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A B S T R A C T

Sugarcane is one important crop for many Third World countries. Soils dedicated to sugarcane are

usually compacted during the harvesting process. The main objective of the present work was to search

for prefractal scaling patterns of soil compaction before and after sugarcane harvest. We used descriptive

statistics and prefractal analysis with experimental semivariograms for characterizing the spatial

patterns of soil penetrometer resistance distributions. The soil is a Vertisol (Typic Hapludert) dedicated

to sugarcane production during the last 60 years. Approximately 50% of soil resistance values were over

2.5 MPa after sugarcane harvest. This could restrict sugarcane shoot emergence. A power-law

(prefractal) model fitted experimental semivariograms fairly well except for those distributions

corresponding to 2.5–5.0 cm soil depth. Those particular distributions could be fitted by any standard

geostatistical model. The main findings were (i) scaling exponents larger than 1.5 which indicate anti-

persistence and (ii) change of anisotropic directions after sugarcane harvest. The range of prefractal

behaviour was approximately 105 m before harvest and 93 m after crop harvest. The spatial structure of

some soil physical or mechanical properties connected to soil compaction can resemble those patterns.

The combination of Geostatistics and prefractal analysis can assist the mechanized agriculture and

scientists through a previous identification of degraded zones within the field and the physical processes

involved in the formation of those local areas.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Sugarcane is still the main plantation crop for the economy of
many developing countries located in tropical regions (e.g. African
and Caribbean areas) while some developed countries (e.g.
Australia and USA) also make important contributions to the
global production of that crop. From an economical point of view,
many industries around the world depend on sugarcane by-
products (e.g. ethanol) (Sugarcane Production BMPs, 2000). Soils
dedicated to sugarcane production are usually affected by multiple
factors. Two important factors are monoculture and the use of
heavy machinery for sugarcane harvesting (Hartemink, 1998). A
direct effect of both aforementioned causes is the increase of soil
compaction which limits rooting (Juang and Uehara, 1971). Soil
compaction has reduced the production rate of sugarcane in Cuba
approximately 21% since 1990 (unpublished report). That variable
is usually estimated in terms of penetrometer resistance and its
negative effect varies with crop type (Hadas, 1997). Some authors
consider that root growth is null at a standard soil penetration
* Corresponding author. Tel.: +53 23 427392.
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resistance of about 5 MPa. For example, Materechera et al. (1991)
set this limit to 5 MPa, Hadas (1997) reported a range from 1.6 MPa
for corn to 3.7 MPa for barley while Duiker (2002) considered this
extreme value as 2.06 MPa (300 psi). Regrettably, soil compaction
is a cumulative process (Keller, 2004).

Applications of the Theory of Regionalized Variables (Geosta-
tistics) and its multiple methods (Matheron, 1971) have signified
important advances for quantifying spatial attributes of soil
compaction at several observational scales. A main practical
importance of the spatial variability analysis is associated with the
opportunity of identifying degraded regions within the agricultural
field. This can help scientists, engineers or farm managers to
develop appropriate strategies of soil management (Webster and
Burgess, 1980) and to develop site specific agricultural practices.
Spatial variability analysis can also include, among others, soil
texture, bulk density, pH, penetrometer resistance and water
content as these soil properties can be affected considerably by soil
compaction (Kiliç et al., 2000).

The combination of geostatistics and spatial fractal analysis has
increased our toolbox for understanding soil spatial variability.
Unfortunately most works combining geostatistics and fractal
scaling have been conducted on unidirectional transects where the
hypothesis of anisotropy could not be tested. In such cases one
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could be working with stationary or nonstationary processes but
not necessarily isotropic. In general, this approach has been
previously used by Armstrong (1986), Perfect et al. (1990) and Pan
and Lu (1994) with soil penetrability data. In addition, Thomas and
Thomas (1988) have considered the possibility of finding fractal
dimensions depending on spatial orientation.

After harvesting a sugarcane field we can find two different
scenarios: first of all an increase of soil resistance values at
different depths of the field, and second, redistribution of soil
compaction zones compared to those before sugarcane harvesting.
If these behaviors can be quantified, then farmers could change
their management practices to improve the productivity of
sugarcane agriculture. Thus, our main hypothesis is based on
the existence of anisotropic prefractal domains provided that
semivariograms fit a Pareto-type model depending on spatial
directions. The main objective of the present work was to search
for prefractal scaling patterns of soil compaction before and after
sugarcane harvest.

2. Theoretical considerations

Our main theoretical assumption considers that structure of
spatial increments can be captured by a power-law relation
(Korvin, 1992; Baveye et al., 2008):

jZðrÞ � Zðr þ hÞj /hH (1)

where Z is the soil property value (e.g. penetrometer resistance) at
the r spatial location, h is the lag distance (h is the absolute value of
a distance vector) and H is the scaling exponent. Within the limits
0 < H < 1, H is related to the Hausdorff-Besicovitch fractal
dimension, D, by Webster (2008):

D ¼ 2� H (2)

The semivariogram is usually defined as (Matheron, 1971):

gð~hÞ ¼ 1

2
E½fZð~rÞ � Zð~rþ~hÞg

2
� ¼ var½Zð~rÞ � Zð~rþ~hÞ� (3)

where gð~hÞ is the semivariance and ½fZð~rÞ � Zð~rþ~hÞg
2
� is the

expected value of fZð~rÞ � Zð~rþ~hÞg
2
.The semivariogram depends

only on points separation and not on their absolute positions
(Matheron, 1971). Eq. (3) represents the principal tool of
geostatistics. Then, combining Eqs. (1)–(3):

gðhÞ ¼ 1

2
chð4�2DvÞ (4)

where c is a scaling coefficient accounting for the semivariogram
behaviour as h! 0 and Dv is the fractal dimension of the
semivariogram. Eq. (4) is usually called the structure function
(Wu, 2000).

From a theoretical point of view, the exponent in Eq. (4) is
determined as a limit, that is

4� 2Dv/ lim
h!0

loggðhÞ
log h

(5)

From our standpoint, that is the main restriction of extrapolating
theoretical results from fractal mathematics to experimental
conditions. In practice, h is confined within lower and upper
cutoffs, hmin < h < hmax, where hmin > 0. Thus, following Perfect
et al. (2002) rationale we use the term prefractal domain hereafter
even though some authors (e.g. Krasilnikov, 2008) call it
incomplete fractal behavior. Thus, the prefractal analysis allows
one to quantify how the spatial pattern of the considered soil
property (e.g. soil penetration resistance) evolves as the spatial
scale (h value) changes. That spatial pattern is driven by its second
order statistics (e.g. semivariance). This way, while the geostatis-
tical analysis identifies affected zones within the field, prefractal
analysis can shed light on the scaling mechanisms producing those
areas.

Following Feder (1988) the correlation function of future
increments with past increments (average increments) depends on
H. Let us consider �DH(�h) the increment at a previous lag, �h

(here the ‘‘�’’ sign indicates past with respect to a reference, h = 0)
and DH(+h) the corresponding increment at the next lag. Then the
correlation function of upcoming increments, DH(+h), with
preceding increments, �DH(�h) can be written as:

h�DHð�hÞDHðþhÞi
hDHðhÞ2i

¼ 22H�1 � 1 (6)

That is, the average spatial increment of the studied soil variable
might be investigated in terms of a fractional Brownian motion.
The left hand numerator in Eq. (6) states the probability of a future
increment, DH(+h), averaged over the distribution of past
increments, �DH(�h) (Feder, 1988; Molz et al., 1998).

Based on H values, some cases can be distinguished:

(i) H = 1/2 (or Dv ¼ 1:5) has been identified with ordinary
Brownian-like variations. In this case the correlation of
successive increments vanishes as can be deduced from
Eq. (6). This corresponds to Gauss–Markov processes.

(ii) The range 1/2 < H < 1 (1<Dv <1:5) is usually associated with
persistence (positive correlation), long-range spatial variation
or clear trends (Feder, 1988). Physically, if the investigated soil
property increases in average within a spatial lag h, it is
statistically likely an increase within the next spatial lag. Thus,
the statistics of persistence could be used for making
predictions on the occurrence of extreme values of the
considered variable.

(iii) The range 0 < H < 1/2 (1:5<Dv <2) represents anti-persistent
behavior (negative correlation) and short-range spatial varia-
tion. That is, the average spatial increment of the studied soil
variable at a given spatial lag, h, is likely to be followed by a
decrease within the next spatial domain. This short-range
fluctuation pattern tends to the filling condition (e.g. Dv!2)
such that it seems very noisy. That behavior indicates, to some
extent, that other external or internal variables influence the
variability of the analyzed property or process.

The presence of positive/negative correlations in the fluctua-
tional dynamics of soil properties could be associated to the
heterogeneous structure of soil system. In general, each H (Dv)
value needs to be interpreted within the context of each particular
investigation. The power-law model as represented by Eq. (4) is
valid for both isotropic and anisotropic analyses. Furthermore, that
model (Eq. (4)) defines a statistically self-affine prefractal structure
(Turcotte, 1997). That is, while self-similarity represents isotropy
in relation to the observation scale, self-affine structures are
usually associated with anisotropic patterns (Mandelbrot, 1986).
Briefly, any two-dimensional function, f(x, y), defining a self-affine
spatial structure presents different scaling factors in different
spatial directions (Baveye et al., 2008). In addition, there could be
nested prefractal regimes separated by different crossover scales.
This is also identified with self-affine structures (Mandelbrot,
1985).

Some authors have considered that significant fits of power-law
(fractal) models to experimental semivariograms do not corre-
spond necessarily to real prefractal structures (e.g. Burrough,
1989; McClean and Evans, 2000). Note however that validity of
Eq. (4) with geostatistical data can violate (at least within the
considered spatial scale) the second order statistics as the
semivariance increases as a power-law function of the spatial
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Fig. 1. Physical map of the studied area.

Table 1
Some characteristics of the studied soil.

Soil characteristics Mean CV (%)

Clay (%) 51.90 3.32

Silt (%) 26.51 4.11

Sand (%) 21.59 2.56

pH (H2O) 7.1 2.21

O.M. (%) 3.31 5.81

n = 15 soil samples in each case.
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resolution (nonstationarity) with no sill in most cases. That
behavior can occur within lower (sampling interval) and upper
(plot size) scale cutoffs and justifies, to some extent, the use of
prefractal models within those limits.

3. Materials and methods

3.1. Study site description

This study was conducted on a Vertisol (Typic Hapludert) (Soil
Survey Staff, 2003) located in Bayamo, at south-eastern Cuba
(208220N, 768380W) (Fig. 1). Table 1 shows some selected physical
and chemical characteristics of the studied area. The site has been
under sugarcane (Saccharum officinarum sp.) monoculture during
the last 60 years which can produce yield decline due to soil
properties degradation. Each sugarcane field represents a rectangle
of approximately 4.5 ha (150 m width � 300 m long). Sugarcane is
harvested in March each year using Case IH-Austoft series 7000
(Brazil) harvesters. Photographs (Fig. 2(a) and (b)) show the
sugarcane field before harvest (first soil sampling) and approxi-
mately 15 days after crop harvest (second soil sampling),
respectively.

3.2. Penetrometer resistance and soil property measurements

Soil resistance data were collected at the vertexes of regular
squared grids. Before crop harvest we used a 12 � 12 = 144 points
grid with sampling interval L = 10 m. After sugarcane harvest a
10 � 10 = 100 data points grid was considered with the same
sampling distance. We were interested in inter-row points only
(inter-row distance � 1.9 m in the East direction) as inter-row is
the main route of harvester wheels and accompanying trucks or
tractors. It means that sampling points in the east direction were
located every five inter-rows, approximately. In both cases we
considered that a sample size between 100 and 150 data points
was acceptable within the context of the present work. This also
agrees with previous recommendations by Webster and Oliver
(1992).

An electronic penetrometer (FIELDSCOUTTM SC900 Soil Com-
paction Meter, Spectrum Technologies, Inc., Illinois)1 was used for
1 Trade name mention is only for scientific purpose, not for product endorsement.
soil resistance measurements. Some specific characteristics of this
instrument are: in depth resolution = 2.5 cm, measurement
resolution = 0.035 MPa, in depth range = 0–45 cm and cone index
range = 0–7 MPa. Cone penetrometer readings were taken at four
different depths from the plow layer before and after sugarcane
harvest (0–2.5, 2.5–5.0, 5.0–7.5 and 7.5–10.0 cm).

Fifteen disturbed soil samples were randomly collected
(approximately 1 kg each one) within the first squared grid
(120 m � 120 m grid). Fifteen sub-samples (approximately 50 g
each sub-sample) were bagged in aluminium containers and
weighted for soil moisture determinations (gravimetric method)
after oven-drying at 105 8C. Each soil sample was extracted from
the 0–10 cm soil depth using an auger. At the laboratory,
undisturbed soil samples were air dried for 2 weeks, ground
and passed through a 2.0 mm sieve. The pipette method (Gee and
Bauder, 1986) was used for texture analysis, soil pH values were
determined in H2O using the potentiometric method (soil–solution
ratio 2:5) and organic carbon (OC) by dry combustion
(OM = 1.724 � OC). Soil moisture content was also determined
after sugarcane harvest.

3.3. Standard statistics, prefractal and geostatistical analyses

Soil physical/chemical properties and penetrometer resistance
data were characterized using standard descriptive statistics. In
addition, Shapiro–Wilk tests of normality (p < 0.05 indicates
[(Fig._2)TD$FIG]
Fig. 2. Photographs of the studied sugarcane field: (a) before harvest and (b) after

harvest.



Table 2
Standard descriptive statistics of soil penetration resistance.

Soil depth (cm) Mean

(MPa)

Min.

(MPa)

Max.

(MPa)

CV (%) Distributiona

Before harvest

0–2.5 0.550 0.075 3.930 145 Non-Gaussian

2.5–5.0 1.536 0.080 4.250 67 Non-Gaussian

5.0–7.5 2.361 0.180 4.700 35.5 Gaussian

7.5–10.0 2.706 0.350 6.040 31.2 Gaussian

After harvest

0–2.5 1.163 0.085 5.930 114 Non-Gaussian

2.5–5.0 2.164 0.110 6.460 69 Non-Gaussian

5.0–7.5 2.906 0.140 6.490 52 Gaussian

7.5–10.0 3.160 0.090 6.490 45 Gaussian

a After a Shapiro–Wilk test of normality (p<0.05). n = 144 data points before

harvest and n = 100 measurements after harvest.

L.D. Pérez et al. / Soil & Tillage Research 110 (2010) 77–8680
significant deviation from the normal distribution) were per-
formed on soil penetrometer resistance distributions. Those data
normality analyses were conducted using STATISTICATM Software
Package (Stat Soft, 2003).

We searched for both isotropic and/or anisotropic prefractal
semivariograms using GS + Geostatistics Software Package (Gamma
Design Software, 2001). This software uses Eqs. (4) and (5) for
computing Dv values. That is, log–log plots of g(h) versus h allow one
to estimate both, Dv from the slope of the regression line and the
scaling (nugget) coefficient, c, from the g(h)-axis intercept. Before
sugarcane harvest (12 � 12 points grid) we considered 124.45 m as
the active lag distance and 12.45 m as the lag class distance interval
(uniform interval). After crop harvest (10 � 10 points grid) we chose
101.82 m as the active lag distance and 10.18 m as the lag class
distance interval (uniform interval). North direction was selected as
the principal axis orientation while offset tolerance was fixed to
22.58. All of them were software default parameters.

4. Results and discussion

4.1. Description of penetrometer resistance data

Table 2 shows the descriptive statistics of soil penetrometer
resistance in the field. Minimum, maximum and mean values
increased with soil depth before and after sugarcane harvest but
the largest estimates were found after crop harvest. At the same

[(Fig._3)TD$FIG]

Fig. 3. Histograms of the measured penetrometer resistance before sugarcane harvest (p r

normal fit).
time it was found that there was significant spatial variability in
terms of the coefficient of variations. The Shapiro–Wilk test of
normality showed that four out of eight samples did not differ
statistically from the normal distribution (Figs. 3 and 4).
Furthermore, neither log-normal nor gamma distributions yielded
significant fits for those non-Gaussian experimental data. A similar
situation was found after square-root transformations. There was
found a controversial result for a particular data set. For example,
while the Kolmogorov–Smirnov test identified a sample as normal,
both the Shapiro–Wilk test and Lilliefors probabilities classified
efers to the Shapiro–Wilk significance level and the continuous curve is the expected
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Fig. 4. Histograms of the measured penetrometer resistance after sugarcane harvest (p refers to the Shapiro–Wilk significance level and the continuous curve is the expected

normal fit).
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that distribution as non-Gaussian (see Fig. 4(b)). We also found
that Pareto distributions fitted quite well those frequency
(probability) distributions shown in Fig. 3(a) and Fig. 4(a) with
coefficient of determinations R2 = 0.992 (p < 0.01) and R2 = 0.941
(p < 0.05), respectively.

The soil was slightly wetter before sugarcane harvest (Febru-
ary/2009) due to moderately rainy days previous to soil sampling
and data collection (Table 3). We think however that soil moisture
differences shown in Table 3 do not influence penetrometer
resistance interpretations. Figs. 5 and 6 show the spatial
distribution of soil penetrometer resistance before and after
sugarcane harvesting, respectively. In both cases each data
distribution was previously converted into a regular XYZ matrix
(Z representing soil penetration resistance data). In this case crop
inter-rows and machinery paths are oriented in the North
direction. Both figures are linked to Table 4. As different authors
have stated different extreme values for soil compaction (0% of root
Table 3
Soil gravimetric water content (0–10 cm soil depth).

Before harvest Values After harvest Values

Mean (kg kg�1) 0.167 Mean (kg kg�1) 0.150

Min. (kg kg�1) 0.105 Min. (kg kg�1) 0.077

Max. (kg kg�1) 0.294 Max. (kg kg�1) 0.205

CV (%) 25.88 CV (%) 17.38

n = 15 soil samples in each case.
elongation rate), we used 2.5 MPa as a threshold for separating
compacted from uncompacted soil. One can note the dominance of
cone index values smaller than 2 MPa before harvest for 0–2.5 cm
soil depth (Fig. 5(a)). It is also evident from Table 4 and Figs. 5 and 6
that percentage of mechanical impedance values �2.5 MPa
increased with soil depth in both situations. However, after crop
harvest the total percentage of penetrometer resistance data
�2.5 MPa was 47.5% as compared to only 30% before the traffic of
harvesting machinery. One can also note from Fig. 6 different
spatial patterns of soil penetrometer resistance values as
compared to those presented in Fig. 5. Furthermore, inspection
of both figures reveals some sort of spatial organization except for
Fig. 5b and Fig. 6b) where the spatial structures seem to be
random-like fields.

4.2. Spatial prefractal patterns of soil penetrometer resistance

distributions

Figs. 7 and 8 present the statistical fit of log–log transformations
of Eq. (4) with experimental semivariograms (offsets = 0, 45, 90
and 135 degrees). All the fits were significant (p < 0.05) (Table 5),
with prefractal scaling exponents ranging from Dv ¼ 1:794 to Dv ¼
1:945 which correspond to anti-persistent patterns. There was an
unclear trend of scaling exponent (Dv) values with soil depth
before and after crop harvest. However, before crop harvest the
prefractal pattern was isotropic at 0–2.5 cm soil depth. After
sugarcane harvest that spatial structure was broken and it turned
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Fig. 5. Spatial distribution of soil impedance data before harvest (the arrow indicates direction of machinery path).
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out to be an anisotropic prefractal structure with a prefractal
dimension smaller than its isotropic counterpart. In that case the
anisotropic prefractal pattern was oriented along the x-axis (east
direction). Thus, sugarcane harvester and complementary trucks,
trailers and tractors induced an anisotropic, anti-persistent
prefractal pattern on the 0–2.5 cm soil layer which implies
short-range spatial variations of soil penetrometer resistance. In
general, there is few information on the application of fractal
analysis with spatial data collected from squared grids or other
two-dimensional sampling schemes. In a recent paper, Usowicz
and Lipiec (2009) reported fractal dimensions computed from
isotropic semivariograms of soil impedance data. However, those
authors discussed the presence of anisotropic patterns of
penetration resistance in terms of vertical and horizontal soil
sampling planes.

Regarding 2.5–5.0 cm soil layer, no prefractal structures were
found (Table 5). In addition, standard geostatistical models (e.g.
linear, exponential, spherical or Gaussian) based on data normality
(the intrinsic hypothesis of Geostatistics) did not fit the data
significantly (results not shown). In both cases (before and after
crop harvest) semivariance values remained almost constant with
no dependence on the spatial lag (pure nugget) which is typical of
random variations. There were also found different anisotropic
prefractal patterns for 5.0–7.5 cm soil depth (458 and 908
directions, respectively). The prefractal dimension value ranged
from Dv ¼ 1:794 before crop harvest to Dv ¼ 1:925 after sugarcane
harvest, indicating an increase in the degree of anti-persistence.
Similar anisotropic structures were found for 7.5–10.0 cm soil
layer, but in this case the semivariogram dimension decreased
from Dv ¼ 1:931 before harvest to Dv ¼ 1:870 after harvest,
indicating a slight reduction of the anti-persistence. In general,
Dv values > 1.5 suggest that successive soil penetration resistance
values are negatively correlated. Cassel and Edwards (2003)
associated those short-range variations to bulk density variability
due to wheel and machinery compaction so as differences in
spatial geometry of previous tillage operations. One can note,
however, that nugget semivariances were quite different before
crop harvesting (e.g. 0.524, 0.363 and 0.588 MPa2 for 0–2.5, 5.0–7.5
and 7.5–10.0 cm soil depths, respectively) as compared to those
values after sugarcane harvesting (e.g. 1.122, 1.698 and
1.349 MPa2 for 0–2.5, 5.0–7.5 and 7.5–10.0 cm soil depths,
respectively) (Figs. 7 and 8). This suggests that not only fractal
dimensions are important for describing scale dependence but also
prefractal coefficients are also useful to gain additional informa-
tion. For instance, the prefractal nugget (c in Eq. (4)) conveys
information on the amplitude of the variability at the minimal
spatial scale (h = 1) and the way that spatial pattern is magnified
when h increases.

From our point of view, persistence/anti-persistence concepts
are better illustrated by making use of the original idea suggested
in Mandelbrot and Wallis (1969). One approximates the first
derivative as a first-order finite difference in Eq. (4) (e.g. Dg(h)/
Dh)), to compute the rate of change of the semivariance as a
function of the spatial lag, h. We used this approach following the
rationale proposed by Feder (1988) for analyzing the anomalous
diffusivity in fractal media. Then one can plot Dg(h)/Dh versus h
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Fig. 6. Spatial distribution of soil impedance data after harvest (the arrow indicates direction of machinery path).
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(note that 2H ¼ 4� 2Dv). Fig. 9 shows the plots for untransformed
coordinates (Fig. 9(a)) and log–log coordinates (Fig. 9(b)), respec-
tively. For the sake of simplicity we set (1/2)c = 1 in Eq. (4). For
H = 0.7 (Dv ¼ 1:3<1:5) one can note that larger values of
semivariance increments are also followed by larger ones as the
spatial lag increases. This is the case of persistence. On the other
hand, larger values of semivariance increments are followed by
smaller ones for H = 0.3 (Dv ¼ 1:7>1:5). This is the case of anti-
persistence. Furthermore, note that the magnitude of the
semivariance change is not the same for both cases. For example,
Dg(h) = +0.325 between the lags h = 2 and h = 3 for H = 0.7, while
Dg(h) = �0.068 between the same spatial lags for H = 0.3. All of this
shed light, to some extent, on the spatial scaling of soil
penetrometer resistance as a function of the spatial direction.
Finally, the case H = 0.5 (Dv ¼ 1:5) corresponds to uncorrelated
values between semivariance rate and spatial lag. With illustrative
proposal, we simulated two-dimensional random fields of isotro-
pic fractional Brownian motions for H = 0.3, H = 0.5 and H = 0.7 as
shown in Fig. 10(a–c) (n = 250). Our hypothetical variable (e.g. soil
resistance values) is represented by random increments 0 <R � 1.
Table 4
Percentage of soil resistance values �2.5 MPa.

Soil depth (cm) Before harvest (%) After harvest (%)

0–2.5 4.2 21

2.5–5.0 16.7 42

5.0–7.5 41.7 59

7.5–10.0 57.6 68

Total 30.0 47.5

n = 144 data points before harvest and n = 100 measurements after harvest.
All the simulated fields were synthesized using FracLab Software
(Institut National de Recherche en Informatique et Automatique,
1998). The anti-persistent case (H = 0.3, Fig. 10(a)) presents short-
range fluctuations similar, to some extent, to white noise.
Fig. 7. Log–log plot of the geostatistical prefractal model before sugarcane harvest.
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Fig. 8. Log–log plot of the geostatistical prefractal model after sugarcane harvest.
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However, one can note smaller values followed by larger ones and
vice versa (see scale bar at the right hand of each figure). The white
noise (regular Brownian motion) simulation (H = 0.5, Fig. 10(b))
does not show a well defined structure as expected. On the other
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Fig. 9. Semivariance rate of variation as a function of the spatial lag: (a)

untransformed coordinates and (b) log–log representation. T
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Fig. 10. Two-dimensional random fields synthesizing fractional Brownian motions:

(a) anti-persistence, (b) white noise and (c) persistence.
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hand, the positively correlated pattern (H = 0.7, Fig. 10(c)) shows
large zones with a persistent range of values. In general, harvesting
machinery can change, in many cases, the spatial organization and
orientation of soil compaction zones. Furthermore, soil dynamics,
in terms of soil mechanical properties, can change their spatial
scaling in response to harvesting machinery. Even though soil
resistance was measured at inter-row, the transient strain is
transmitted both downward and laterally which also influences
crop root system (Cassel and Edwards, 2003). Or and Ghezzehei
(2002) have pointed out that both, plastic and elastic deformations
can occur within 10 cm below the soil surface. We also include the
spatial re-organization of both, normal and tangential (shearing)
stresses which determine, to a large extent, soil penetrometer
resistance. This type of complex organization influences other
physical properties of the soil. For example, one could expect
similar prefractal scaling patterns of soil structure degradation in
terms of increasing bulk density values. In general, that is not a
very serious problem with Vertisols as natural shrinking/swelling
processes tend to restore the original soil structure. However, some
crop dependent parameters such as rate of shoot emergence and
roots distribution might be affected as previously pointed out.

5. Conclusions

We have used classical statistics, prefractal analysis and
approximations to Pareto-type behavior with soil penetrometer
resistance data before and after sugarcane harvest in order to
characterize soil plow layer penetrometer resistance under
mechanized sugar cane production. The Shapiro–Wilk test of
normality showed that four out of eight distributions were normal
within the considered spatial scale. The experimental semivar-
iance increased as a function of the spatial lag following a
prefractal (Pareto-type) law in most cases. In addition to increasing
soil compaction, harvesting machinery produced changes on the
anisotropic direction of prefractal patterns. All the prefractal
structures rendered scaling parameters larger than 1.5 indicating
anti-persistence, short-range variations of soil penetrometer
resistance and anti-correlation. This type of prefractal spatial
variation can account for differences of sugarcane yield within the
field. In general, the combination of Geostatistics and prefractal
analysis can assist the mechanized agriculture and scientists
through a previous identification of degraded zones within the
field (e.g. block kriging) and the physical processes involved in the
formation of those local areas (e.g. prefractal statistics). With this
information, the agricultural supervisor can manage the cultiva-
tion of sugarcane fields in order to minimize or remediate areas of
physically degraded soil, and to increase production yields.
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