
In recent years, wavelet transforms (WTs), as origi-
nally developed in the 1980s (Hubbard 1998), are finding

increasing use in biological and related sciences, including
studies on climate patterns (Lau and Weng 1995), biological
community dynamics (Keitt and Fischer 2006), ecological pat-
terns and scales (Dale and Mah 1998, Lark and Webster 1999,
Keitt 2000, Csillag and Kabos 2002, Keitt and Urban 2005, Mi
et al. 2005), forest gap structure (Bradshaw and Spies 1992),
landscape remote sensing (Strand et al. 2006), biomolecules
(Lió 2003, Haimovich et al. 2006), bird sounds (Selin et al.
2007), and human brain signals (Keil et al. 2003). In partic-
ular, wavelet multiresolution analysis (MRA) enables one to
visualize the structures buried in different time (spatial)
scales just as one would see the subcellular structures of
living things using a microscope (Hubbard 1998, Walker
1999). Although works by Hubbard (1998), Walker (1999),
Jensen and Cour-Harbo (2000), Polikar (2001), and Fugal
(2007) have explained the concepts of WT without relying on
advanced mathematics, and many wavelet computer pro-
grams (e.g., Fawave, and routines with Matlab, R, and S-
plus) are now readily available, the implicit assumption in these
explanations is that the reader is familiar with the terms of dig-
ital signal processing (DSP), an assumption that may be in-
accurate for some biological and applied scientists. Moreover,
most articles are rich in output graphics but deficient when
it comes to detailed interpretations, which may leave biologists
puzzled about how the WTs were generated. In addition,
effective communication among biologists from different

research areas seems limited, despite the fact that they all
may be using the same WT technique to tackle complex
problems in their respective fields.

We have two objectives in this article. First, we hope to pro-
vide a practical tutorial so that biologists can quickly under-
stand the basic idea of WT without extensive knowledge of
DSP and advanced mathematics. This will be accomplished
by walking through two carefully selected examples step-by-
step, using freely available software. We also provide detailed
computational instructions and a thorough interpretation
of the results. Second, we offer a few brief but critical com-
ments for further study of the wavelet technique, and we
highlight a few research topics that are advancing rapidly or
are likely to stimulate new thoughts in biological sciences.

Data source and analysis methods
Our sample data set includes an eight-element artificial
“signal”(Jensen and Cour-Harbo 2000) and monthly Palmer
Drought Severity Index (PDSI) data from 1921 to 2006 for
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the nine climate regions of North Dakota, United States
(NESDIS 2006). The physical locations of the climate divisions
for North Dakota are northwest, north-central, northeast,
west-central, central, east-central, southwest, south-central,
and southeast (LUSCD 2007). The PDSI values generally
range from –6 to +6, with negative values denoting dry spells
and positive ones for wet spells. Both discrete WT (DWT)
(Walker 1999) and continuous WT (CWT) (Polikar 2001)
were used for analyzing the PDSI data. Data analysis was
conducted with MINITAB and WTs using the free software
TimeStat (www.pricepatternprediction.com/ga01011.htm),
FracLab (http://complex.futurs.inria.fr/FracLab/download.
html), and Fawave (www.uwec.edu/walkerjs/). Although we
used only the outputs from TimeStat and FracLab, we veri-
fied most of the results with Fawave as well as with a computer
program of our own.

The essential idea of wavelet multiresolution analysis
Many complex natural signals, such as a time series of soil elec-
trical conductivity (Lark and Webster 1999) or an aerial im-
age of a landscape-scale vegetation map (Strand et al. 2006),
have small variations at fine scales and large ones at coarse
scales. The MRA, “the heart of wavelet analysis” (Walker
1999), can be used to successively break down these kind of
signals into several pieces, each representing a different scale.
Using WT, these simpler component signals can be manip-
ulated in various ways with high flexibility before they are
synthesized to achieve different signal processing and en-
hancement objectives (Fugal 2007). For example, some com-
ponents may be discarded because of their small magnitude
and thus small contribution to the total energy (or variance
in biology) of the whole signal (Shapiro 1993). This may
lead to noise removal, image enhancement (Shapiro 1993,
Walker and Chen 2000), and breakdown of autocorrelation
(Keitt 2000, Lió 2003). In the next two sections, we show
detailed calculations of WTs using a sample data set. We
encourage readers to use a pencil and paper to work through
the calculations for the eight-element signal. After this, one
may analogize to understand the PDSI data analysis.

Discrete wavelet transform using an artificial signal
Conventional DWT decomposes the original signal succes-
sively into components of different scales by powers of 2
(Fugal 2007), first splitting the original signal in halves, then
in quarters, and so on. We will use an eight-element signal,
f = (56,40,8,24,48,48,40,16), to illustrate its essence. First, for
ease of discussion, we review several terms used by Walker
(1999). Let this signal be f = (f1,f2,...,f8), and the first trend sub-
signal a1 = ( = 48, = 16, = 48, = 28), in which
is obtained by

where i = 1,2,3,4. Let the first fluctuation subsignal be d1 =
, in which is

obtained by

where i = 1,2,3,4. We start from f and obtain the first trend
subsignal a1 and the first fluctuation subsignal d1, where
the length of each of the latter two subsignals is half that of
the original signal. By working on a1, equations 1 and 2 can
be applied recursively to obtain the second trend subsignal a2
and second fluctuation subsignal d2. As we proceed one more
recursive step, we find a3 and d3, as shown in box 1 (Jensen
and Cour-Harbo 2000).

Reconstruction. Now we perform a perfect reconstruction of

the original signal f, beginning from a3. Because a3 and d3 are

obtained solely from a2

, to reconstruct a2 = we

need to do some simple algebra. To find , we add the two

equations in parentheses, that is,

= and thus Similarly, to

find , we subtract the two equations in parentheses, that

is, , and thus,

(box 1). Continuing this procedure, we find
a1 based on a2 and d2, and finally f based on a1 and d1, which
is a perfect reconstruction. If we make a minor modification
by setting only the element d3 to zero, that is, d3 = 0, and do
the reconstruction again, we will get the synthesized signal
f = (59,43,11,27,45,45,37,13). This is called an imperfect
reconstruction—this synthesized signal is different from the
original signal f (box 1). However, the error is relatively small
because –3 is relatively a small number (compared with most
of the other nonzero elements) in this sample signal.
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Box 1. A 3-level decomposition
of the original signal,



The first averaged and detail signals through reconstruction.
Let’s look at the first step of decomposition of the original
signal f. If we set all the elements of d1 to zero, d1 = (0,0,0,0),
and reconstruct f from a1 and d1 using the same rule as we
used above, we obtain a signal that is less variable than f but
still retains the main trend. This is called the first averaged
signal, A1 = (48,48,16,16,48,48,28,28), because the first fluc-
tuation subsignal d1 is totally ignored in the reconstruction,
and the synthesized signal A1 contains only the contribution
from the first trend subsignal a1. Compared with f, A1 has
a lower resolution: the original resolution contains all the
details of the signal, but the lower resolution A1 does not con-
tain the first fluctuation subsignal. By doing this, we have
used a “low pass filter” to process the signal (by blocking the
rapidly changing components while allowing the slowly
changing components to pass through). Similarly, we can
set all the elements of a1 to zero, that is, a1 = (0,0,0,0), while
keeping d1 unchanged that is, d1 = (8,–8,0,12), and do the
reconstruction. This will result in the first detail signal, D1 =
(8,–8,–8,8,0,0,12,–12), because only the information of the
fluctuation d1 is retained in the reconstruction. By doing
this, we have used a“high pass filter” to process the signal (by
blocking the slowly changing components while allowing
the rapidly changing components to pass through). This is
MRA.

Averaged and detail signals for more levels. Using the same
procedure as the one for obtaining A1 and D1, we can find
A2 (the second averaged signal) and D2 (the second detail sig-
nal). To find A2, we start from a2 = (32,38) and d2 = (0,0) and
reconstruct the new a1 as a1 = (32,32,38,38). Then we use d1
(0,0,0,0) and the new a1 (32,32,38,38) to reconstruct the
“original” signal (now called A2 because during the recon-
struction only the information of a2 was retained): A2 =
(32,32,32,32,38,38,38,38). D2 can be obtained by setting a2
= (0,0), d2 = (16,10), and d1 = (0,0,0,0) and using the same
rule to reconstruct the new original signal. Similarly, we can
find A3 (the third averaged signal) and D3 (the third detail
signal). We list them all below, along with the original signal:

f = (56, 40, 8, 24, 48, 48, 40, 16)
A1 = (48, 48, 16, 16, 48, 48, 28, 28)
A2 = (32, 32, 32, 32, 38, 38, 38, 38)
A3 = (35, 35, 35, 35, 35, 35, 35, 35)
D1 = (8, –8, –8, 8, 0, 0, 12, –12)
D2 = (16, 16,–16,–16, 10, 10,–10,–10)
D3 = (–3,–3,–3,–3, 3, 3, 3, 3).

Walker (1999) defined the addition of two signals, g = (g1, g2,
g3, g4) and h = (h1, h2, h3, h4), as

g + h = (g1 + h1, g2 + h2, g3 + h3, g4 + h4). (3)

The original signal f can be expressed as the addition of the
average and detail of different levels, as shown below (verifi-
able using equation 3):

f = A1 + D1
= A2 + D2 + D1
= A3 + D3 + D2 + D1.

The representation of the relationships among the compo-
nents of the original signal enables a flexible decomposition
or synthesis of the signal, which will be discussed in more de-
tail in the next section.

Wavelets and scaling functions. How are the decomposition

and reconstruction of our eight-element signal related to

wavelets? One of the simplest wavelets, the Haar, is defined

as H = (Walker 1999), assuming

eight elements. It is called “wavelet” because all the elements

are zero except the first two, showing a “little wave.” To sim-

plify hand calculation, we modify the Haar wavelet so that it

reads x = . It is possible for the nonzero

values of X to be shifted to give three variations, for example,

X1 = X2 =

X3 = (figure 1). We will show that

the first fluctuation subsignal d1 can be expressed as a func-

tion of X, X1, X2, and X3. To do this, we first borrow from

Walker (1999) the definition of “element-by-element prod-

uct” of two signals g = (g1,g2,g3,g4) and h = (h1,h2,h3,h4) as

g · h = g1h1 + g2,h2 + g3h3 + g4,h4. (4)

The first fluctuation subsignal d1 can be expressed as d1 =

(X · f, X1 · f, X2 · f, X3 · f) (figure 1). To verify this, we see that

the first element of d1 is ·

(f1,f2, f3,f4,f5,f6,f7,f8) = X · f according to equations 2 and 4. In

other words, using equation 2 to calculate the first element of

d1 is equivalent to using the product of the original signal f and

the wavelet X.
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Similarly, we can verify = X1 · f, = X2 · f , and =

X3 · f. For the same reason, the first trend subsignal a1 can be

expressed as a1 = (Y · f, Y1 · f, · Y2 · f, Y3 · f), where Y, Y1, Y2,

and Y3 represent the scaling function and its shifts, that is,

Y = Y1 = , Y2 =

, Y3 = (figure 1).

To go to the second-level decomposition of f, we use d2 =

(X(2) · a1, X1(2) · a1) and a2 = (Y(2) · a1, Y1(2) · a1), where the

size of X(2), X1(2), and so on, is each trimmed by the power of

2 with X(2) = X1(2) = , and so on.

The same is true for all other levels of decomposition. As
the trend signals shrink through decomposition (box 1),
each element contains the information of a wide spatial
(time) interval of the original signal. In sum, the signal de-
composition using the modified Haar wavelet is easily un-
derstood by realizing that it proceeds iteratively with equations
1 and 2 applied to all levels, and with decomposition occur-
ring only on the original or the trend subsignals. As the
signal shrinks, the wavelet (scaling function) is trimmed to
match the signal length.

Once the decomposition is complete, all the averaged and
detail signals of different levels can be found by reconstruc-
tion. Unlike the method Walker (1999) and Fugal (2007) de-
scribe, our approach to reconstruction requires minimum
mathematics. We simply reverse the procedure of decom-
position, keeping only the coefficients of interest (e.g., values
in box 1) and setting other coefficients to zero (www.ag.ndsu.
nodak.edu/streeter/Range_research_index.htm). (This is ex-
plained in more detail at www.ag.ndsu.nodak.edu/streeter/
wavelets/wavelets.htm, where we present a computer pro-
gram we developed for calculating the Haar, or the modified
Haar, DWT.)

Wavelet transforms on a set
of the drought index signals
For the PDSI data from North Dakota (table 1), we con-
ducted a wavelet MRA similar to the eight-element sample
signal shown above, but with three important differences. First,
each of the PDSI signals has data points. Second, we used
the Coiflet4 wavelet instead of the Haar wavelet (figure 2a; and
see www.ag.ndsu.nodak.edu/streeter/Range_research_index.
htm) because the former is well suited to capture the smooth
trend of the time series (Walker 1999). Third, we used the
software TimeStat for the computation. The result of the
eight-level decomposition is shown in figure 3a, and the
reconstruction is shown in figure 3b for the northwestern
climate region.

In figure 3a, the PDSI signal for the northwestern region
is decomposed into nine frequency bands, beginning from the
top with the upper band, the highest frequency band D1. (Note

that this D1 corresponds to the first detail signal
of our artificial signal shown above.) The name
“highest frequency band” suggests that the band
contains rapidly changing components and a
number of different frequencies. The energy con-
tent (Walker 1999) of each of the nine signals, rep-
resenting nine climate regions, is defined as the
sum of squares of all 1024 data points of each of
the nine frequency bands (table 1).

A few important facts about DWT. First, as shown
in table 1, the time resolution becomes poorer as
we move from D1, D2, ..., and all the way to A8.
This is due to the time-frequency uncertainly
principle of WT (Hubbard 1998), because the
frequency resolution increases within the nine
frequency bands from D1 to A8. Second, there are
slight overlaps between the adjacent bands (Fugal
2007, fig. 4.7-3). However, to simplify the tabu-
lation, these overlaps are omitted in table 1. As a
result, the periods (in years) in table 1 are only
approximate.

Interpretations of DWT output. From table 1 it
is evident that for all nine divisions, the energy
contents of the decomposed frequency bands
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Figure 1. An illustration showing how the signal’s local fluctuation (or
trend) characteristics can be measured by shifting the wavelet (or the
scaling function) horizontally within the signal length. Here the shifting
is made at a step of the power of two.



concentrate mostly in D5 and D7, corresponding to the
periods of 3–5 years and 11–18 years, respectively. The period
19–38 years (corresponding to D8) also has a considerable con-
tribution, but it varies from region to region, with the south-
eastern region having the highest percentage (24.6%; see
table 1). Without exception, the lowest energy exists in the
bands of D1 and A8. The D1’s all have very low energy because
they are obtained through signal synthesis using only the
first fluctuation subsignal, which represents the most de-
tailed information. The low energy in A8 is due to the fact that
the previous decomposition stages have successively removed
the major high-energy band components. It is interesting
that band D6 (for a period of 6–10 years) accounts for a
quite low percentage of the total energy of the signals for all
nine climate regions of North Dakota. Of the total energy of
PDSI signals from June 1921 to September 2006, the north-
western region had the lowest value, and the southeastern re-
gion had the highest value. This indicates that there are more
cases of extreme PDSI values for the southeastern part of the
state than for the northwestern part.

In figure 3b, beginning from A8, more and more details are
added to produce the original signal f. Signal A6 in figure 3b
looks similar to signal D7 in figure 3a. That is because signal
A7 in figure 3b has low energy, and when it is added to sig-
nal D7, only slight changes are made. Inspecting the stages of
the signal reconstruction in figure 3b, we can see that the
biggest change in the shapes of the curves occur when A5 is
added to D5 to produce A4. This is understandable because
in figure 3a, D5 has the highest energy of all the decomposed
bands (table 1). Also, a big change in the shapes of the curves
occurs when A7 is added to D7 to produce A6, because D7 has
the second highest energy of the nine frequency bands of the
signal from the northwestern region.

Looking at the A8 column in table 1, values from the
southwestern and south-central regions have low energy
(1.0 and 1.9, respectively), whereas the north-central and

east-central regions have high energy (10.7 and 13.7, respec-
tively). This low energy or high energy in the eighth averaged
signal is consistent with the near zero long-term trend of the

Biologist’s Toolbox
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Table 1. Energy content of the decomposed nine frequency bands of the original PDSI signal for
each of the nine climate regions of North Dakota.

Decomposed frequency bands
and period (years)

D1 D2 D3 D4 D5 D6 D7 D8 A8 Total
Region (0.1–0.2) (0.5) (1) (2) (3–5) (6–10) (11–18) (19–38) (≥ 39) energy

NW 2.4 3.6 7.2 9.3 29.7 7.3 22.1 15.2 3.2 6729

NC 2.0 3.0 6.2 10.9 23.4 10.6 21.3 11.8 10.7 7747

NE 2.7 3.2 6.7 12.7 22.0 13.5 23.3 9.5 6.5 7614

WC 2.5 3.7 6.8 12.5 18.8 9.5 31.8 10.1 4.2 6779

C 2.6 3.7 6.9 11.3 20.0 14.4 30.9 6.0 4.0 7314

EC 2.1 2.8 5.1 11.2 20.3 9.6 23.3 11.9 13.7 7547

SW 2.3 3.5 5.4 11.1 23.6 12.0 32.6 8.5 1.0 7037

SC 2.1 3.0 6.0 10.3 20.1 11.3 36.4 8.8 1.9 7915

SE 2.1 2.5 4.4 11.4 21.7 5.2 23.6 24.6 4.1 8595

Average 2.3 3.2 6.1 11.2 22.2 10.4 27.3 11.8 5.5 7475

C, central; EC, east-central; NC, north-central; NE, northeast; NW, northwest; PDSI, Palmer Drought Severity Index; SC,
south-central; SE, southeast, SW, southwest; WC, west-central.

Note: Data are presented as percentages of the total energy of the PDSI signal in each region.

Figure 2. Shapes of the two wavelets bases used for ana-
lyzing the Palmer Drought Severity Index data in this
study: (a) the Coiflet4 wavelet and (b) the Morlet wavelet.



PDSI data in the southwestern and south-central regions
and the first down, then up, trend in the north-central and
east-central regions (figure 4). In figure 4, the decadal droughts
of the 1930s and 1980s are clearly shown. Several regions
clearly show a drought in the 1950s (especially the north-
western, north-central, west-central, and south-central re-
gions), but overall this 1950s drought is not as strong as the
droughts of 1930s and 1980s.

A time-frequency portrait of the PDSI data using CWT. Like
the DWT (i.e., Haar and Coiflet4), a CWT also captures
(localizes) the signal features in both time and frequency

(scale) domains (Polikar 2001). However, CWT
usually shows more transient features of the
signals, because both the shifting and stretch-
ing of the wavelets are done at very fine inter-
vals. Walker (1999) and Fugal (2007) presented
detailed computer algorithms. Different wavelet
bases can be used, such as Haar, DaubJ, CoifletI,
Mexican Hat, or Morlet. In this application,
we used the Morlet analytic wavelet base as
shown in figure 2b. The use of the real and
complex parts of the Morlet wavelet is neces-
sary for the signal synthesis (Gould and To-
bochnik 1996).

Now we turn to the CWT graphs for the
northwestern and south-central regions shown
in figure 5 (graphs of the other seven regions
are not shown because of space limitations).
The vertical axis represents the period (inverse
of frequency) and the horizontal is for time (in
years), so these are a time-frequency portrait of
the signals. The orange and red colors in figure
5 indicate high coefficients of CWT at a par-
ticular frequency and time location. The smaller
coefficients are represented by yellow
or blue. The very high frequency components
are located in the lower portion of the graphs
in shades of blue, indicating lower energies.
As with DWT, there is a trade-off between the
resolution of time and frequency in a typical
CWT graph (Polikar 2001). At the lower
portion of the graph, the time resolution is
high and the frequency resolution becomes
low. At the uppermost portion of the graphs,
however, the orange-colored contours tend to
be horizontally wide and vertically narrow, in-
dicating a lower time resolution but higher
frequency resolution.

There are several important features in fig-
ure 5. First, for both regions (actually, for all
nine regions), the droughts of the 1930s and
1980s are represented with the orange-red con-
tours on the upper portions of the graphs.
However, the 1930s drought is on the upper-
most edge, corresponding to a period more

than 20 years, whereas the 1980s drought is located at about
the 12-year period; the droughts occurred at different time
scales, with the 1930s drought lasting longer. The deepness of
the orange color does not correspond to the severity of
drought, but instead indicates frequencies with high energy.
At scales of 10 to 20 years, no prolonged and severe drought
occurred from the late 1950s to the early 1970s, as indicated
by the domination of blue colors. The higher energy of the
high frequency signal components occur mainly during the
major droughts of the 1930s and the 1980s. In the CWT
graphs, they appear as isolated, yellow-orange contours,
smaller in area, below the two major droughts. In particular,
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Figure 3. A decomposition and lossless reconstruction of the Palmer Drought
Severity Index values for the northwestern climate region of North Dakota
(June 1921–September 2006). The Coiflet4 wavelet was used for the discrete
wavelet transform. (a) The original signal was subjected to eight level decom-
positions, resulting in the first detail signal D1, second detail signal D2,...,
eighth detail D8 and averaged A8 signals. (b) The component signals were
synthesized successively to obtain a perfect reconstruction of the original
signal f. The averaged signals A6 and A8 are plotted along with the original
signal in figure 4.



for the south-central region, the lack of higher frequency
dynamics below the 1930s drought means that within this
major drought period, the higher frequency changes of the
precipitation were lacking; the drought was truly severe, with
no significant temporal rain inputs. On the other hand, for
the northwestern region during both the 1930s and the 1980s
droughts, there are scattered higher frequency dynamics,

which may have provided partial and temporal relief
from the prolonged droughts.

Discussion of the PDSI data analysis. The long-term
drought cycles on the earth’s surface in general and
in the northern Great Plains in particular is highly
complex (Schubert et al. 2004a). For the major part
of the Great Plains, the strongest influence of the long-
term drought cycles comes from the Pacific and
Atlantic sea surface temperatures (McCabe et al.
2004, Schubert et al. 2004b), solar activities (Yu and
Ito 1999), and long-term soil moisture feedback, as
well as possible effects of global warming (Schubert
et al. 2004a). Although long-term ocean temperature
trends seem to suggest that the Great Plains region
is, at present, in the early stage of a long-term drought
period (McCabe et al. 2004), effects of multiple in-
fluences occurring over different time scales create
difficulties for accurate long-term forecasting. There
are other possibilities for wavelet-based time series
forecasting (Murtagh and Aussem 1998, Yin and
Zheng 2004), but these are beyond the scope of this
article. However, using wavelet tools (DWT and
CWT), we identified several important features of the
drought severity history in North Dakota. For ex-
ample, using wavelet MRA, we found that the
drought severity in the state for the past 85 years was
dominated by a multiyear periodicity of 3 to 5 years
and a decadal periodicity of 11 to 18 years. However,
the 6- to 10-year period is very weak. This finding may
have some implications for agriculture. Yet it was
the CWT analysis that revealed the two major
droughts of the 20th century (the 1930s and the
1980s droughts) and their characteristics in different
areas of this state, as well as several more detailed high
frequency features of the drought periodicities.

Further study and applications of wavelets
Many real-world data sets in this information-
technology era can be so complex that a preliminary
application of the wavelet technique is usually far
from enough. We now offer a few directions for
further applications of wavelets, as well as a couple
of ideas with potential impacts for new develop-
ments in biology.

Wavelets in high dimensions: The basic principle
unchanged. Equipped with the basic principle of
wavelet MRA in one dimension, one can easily un-

derstand and use WT in higher dimensions (Walker 1999,
Walker and Chen 2000), as done with the two-dimensional
image shown in Strand and colleagues (2006).

Fourier transform: Toward advanced use of wavelets. As
numerous studies cited in this article demonstrate, WT often
outperforms Fourier transform in characterizing biological
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Figure 4. The Palmer Drought Severity Index and discrete wavelet
transform (Coiflet4) for the nine climate regions of North Dakota with
the original signal f (solid black), the sixth averaged signal A6 (solid
red), and the eighth average signal A8 (solid blue). The dashed blue
lines indicate the horizontal zero.



signals, though one should note that they are equivalent
theoretically (Bruns 2004). Advanced applications of the
wavelet technique should be made on the basis of a better
knowledge of the theory of DSP (Smith 1997, Walker 1999,
Fugal 2007), especially that of Fourier transform.

Wavelet regression: Scale-specific biostatistics. When
complex biological signals are broken down into scale-specific
components through DWT, it is possible to conduct traditional
regression analyses directly on the transformed (simplified)
data. This may significantly improve the quality and effi-
ciency of scientific data analysis and provide new insights that
may not be obtainable if the analysis is applied on the origi-
nal, and usually more complex, data (Keitt and Urban 2005,
Keitt and Fischer 2006). Also rewarding are the wavelet-based
statistical inferences (Torrence and Compo 1998, Mi et al.
2005).

Wavelet and nonlinear time series forecasting. When the
slow-changing components of a time series are separated
from the fast-changing ones using DWT, it is possible to
make forecasts on the basis of multivariate analysis (Murtagh
and Aussem 1998). Alternatively, if the component time se-
ries meets certain chaos criteria, some nonlinear dynamic
methods may be used for scale-specific forecasting (Yin and
Zheng 2004). However, we did not cover the issue of fore-
casting in our discussion of the PDSI data because doing so
would require additional tests for the Lyapunov exponent
(Baker and Gollub 1996).

DNA walks and neutral landscapes: From bioinformatics to
ecology. The prominent features of a complex ecological
landscape can be generated using a fairly simple wavelet-
based “neutral landscape” (Keitt 2000). This technique may
also have some heuristic value in genome function studies,
because similar patterns exist in the DNA sequence at short-

and long-range scales—that is, the “DNA walks” (Lió 2003,
Haimovich et al. 2006).

Wavelet zerotrees: Toward the understanding of biological
hierarchy. We propose an analogy between (a) the detection
of biologically functional DNA nucleotide sequences that
are interspersed in a background sequence of noncoding
DNA (Haimovich et al. 2006) and (b) the extraction of the
most significant wavelet coefficients determining the key
features of an image (such as Lena or House, available at
http://decsai.ugr.es/~javier/denoise/test_images/index.htm)
that are interspersed in a background sequence of insignifi-
cant coefficients (Shapiro 1993). The success of the latter is
attributable to the idea of a “lack of information” (Hubbard
1998) in a large number of insignificant coefficients forming
treelike structures that can all be set to zero to tremendously
increase the efficiency of computer encoding of images
(Shapiro 1993, Walker and Chen 2000). In addition, the
existence of these“zerotrees” in the images of Lena and House
enables efficient image recognition: anyone seeing the Lena
image will recognize the displayed object instantly, but it
could take several seconds to find the particular object of
interest on the page of an I Spy book, which does not have as
many well-formed zerotrees as does the image of Lena (e.g.,
Lena’s shoulder; http://decsai.ugr.es/~javier/denoise/test_images/
index.htm).

Although wavelet-based analysis has already significantly
expanded human understanding of DNA sequences (Arneo-
do et al. 1996, Audit et al. 2001, Haimovich et al. 2006),
wavelet zerotrees offer a fresh angle for looking at DNA frac-
tal landscapes. For instance, the prevalence of the noncoding
zones might facilitate efficient encoding of the extraordinar-
ily complex DNA sequences within biological cells, allowing
navigation through multiple scales for enhanced communi-
cations between DNA and its environment. Moreover, the
noncoding zones that facilitate the bending and looping of
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Figure 5. A continuous wavelet transform of the Palmer Drought Severity Index values for the northwestern and south-
central regions of North Dakota from June 1921 to September 2006. Left: northwestern region; right: south-central region.
The graphs were generated with Fraclab using a Morlet analytic wavelet of size 8. Other parameters used are fmin (minimum
frequency) = 2–6; fmax (maximum frequency) = 0.5; voices = 256. The values of the wavelet coefficients are indicated in the
vertical bar on the right in each graph.



DNA in higher dimensions (Arneodo et al. 1996) may also
enhance the “image recognition” of DNA behavior by acting
as wavelet zerotrees.
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