ¼ ð1þ AÞp�1ð1� AÞp�1

bðp; pÞ22p�1 ; ð9Þ
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where bðp;pÞ is the beta function and p > 0 is the beta parameter
used to control the scaling behaviour of wavelet coefficient. The
beta distribution will approach the Gaussian distribution for large
p [61]. In addition, the variance of the beta random variable follows
E½A2� ¼ 1=ð2pþ 1Þ. In MWM, the long-range dependence of the out-
put signal is controlled by behaviour of the wavelet energy decays
across the scales. The ratio of wavelet energy between scale, gj is
parameterized via the variance of multipliers

gj ¼
E W2

j�1;k

h i

E W2
j;k

h i ¼ 2
E A2

ðj�1Þ

h i

E A2
ðjÞ

h i
1þ E A2

ðj�1Þ

h i� � : ð10Þ

The variance of multipliers at coarsest scale J0 is obtained
through

E A2
ðJ0Þ

h i
¼

E W2
J0 ;k

h i

E U2
J0 ;k

h i : ð11Þ

The higher-order moments and marginal probability density func-
tion of the output signal is controlled through the moments of scal-
ing coefficient [11]

E Uq
j�1;k

h i

E Uq
j;k

h i ¼ 2q=2E 1þ Aðj�1Þ
� �q
h i�1

: ð12Þ

In order to fit the MWM to the electrochemical data, the variances
of wavelet coefficients E½W2

j;k�, j ¼ J0; . . . ; J � 1 and of coarsest scale
coefficients, E½U2

J0 ;k
� are calculated from the EN signals using Haar

wavelet transform.
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Fig. 4. Wavelet scalogram of EN potential signa
6. Results and discussions

6.1. Wavelet scalogram analysis

The wavelet energy scalogram SqðjÞ of EN signal as given in (6) is
calculated using Daubechies wavelet for 12 scale levels and mo-
ment orders, q ¼ 1;2;3;4;5. The results are plotted in Fig. 4 and
Fig. 5 for potential and current signals, respectively. It can be seen
that the wavelet scalogram for potential signals deviates from lin-
ear scaling for almost all values of q, indicating an inhomogeneous
fractal property. Meanwhile, for the current signals, deviations
from linear scaling in the scalograms are only apparent for higher
orders of q, suggesting less complexity in the fractal behaviour
compared to potential signals. The qualitative features of the scalo-
grams do appear to show minor changes between different tempo-
ral regimes of the corrosion process at higher orders of q. In
general, an inhomogeneous fractal property indicates the possibil-
ity of multifractal structure in the EN. This observation is verified
in the next section using multifractal analysis.

6.2. Multifractal Legendre spectrum and large deviation spectrum

Estimation of multifractal spectra is carried using a Matlab-
based FracLab toolbox developed by INRIA (http://fractales.in
ria.fr). For the Legendre spectrum estimation, we use the Daube-
chies D8 analyzing wavelet for the multiscale decomposition of
the signals up to 12 scale levels. The q exponents in the partition
function vary from �10 to 10 with 0.5 increment. Meanwhile, for
the large deviation spectrum estimation, the coarse grain Hölder
exponent is calculated in single resolution. The oscillation mode
was chosen to measure the variation of the signal in each interval
to determine its scaling behaviour. In the actual computation of the
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large deviation spectrum, continuous density of the coarse grain
exponents were estimated using Gaussian kernel with optimal size
computed from some empirical statistical criteria. The multifractal
spectra using both estimations are shown in Fig. 6 for potential sig-
nals and Fig. 7 for current signals. The main parameters of the
empirical multifractal singularity distribution namely the most
likely Hölder exponents ao and the range of Hölder exponents,
Da ¼ jamax � aminj are summarized in Table 1.

As for EN potential signals, both the Legendre spectrum and
large deviation spectrum show a broad range of singularity values.
It means that the fluctuations of potential signals are multifractal.
In the case of current signals, both the Legendre spectrum and
Table 1
Hölder exponents of multifractal Legendre spectrum (LS) and large deviation
spectrum (LDS) for empirical (e) and simulated (s) EN signals.

Signals aoLS DaLS aoLDS DaLDS

VT1,e 0.25 1.52 0.44 0.91
VT1,s 0.18 1.13 0.36 0.67
VT2,e 0.05 1.43 0.43 0.87
VT2,s �0.04 1.29 0.31 0.62
VT3,e �0.20 1.27 0.40 0.78
VT3,s �0.35 1.06 0.28 0.72
VT4,e �0.57 1.36 0.48 1.08
VT4,s �0.50 1.30 0.27 0.60

IT1,e �0.06 1.58 0.63 0.91
IT1,s �0.18 1.17 0.46 0.79
IT2,e 0.60 1.75 0.67 0.66
IT2,s 0.34 1.52 0.60 0.99
IT3,e 0.40 1.32 0.52 0.67
IT3,s 0.34 1.20 0.47 0.73
IT4,e 0.25 1.02 0.48 0.74
IT4,s 0.25 1.08 0.45 0.93
large deviation spectrum show a relatively narrower range of sin-
gularity values compared to the potential signals. The results from
Legendre spectrum and large deviation spectrum strongly suggest
the occurrence of multifractal behaviour in the corrosion pro-
cesses. The potential signals are found to exhibit more obvious sig-
natures of multifractality, as can be visually seen from spikiness of
the fluctuations in the signals. A temporal dynamics of the multi-
fractal statistics is also noticeable in current and potential signals
observed at different stages of corrosion. From the asymmetrical
shape of the multifractal spectra, one may note that non-trivial
multiplicative structures may possibly exist in corrosion mecha-
nisms. Superposition of more than one measure with disjointed
support and phase transition can be attributed as the cause of
non-concavity of the multifractal spectrum [59]. In the next sec-
tion, we attempt to simulate EN signals by multiplicative cascade
processes using parameterized beta distribution and wavelet
coefficients.
6.3. Multifractal wavelet modelling of electrochemical noise

In order to simulate the fluctuation with a similar multifractal
structure, we determine the variance of wavelet coefficients, mean
and variances of the scaling function coefficients at the coarsest le-
vel. The p-parameter of the symmetric beta distribution is deter-
mined from the variance of the multipliers Aðj; kÞ which is
related to the ratio of the variances of wavelet energy at two suc-
cessive levels. The calculation is initialized at where the variance of
multipliers is equal to the ratio of wavelet energy and variance of
scaling coefficient at the coarsest scale (J0 ¼ 4). The values of p at
nine scales (i.e. j ¼ 4; . . . ;12) of the wavelet coefficients for poten-
tial and current signals are summarized in Table 2. The sample
paths of the simulated potential and current time series are shown



Table 2
Parameter p for symmetric beta distribution at wavelet scale j for simulating potential and current signals.

Signal Parameter p (� 106) at wavelet scale

j = 4 5 6 7 8 9 10 11 12

VT1,e 0.217 0.297 0.247 0.463 0.595 0.377 0.130 0.625 0.349
VT2,e 0.064 0.174 0.281 0.370 0.254 0.084 0.026 0.008 0.004
VT3,e 0.698 1.304 0.673 0.297 0.096 0.020 0.008 0.002 0.001
VT4,e 1.309 1.079 0.946 0.318 0.100 0.035 0.009 0.002 0.001

IT1,e 0.798 0.055 0.031 0.053 0.124 0.310 0.507 1.432 2.571
IT2,e 0.010 0.013 0.026 0.055 0.181 0.542 1.476 2.681 3.897
IT3,e 0.521 0.699 0.710 1.471 3.356 4.494 5.444 5.150 5.991
IT4,e 0.283 0.573 1.055 2.195 4.574 6.589 7.163 7.110 8.003

196 S.V. Muniandy et al. / Corrosion Science 53 (2011) 188–200
in Fig. 8. The multifractal Legendre and large deviation spectra of
the synthesized signals are determined and compared with the
empirical multifractal spectra (see Table 1). Figs. 9 and 10 show
the empirical and simulated multifractal spectra for potential sig-
nals and Figs. 11 and 12 for current signals.

The multifractal spectra of the simulated current signals with p-
parameterized beta distribution for the multiplicative cascade gen-
erally fit the empirical singularity range and the most likely (max-
imum probability) Hölder exponent values. There is, however, one
exception, namely the current signal for 4–6 h duration that has
shifted by 0.2 to the left. The MWM-based simulated data produce
a good fit in upper right parts, which corresponding to q < 0
(slopes of tangents to the Legendre spectrum), indicating good
agreement for negative order moments. The chance of observing
lower value of Hölder exponents is considerably high, correspond-
ing to slower decay of wavelet energy than the original empirical
signals. On the other hand, the MWM is able to capture the positive
order moments of the empirical current signals based on the good
fit in upper left parts of the spectra. However, the upper right parts
of the simulated spectra show lower probability than the original
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Fig. 8. Simulated time series of (a) potential and (b) c
spectra. This might be due to the relatively slow decay of wavelet
energy with negative moment compared to the original current
signals.

The physical origin of multifractal structures in EN signals can
be interpreted as an aggregation of elementary processes which
switch between two states, denoted ‘ON’ and ‘OFF’ states. The
‘ON’ state can be interpreted as the state where there is a pulse
of charges produced from the electrochemical reaction and the
‘‘OFF” state as a period with a relatively calm or silent state. These
elementary events are considered to be independent to each other
and randomly distributed across the time scale. Aggregation of
these processes with multiplicative cascade across the scales from
the finest to the coarsest would generate fluctuation with complex
non-linear scaling and long-range dependence. From the point of
view of corrosion mechanisms, fluctuation of local conditions (at
small scales) on the metal may cause passive layer breakdown
and generate a sudden rise in current [62–64]. The metastable
state would be reached when the initiated corrosion site may
repassivate quickly or grow and then repassivate. Finally, the sta-
ble pitting state is reached when the rate of corrosion site dissolu-
000 2500 3000 3500 4000
ime (s)

000 2500 3000 3500 4000
ime (s)
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Fig. 9. Comparison of Legendre spectra of empirical (solid line) and simulated (dashed line) potential signals.
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Fig. 10. Comparison of large deviation spectra of empirical (solid line) and simulated (dashed line) potential signals.

S.V. Muniandy et al. / Corrosion Science 53 (2011) 188–200 197



−0.5 0 0.5 1 1.5 2
0

0.5

1
(d) 20−22nd hours

−0.5 0 0.5 1 1.5 2
0

0.5

1

α

(c) 10−12th hours

−0.5 0 0.5 1 1.5 2
0

0.5

1
(b) 4−6th hours

−0.5 0 0.5 1 1.5 2
0

0.5

1
(a) 0−2nd hours Empirical

Simulated

Fig. 11. Comparison of Legendre spectra of empirical (solid line) and simulated (dashed line) current signals.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1
(d) 20−22nd hours

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1
(c) 10−12th hours

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1
(b) 4−6th hours

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1 (a) 0−2nd hours Empirical
Simulated

Fig. 12. Comparison of large deviation spectra of empirical (solid line) and simulated (dashed line) current signals.

198 S.V. Muniandy et al. / Corrosion Science 53 (2011) 188–200



S.V. Muniandy et al. / Corrosion Science 53 (2011) 188–200 199
tion becomes greater than the repassivation rate [29]. Another pos-
sible mechanism is related to activation-controlled dissolution,
where a sudden burst of charges occurs as the dissolution of ledges
is ‘unlocked’ by the first atom within the ledge [65]. Even though
initiation of a corrosion site may appear to be random, the
corrosion process may acquire long-range dependence and multi-
fractality due to the multiplicative cascade nature of underlying
mechanisms.
7. Conclusions

The understanding of the origin of potential and current fluctu-
ations in electrochemical noise has been improved over the years
due to the availability of novels techniques such as fractal and
wavelets analyses. In this study, we have examined the EN time
series using a multifractal approach that generalizes the concept
of uniform scaling to the more ubiquitous multiscaling character-
istics. The q-order wavelet scalogram analysis showed that the po-
tential signals exhibit complicated non-linear scaling for large q
values as compared to the current signals. Both of the signals are
shown to be multifractal using Legendre and large deviation spec-
tra. The multifractal spectra are also found to be qualitatively dif-
ferent for different temporal stages of the corrosion process. For
example, the Legendre spectrum captures the burstiness observed
in the potential signal with distribution concentrated in the regime
of smaller values of Hölder exponents. The potential signals be-
come less volatile as the corrosion progresses. One the other hand,
the current signals are found to become more irregular (lower Höl-
der exponents) as the corrosion progresses. The most probable va-
lue of Hölder exponents are shifted towards smaller values.

Finally, we remarked on the results obtained from the multi-
fractal wavelet modelling of the EN signals. We have introduced
the parameterized beta distribution for the multiplicative cascade
process to capture the multifractal spectra of the empirical EN sig-
nals. In all of the simulations, the values of beta distribution
parameter p derived from the variance of the random multipliers
Aðj; kÞ are large (p� 1), indicating that the underlying mechanism
at the coarsest scale can be modelled by Gaussian distribution.
However, it is noticed that p values decrease as the scale goes finer
(large j index) for the potential signals. This indicates a tendency
towards non-Gaussianity in the fluctuations at the finest scales.
Interestingly, an opposite trend is observed for the current
signals. In summary, this study supports the incorporation of mul-
tifractal characteristics for corrosion monitoring and modelling
applications.
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