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a b s t r a c t

An extension of the R/S method to estimate the Hurst exponent of high-dimensional
fractals is proposed. The method’s performance was adequate when tested with synthetic
surfaces having different preset Hurst exponent values and different array sizes. The two-
dimensional R/S analysis is used to analyze three images from nature and experimental
data, revealing interesting scaling behavior with physical meaning.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many observable signals drawn from complex systems can be characterized with concepts and methods from fractals
theory. Some records of observable quantities are in the form of ordered sequences (e.g., time series) and their fractal
properties are commonly studied by means of a scaling analysis of the underlying fluctuations. To this purpose, several
methods have been proposed in recent decades, from the classical spectral Fourier analysis to modernmethods, such as R/S
analysis [1], wavelet transform module maxima (WTMM) [2] and detrended fluctuation analysis (DFA) [3]. Scaling analysis
methods offer advantages and drawbacks for implementation and estimation accuracy. Fourier analysis is constrained to
unbiased stationary sequences. The R/S analysis has a strong theoretical back up, its statistical limitations for scaling (Hurst)
exponent estimation are well established [4], and it finds wide acceptability for application in diverse econometric fields.
On the other hand, due to the simplicity in implementation, the DFA is now becoming a widely used method in physics and
engineering. TheWTMMmethodwas shown to bemore accurate than DFA and R/S analysis, although its implementation is
complicated, particularly for data sets with limited extension. In this form, diverse modifications of the R/S analysis and the
DFA method have been proposed to improve performance while maintaining an easy implementation and straightforward
understanding. For instance, the detrendedmoving average (DMA) proposed in Ref. [5] is intended to obtain amore accurate
estimate of the scaling exponent over a wide of scrutinized scales. The scaling analysis methods commented on above
have found applicability in a wide variety of fields, such as the analysis of DNA sequences [3], financial markets [6], daily
temperature records [7], ion channels [8], EEGphysiological records [9], andmanymore. The attractiveness of thesemethods
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relies on their model-free implementation with relatively low computational burden. In this form, useful information on
long-term correlations can be obtained as a preliminary step to derive stochastic models oriented to describe the dynamics
of the underlying time sequence.

The performance of the scaling analysis methods for the characterization of fractality and correlations in higher-
dimensional spaces has been recently addressed. The WTMM method has shown accurate results, especially for scalar
and vector fields of three-dimensional (3D) turbulence [10,11], although its limitations are again related to a complex
implementation and the specification of commonly ad hoc base functions. The accuracy of the DFA method has been
studied by Gu and Zhou [12], showing that an accurate Hurst exponent estimation for fractal and multifractal objects (e.g.,
images) can be obtained via a suitable selection of the detrending function. An extension of the DMAmethod has also been
proposed [13], yielding a computationally efficient and simple procedure for the Hurst exponent estimation of synthetic and
real images. The 2D height–height correlation function has also been explored to describe the scaling properties of fractured
materials [14]. The existence of anomalous scaling exponents in natural images has been explored by Frenkel et al. [15] by
means of Fourier principal components. The above results reveal that the analysis of natural and man-made images is of
practical interest from both practical and scientific standpoints.

The performance of a high-dimensional R/S analysis that retains an easy implementation and offers a simple
understanding of results is studied in this work. The method is tested using synthetic surfaces with known fractal and
multifractal properties, and the numerical results are in good agreement with the corresponding DFA [12] and DMA [13]
high-dimensional versions. The 2D version of the R/S method is also used to analyze three images from nature and
experimental data, revealing interesting scaling behavior that is interpreted from physical grounds.

2. A high-dimensional R/S method

For convenience, a brief description of the one-dimensional R/S analysis is given as follows [1,16]. The R/S statistics
is the range of partial sums of deviations of sequences from its mean, rescaled by its standard deviation. So, for a given
N-dimensional vector XN = (xi) consider an M-dimensional sample sub-vector YM = (yi), where M = sN , and s ∈

(0, 1). Then, the R/S statistics is estimated by computing the sub-sample mean ys =
1
M

M∑
k=1

yk, the sequence from partial

summations zi =

i∑
k=1

(yk − ys), the range Rs = max {zi}−min {zi}, and the rescaled range (R/S)s = Rs/σs, where the sample

standard deviation is given by

σs =

[
1
M

M∑
k=1

(yk − ys)
2

]1/2

. (1)

These steps can be summarized in the following equation [17]:

(R/S)s =
1
σs

[
max
1≤i≤M

i∑
k=1

(yk − ys) − min
1≤i≤M

i∑
k=1

(yk − ys)

]
. (2)

The value (R/S)s corresponds to the maximum possible distance that a walker can travel with the sequence of steps YM . The
rescaled range is estimated over a sufficiently large number of sub-vectors YM with different sizes s (i.e., ‘‘scales’’) and then
averaged over a sufficiently large number of sample sub-vectors over the whole fractal domain N . If the stochastic process
associated to the sequence XN is scaling over a certain domain s ∈ (smin, smax), the R/S statistics follow a power-law

(R/S)s = asH (3)

where a is a constant and H is the Hurst scaling exponent, which is a fractal measurement of the sequence correlations. A
log–log plot of (R/S)s as a function of the scale s ∈ (smin, smax) gives a straight line with slope H , which is the R/S statistics
estimate of the Hurst exponent. The R/S analysis can be easily extended for multifractality estimation if the q-norm

σs,q =

[
1
M

M∑
k=1

(yk − ys)
q

]1/q

(4)

is used instead of the standard deviation σs. As above, it is expected that the corresponding R/S statistics follow a power-law
behavior of the form

(R/S)s,q = aqsHq (5)

where Hq is the qth scaling exponent. Large values of qmagnify the large fluctuations yi − ys from the mean ys. On the other
hand, values q → 0 yield a balancedweighting of large and small deviations from themean. IfHq is constant for all q ∈ R, the
sequence is monofractal, meaning that the corresponding sequence was produced by only one fractal generator. Otherwise,
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one says that the sequence is multifractal and has more than one fractal generator involved and perhaps nonlinearity.
Multifractal sequences aremore complex thanmonofractal ones, since the underlying sequence is produced bymany fractal
generators. In case of having only short-range correlations (or no correlations at all) the detrended walk profile displays
properties of a standard random walk (e.g., white noise) with Hq = 0.5. On the other hand, if Hq < 0.5 the correlations
in the signal are anti-persistent (i.e., with an increment very likely to be followed by a decrement), and if Hq > 0.5 the
correlations in the signal are persistent (i.e., with an increment very likely to be followed by an increment, and a decrement
by adecrement). The valueHq = 1.0 corresponds to 1/f -noise, a flicker noise that appears commonly in nature. Interestingly,
the fractal dimension of the sequence XN is related to its Hurst exponent by means of the relationship Dfr = 2 − H2.

The R/S statistics can be easily extended for higher dimensions along similar steps. However, as we are interested in
applying the R/S analysis for images, the two-dimensional case is detailed a follows. For an Nr × Nc-dimensional matrix
XNr ,Nc =

{
xi,j
}
, whereNr andNc are respectively the numbers of rows and columns, consider a sampleMr ×Mc-dimensional

matrix YMr ,Mc =
{
yi,j
}
, where Mr = sNr and Mc = sNc (i.e., the sub-sample matrix preserves the row-to-column ratio), and

s is the scale considered. The R/S statistics are given by

(R/S)s,q =
1

σs,q

 max
1≤i≤Mr
1≤j≤Mc

i∑
k=1

j∑
l=1

(
yk,l − ys

)
− min

1≤i≤Mr
1≤j≤Mc

i∑
k=1

j∑
l=1

(
yk,l − ys

) (6)

where the mean ys =
1

MrMc

Mr∑
k=1

Mc∑
l=1

yk,l and the q-norm

σs,q =

(
1

MrMc

Mr∑
i=1

Mc∑
j=1

(
yk,l − ys

)q)1/q

(7)

are used. As in the one-dimensional case, the rescaled range is estimated over a sufficiently large number of sampled sub-
matrices YMr ,Mc with different scales s ∈ (smin, smax) and then averaged over the whole domain Nr × Nc . Since the random

walk represented by the double sum
mr∑
k=1

mc∑
l=1

(
yk,l − ys

)
is made on a two-dimensional Euclidean space, the R/S statistics

follow the power-law behavior

(R/S)s,q = aqs2Hq . (8)

A log–log plot of (R/S)s,q as a function of s2 gives a straight line with slope Hq. As in the one-dimensional case, Hq = 0.5
indicates the lack of correlations, Hq > 0.5 indicates the presence of correlations, and Hq < 0.5 reflects anti-correlation
processes. In fact, large values of Hq indicate that the two-dimensional array XNr ,Nc is less complex than non-correlated
randommatrices. In this case, the fractal dimension and the Hurst exponent are related by Dfr = 3 − H2.

The proposed two-dimensional R/S algorithm is characterized by short execution time and easy implementation. To
this end, the implementation specifications are the following. (i) smin = 0.025 and smax = 0.5. Finite-size effects are
present for scales s < smin. This problem also occurs with one-dimensional fractals, resulting in the overestimation of
Hq in anti-correlated signals and underestimation of the Hurst exponent in correlated sequences [18]. On the other hand,
for s > smax the number of sub-arrays YMr ,Mc can be so small as to stabilize the R/S statistics. (ii) To reduce potential bias
due to contiguous sub-series, the sub-arrays YMr ,Mc were sampled randomly, which leads to a type of partially overlapping
sub-array sampling. In principle, partial overlapping should lead to an improved Hurst exponent estimation, especially for
large scales where a limited number of sampled contiguous sub-series can be drawn [19]. (iii) The number of sampled sub-
arrays Nsam was chosen according to the relationship Nsam =

[
ksam min(Nr ,Nc )

s2

]
, which yields a balanced sub-array sampling

for the different scales in (smin, smax) (i.e., a larger number of sampled sub-arrays for smaller scales). Here, to avoid excessive
computational burden, ksam = 0.25 is suggested.

The feasibility of the two-dimensional R/S analysiswas testedwith syntheticmatrices representing fractional surfaces. In
this work, the MATLAB software FRACLAB 2.03 developed by INRIA (http://www.irccyn.ec-nantes.fr/hebergement/FracLab)
was used to synthesize fractional surfaces with assigned Hurst exponent H2 ranging from 0.05 to 0.9 with a step of 0.05.
Three domain sizes (256 × 256, 1024 × 1024 and 2056 × 2056) were chosen, and for each domain size 20 surfaces were
generated. Fig. 1 compares the estimated Hurst exponent H2 with respect to the preset value H2,ps. It can be seen that the
estimatedHurst exponents are very close to the preset values in general, and that the deviation becomes larger for small-size
matrices. Gu and Zhou [12] mentioned that the sensitivity of two-dimensional R/S analysis is worse compared to the two-
dimensional DFA sensitivity. AlthoughGu and Zhou’s implementationwas not detailed,we think that theworst performance
of the R/S analysis is due to a poor sub-matrix sampling for large scales s, and that the performance can be improved by
balancing the number of samples, as we have done with the guideline Nsam =

[
ksam min(Nr ,Nc )

s2

]
. For the 1024× 1024 domain

size, Fig. 2 shows the results for two R/S analysis implementations: (a) with regular sampling by dividing the domain size
into

[
min(Nr ,Nc )

s

]
disjoint phalanx segments [12], and (b) as proposed in this work, by balancing the number of samples by

https://portail.saclay.inria.fr/hebergement/,DanaInfo=.awxyCmwij6wJpoL1p3-w.T0B+FracLab
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Fig. 1. Comparison of the estimated Hurst exponent H2 with the preset value Hpr . The error bars show the standard deviation of the estimated values. The
results corresponding to different matrix size are translated vertically for clarity.

means of random sampling and using the guideline Nsam =

[
ksam min(Nr ,Nc )

s2

]
. As mentioned above, the poor performance of

the disjointly sampled R/S method can be due to an unbalanced sampling for large scales. For instance, for s = 0.5 only
four sampling sub-matrices can be obtained with the regular sampling. The number of sub-matrices can be increased by
considering overlapping sub-matrices, and the bias due to overlapping can be reduced by making a random sampling. This
sampling scheme results in a stabilization of the R/S statistics for large scales; in turn, this allows a more robust estimation
of the Hurst exponent. The above results show that the two-dimensional R/S analysis is able to capture well the self-similar
nature of the fractional surfaces, resulting in precise estimation of the Hurst exponent and similar performance to the
DFA [12] and moving-average low-pass filtering [13] methods.

Gu and Zhou [12] proposed a high-dimensional extension of the well-known DFA method for fractality analysis. Their
results showed the acceptable performance of the DFA method over a large variety of synthetic images. The classical R/S-
scaling technique removes constant trends in the original sequence and thus, theoretically, in its detrended version is
equivalent to the DFA with linear fitting (denoted as DFA1). That is, the scaling exponent estimated from the R/S statistics
corresponds to the scaling exponent from the DFA with linear fitting. For 256 × 256 and 1024 × 1024 image sizes, Fig. 3
presents the DFA estimation errors with linear fitting and their corresponding error bands. For comparison purposes, the
R/S estimation errors are also included, and the results show that the R/S estimation error is into the error band for the DFA
estimation error. In this form, these results indicate that, although the nominal DFA Hurst estimation errors are smaller than
the R/S Hurst estimation errors, in practice the estimated R/S Hurst exponent cannot be rejected as a null hypothesis when
compared with the DFA Hurst exponent as the accepted hypothesis. That is, the R/S method performance is statistically as
good as the DFA1 method performance.

2.1. R/S analysis for anisotropy detection

The texture from a two-dimensional image is isotropic if the scaling properties are the same along any direction. For
instance, the FRACLAB algorithm used to generate the synthetic images in the above analysis guarantee that the resulting
images are isotropic. However, natural and man-made images can contain anisotropic features which can be detected with
a two-dimensional modification of the R/S statistics described before. For a rectangular array XNr ,Nc =

{
xi,j
}
, let h and v

denote the vertical and horizontal directions, respectively. Consider a sampleMr × Mc-dimensional matrix YMr ,Mc =
{
yi,j
}
,

where Mr = sNr and Mc = sNc (i.e., the sample matrix preserves the row-to-column ratio), and s is the scale considered.
The horizontal and vertical R/S statistics are given by

(R/S)hs,q =
1

σs,q

 max
1≤i≤Mr
1≤j≤Mc

j∑
l=1

(
yi,l − ys

)
− max

1≤i≤Mr
1≤j≤Mc

j∑
l=1

(
yi,l − ys

) (9)



6456 J. Alvarez-Ramirez et al. / Physica A 387 (2008) 6452–6462

Fig. 2. Comparison of the estimatedHurst exponentH2 with the preset valueHpr for regular and random (partially overlapping) samplings of a 1024×1024
domain size.

Fig. 3. Hurst estimation error and the error band 95% confidence from the DFA method with linear fitting. Also included are the Hurst estimation errors
obtained from the application of the R/S statistics.

and

(R/S)vs,q =
1

σs,q

 max
1≤i≤Mr
1≤j≤Mc

i∑
k=1

(
yk,j − ys

)
− min

1≤i≤Mr
1≤j≤Mc

i∑
k=1

(
yk,j − ys

) . (10)
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Fig. 4. Images considered for the evaluation of the two-dimensional R/S statistics. (a) SEM picture of a Series 300 stainless steel surface obtained from
www.atclabs.com. (b) A 2003 Hurricane Juan image drawn from NASA’s public site visibleearth.nasa.gov. (c) Jackson Pollock’s drip painting Lavender Mist:
Number One from www.ibiblio.org/wm/paint/auth/pollock.

Notice that in these cases the summation is carried out along only one direction, either horizontal or vertical. It is expected
that the R/S statistics follow power-laws of the form

(R/S)hs,q = ahqs
Hh
q (11)

and

(R/S)vs,q = av
qs

Hv
q (12)

where Hh
q and Hv

q are (unidirectional) horizontal and vertical Hurst exponents, respectively. If Hh
q ≈ Hv

q for the scrutinized
scales, one can say that the image is isotropic. On the contrary, if the differences between Hh

q and Hv
q are meaningful, the

image is not isotropic as the fractality in one direction is different from the other. These ideas will be used in the following
section to explore the anisotropy of diverse natural and man-made images.

3. Examples of image analysis

In this section, three real images are used to illustrate the performance of the two-dimensional R/S analysis method. The
examples correspond to a typical scanning electron microscope (SEM) picture of a 300 Series stainless steel sample surface,
a hurricane satellite image and a Pollock drip painting (see Fig. 4). The images, originally in any image format (e.g., jpg) were
converted into 256 grey level numerical matrices (level 1 for black and level 256 for white) bymeans of theMATLAB r©signal
processing toolbox, and the resulting two-dimensionalmatriceswere used for scaling analysis via the R/S method described
above. The R/S algorithm described in Section 2 was implemented as a tailored FORTRAN program and carried out within a
PC machine.

https://portail.saclay.inria.fr/,DanaInfo=.awxyCeyisik2Ko10+
https://portail.saclay.inria.fr/wm/paint/auth/,DanaInfo=.awxyCmgoitryK04u+pollock
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Fig. 5. (a) R/S statistics for the stainless steel SEM image shown in Fig. 4(a). Notice a crossover at about scr = 0.14 where the scaling behavior changes to
a disordered structure for large scales. (b) Horizontal and vertical R/S statistics, showing a departure from isotropy for scales larger than about 0.31.

(a) SEM picture. The SEMpicture is of the surface of a 300 Series stainless steel sample undermechanical overload conditions
(www.atclabs.com). The size of the image is 1067 × 876 pixels. The surface, shown in Fig. 4(a), presents an irregular
texture with some fractures represented by the large black islands. Fig. 5(a) illustrates the R/S statistics as a function of
the scale s for different values of the norm indicator qmarkedwith different symbols. The aggregation of the data point on
a unique line indicates that the stainless steel surface image does not posses multifractal properties. On the other hand,
given the presence of a crossover at about scr = 0.14, the data cannot be described by a unique power-law, indicating
that the image self-similarity is scale-dependent. The estimated Hurst scaling exponent is Hq = 0.841 (±0.0047, p <
0.0001) and Hq = 0.656 (±0.0072, p < 0.0001) for s < scr and s > scr , respectively. This shows that the stainless steel
surface is less correlated for scales larger than about 28 microns. In fact, the crossover may be indicating the transition
frommore ordered metal grains with typical size of about 28 microns to a large-scale disordered grain array. To test the
consistency of our results with respect to other methods, we have implemented the DFA1 reported by Gu and Zhou [12]
with linear fitting of the fluctuations matrix (see Eq. (4) in Ref. [12]). The results are also displayed in Fig. 5(a), showing
that the estimated scaling exponent is essentially the same for both methods. In fact, the deviations of the estimated
Hurst exponents are not larger than ±1.5%. Fig. 5(b) presents the horizontal and vertical R/S statistics; the isotropy of
the SEM picture for scales smaller than s = 0.31 can be appreciated. For larger scales, the horizontal Hurst exponent
is close to non-correlated behavior and differs significantly from the vertical Hurst exponent. This is indicating that the
stainless steel SEM image is not isotropic for large scales, and that the metal grains are arranged in a randomway along
the horizontal direction. That is, it is apparent that the stainless steel grains have a preferred accommodation direction.

(b) Hurricane satellite image. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite
captured the image of Hurricane Juan (Category 5) just moments after it was declared the fifth hurricane of the season
on September 26, 2003 (see Fig. 4(b)). At the time, Juan was about 160 miles east of Bermuda, and moving north at 8
miles per hour (visibleearth.nasa.gov/view_rec.php?id=5869). The hurricane image displays a typical cyclone shapewith
turbulent peripheral structure. The size of the image is 850 × 648 pixels. The results for the R/S statistics are shown
in Fig. 6(a) for three different values of the norm indicator q. A crossover at about scr = 0.85 can be observed and a
monofractal behavior, with estimated Hurst exponent Hq = 0.995 (±0.018, p < 0.0001), is observed for scales smaller
than scr = 0.85. Significant departures from the monofractal behavior are displayed for large scales, where one can
observe that theHurst exponent is larger than the one for small scales. This indicates that the large-scale image structures
aremore correlated than the small-scale structures, possibly reflecting the fact that the typical cyclone geometry is well-
defined for scales larger than about s = 0.1. Fig. 6(b) shows the dependence of the large-scale Hurst exponent with the
parameter q, showing that theHurst exponent is amonotonic increasing function. This suggests that the hurricane image
is multifractal for large scales and that large luminance fluctuations are more correlated (i.e., more ordered) structures
than small luminance fluctuations structures. This feature may reflect the fact that the strongest turbulence effect is

https://portail.saclay.inria.fr/,DanaInfo=.awxyCeyisik2Ko10+
https://portail.saclay.inria.fr/,DanaInfo=.avjulfqkli03sL0o7qQy7D+view_rec.php%3Fid%3D5869
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Fig. 6. Scaling analysis for the 2003 Hurricane Juan image. (a) R/S statistics showing that the image contains multifractal structures for large scales. (b)
Large-scale Hurst exponent as a function of q, which shows that ordered structures are associated to the large luminance fluctuations.

Fig. 7. Horizontal and vertical R/S statistics showing that the hurricane image is practically isotropic for all scales.

associated to the hurricane internal structure and relatively small cloud fluctuations. Fig. 7 shows the horizontal and
vertical R/S statistics, showing a slight departure from isotropy over the scrutinized scales range. In fact, the vertical
luminance structures are more correlated than the horizontal ones.

(c) Pollock’s drip painting. Jackson Pollock (an abstract impressionist) was hailed as one of the greatest American painters,
and was the first painter pouring paint rather than using brushes and a palette, abandoning all conventions of a
central motif. Pollock danced in semi-ecstasy over canvases spread across the floor, lost in his patternings, dripping
and dribbling with total control. In 1946–1950, Pollock produced a series of large-format canvas with the drip-and-
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Fig. 8. Scaling analysis for the Pollock drip painting shown in Fig. 4(c). (a) R/S statistics indicating that the painting image is monofractal. (b) Hurst
exponent as a function of the scale s, which shows a continuous transition towards less correlated painting structures.

pouring technique, resulting in an impressive explosion of non-figurative painting forms with a random-like structure.
Under the assumption that Pollock’s paintings have a fractal geometry, Taylor [20] used box-counting methods to
estimate the fractal dimension of the paintings’ intricate structures, obtaining that the fractal dimension increased
as Pollock improved the sophistication of his painting method. In this form, Taylor concluded that Pollock used a
remarkably systematicmethod capable of generating intricate patterns that exhibit fractal scaling criteriawith precision
and consistency. Here, we consider Pollock’s 1950 painting Lavender Mist: Number One oil on canvas (oil, enamel, and
aluminum on canvas, 221 × 300 cm at the National Gallery of Art, Washington, D.C.) shown in Fig. 4(c), to study the
internal correlations bymeans of the two-dimensional R/S statistics. The digital 1110×814 pixels imagewere extracted
from the internet site www.ibiblio.org/wm/paint/auth/pollock and transformed into a gray-scale numerical matrix by
means of the signal processing toolbox from MATLAB r©. Fig. 8(a) illustrates the dependence of the R/S statistics as a
function of the scale s for different values of qmarkedwith different symbols, showing that image is notmultifractal. The
results for the DFA with linear fitting are also displayed, indicating that the results obtained with the different R/S and
DFA methods are essentially the same, with deviations not larger than about 2%. In fact, the main differences are found
for large scales in the order of s ≥ 0.35. The self-similarity is scale-dependent, although the existence of a crossover
is not clear. Instead, it is apparent that the R/S statistics present a continuous decaying power-law exponent, which
can be considered as a local (i.e., scale-dependent) Hurst scaling exponent (see Fig. 8(b)). The continuous decrement
of the Hurst exponent suggests that the Pollock painting is more random at large scales, with the Hurst exponent
approaching 0.6 for s = 0.5, and that the drip-and-pouring technique yielded a fractal structure with a continuous
change towards quite unpredictable painting structures. In fact, by recalling that Dfr = 3 − H2 [21], one has that the
fractal dimension increases with the scale s, achieving values of about 2.3 for s = 0.5. This suggests that the fractal
painting structure can produce a perceptual three-dimensional effect on a two-dimensional surface. Fig. 9 presents
the horizontal and vertical R/S statistics, which show that Pollock’s Lavender Mist is essentially an isotropic painting
over the whole scale range. However, this is not a distinctive feature of Pollock’s drip-and-pouring paintings as is
also shown by Fig. 9 for Pollock’s Number 8 painting (see the painting at www.allposters.com/-sp/Number-8-1949-
Posters_i290395_htm). In fact, the horizontal fractal structures for scales larger than about 0.1 are less correlated than
the vertical structures. The results from the R/S statistics showed that Pollock’s Lavender Mist painting is essentially a
monofractal structure for the whole scale range. We have investigated if some multifractality features can be detected
for the horizontal and vertical directions. Fig. 10 shows the estimated Hurst exponent for the horizontal and vertical
directions and different values of the norm indicator q. It is observed that the Lavender Mist painting is still monofractal
for both horizontal directions. However, the Number 8 painting displays interestingmultifractality propertieswithmore
correlated multifractal structures along the vertical direction. This suggests that the complexity (i.e., less correlated

https://portail.saclay.inria.fr/wm/paint/auth/,DanaInfo=.awxyCmgoitryK04u+pollock
https://portail.saclay.inria.fr/-sp/,DanaInfo=.awxyCeqrww13p35Nr43+Number-8-1949-Posters_i290395_htm
https://portail.saclay.inria.fr/-sp/,DanaInfo=.awxyCeqrww13p35Nr43+Number-8-1949-Posters_i290395_htm
https://portail.saclay.inria.fr/-sp/,DanaInfo=.awxyCeqrww13p35Nr43+Number-8-1949-Posters_i290395_htm
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Fig. 9. Horizontal and vertical R/S statistics showing that Pollock’s LavenderMist is an isotropic painting. However, non-isotropy is obtained for a different
Pollock painting (Number 8).

Fig. 10. Monodirectional multifractality analysis for two of Pollock’s paintings. The results show a significative difference between the horizontal and
vertical scaling properties for Pollock’s Number 8 painting, a feature not shown by the Lavender Mist painting.

structures) in the Number 8 painting is introduced by large-scale blobs and lines arranged preferentially along the
horizontal. Notice that the Hurst exponent is an increasing function of the parameter q. Since the fractal dimension and
the Hurst exponent can be related byDfr,q = 3−Hq [21], the results in Fig. 10 for the Number 8 painting show a fall-off of
Df ,q with q, which is in agreement with previous results on the analysis of Pollock’s paintings by means of box-counting
methods [22]. The differences in the scaling properties for the Lavender Mist and Number 8 paintings illustrate the
ability of Pollock’s drip-and-pouring technique to produce aesthetic objects with different complexity degrees. It should
be stressed out that our purpose here was not to provide a detailed analysis of Pollock’s paintings but to illustrate the
ability of the high-dimensional R/S statistics to reveal some fractality features of Pollock’s artistic work.

The above results have illustrated the ability of the R/S algorithm to provide quantitative insights into the intrinsic
correlations of two-dimensional arrays. In particular, the method allows the estimation of crossovers, multifractality,
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anisotropies and scale-dependent Hurst exponents. In turn, these parameters could be useful for a systematic interpretation
of complex structures in other real images.

4. Conclusions

In summary, the performance of a higher-dimensional extension of the R/S analysis method was evaluated with a
synthetic surface with different preset Hurst exponents and different array sizes. The results showed that the precision
of the Hurst exponent estimation is improved when the array size is increased, and that larger estimation errors are found
for arrays with significant correlations. The two-dimensional method was applied to the analysis of three real images from
experiments, nature and art, revealing interesting scaling properties that can be interpreted to gain insights into the complex
structure of the underlying fractal nature. Finally, given its ease of implementation, theR/Smethod canbeused to investigate
and characterize surface textures, landscapes, urban scenes, and many other images possessing self-similar properties. An
interesting applicationwould be the characterization themicroscopic roughness of fracture surfaces [14] formaterials under
stress deformations. Studies in these issues should lead to automatic (noninvasive) procedures to quantify the texture of
materials with different applications, from alloys to tissues.
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