Finite Elements for Wasserstein \mathbb{W}_p gradient flows

<u>Clément Cancès</u> Daniel Matthes Flore Nabet Eva-Maria Rott

Project team RAPSODI, Inria at University of Lille

FV(E)OT Workshop

Ínría Université de Lille

Gradient flows in Hilbert spaces

- H: Hilbert space
- $X \in C^1(\mathbb{R}_+; H)$
- $E: H \to \mathbb{R}$: energy functional

$$\frac{\mathrm{d}X}{\mathrm{d}t} = -\nabla_H E(X) \qquad (+IC) \tag{1}$$

Energy evolution along an arbitrary curve $Y \in C^1(\mathbb{R}_+; H)$

$$\frac{\mathrm{d}}{\mathrm{d}t}E(Y) = \boldsymbol{\nabla}_{H}E(Y) \cdot \frac{\mathrm{d}Y}{\mathrm{d}t}$$

$$\stackrel{\text{C.S.}}{\geq} - \|\boldsymbol{\nabla}_{H}E(Y)\|_{H} \left\|\frac{\mathrm{d}Y}{\mathrm{d}t}\right\|_{H}$$

$$\stackrel{\text{Young}}{\geq} -\frac{1}{2} \|\boldsymbol{\nabla}_{H}E(Y)\|_{H}^{2} - \frac{1}{2} \left\|\frac{\mathrm{d}Y}{\mathrm{d}t}\right\|_{H}^{2}$$

Equality holds iff (1) holds true

Examples

►
$$H = L^2(\Omega), E = \int_{\Omega} \left(\frac{\alpha}{2} |\nabla u|^2 + F(u)\right)$$

 $\partial_t u + \mu = 0, \qquad \mu = -\alpha \Delta u + F'(u)$

►
$$H = H^{-1}(\Omega), E = \int_{\Omega} \left(\frac{\alpha}{2} |\nabla u|^2 + F(u)\right)$$

 $\partial_t - \Delta \mu = 0, \qquad \mu = -\alpha \Delta u + F'(u)$

First step beyond Hilbert spaces

Energy evolution along an arbitrary curve

$$\frac{\mathrm{d}}{\mathrm{d}t} E(Y) = DE(Y) \cdot \frac{\mathrm{d}Y}{\mathrm{d}t}$$
$$\geq -\Psi\left(\frac{\mathrm{d}Y}{\mathrm{d}t}\right) - \Psi^*\left(-DE(Y)\right)$$

Equality case

$$\frac{\mathrm{d}Y}{\mathrm{d}t} \in \partial \Psi^* \left(-\mathsf{DE}(Y)\right)$$

\rightsquigarrow Nonlinear monotone relation between the forces and the fluxes

Examples

$$\Psi(z) = \frac{1}{p} \|z\|_{L^{p}(\Omega)}^{p}, \Psi^{*}(w) = \frac{1}{q} \|w\|_{L^{q}(\Omega)}^{q}, E = \int_{\Omega} \left(\frac{\alpha}{2} |\nabla u|^{2} + F(u)\right)$$

$$\partial_{t} u + |\mu|^{q-2} \mu = 0, \qquad \mu = -\alpha \Delta u + F'(u)$$

$$\Psi(z) = \frac{1}{p} \|z\|_{W^{-1,p}(\Omega)}^{p}, \Psi^{*}(w) = \frac{1}{q} \|w\|_{W_{0}^{1,q}(\Omega)}^{q}, E = \int_{\Omega} \left(\frac{\alpha}{2} |\nabla u|^{2} + F(u)\right)$$

$$\partial_{t} u - \nabla \cdot \left(|\nabla \mu|^{q-2} \nabla \mu\right) = 0, \qquad \mu = -\alpha \Delta u + F'(u)$$

Wasserstein \mathbb{W}_{p} gradient flows: governing equations [Agueh (2005), Amborsio, Gigli & Savaré (2005)]

• Conservation in $\Omega \subset \mathbb{R}^d$ (convex, polyhedral and bounded)

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0 \quad \text{in } \mathbb{R}_{>0} \times \Omega,$$
$$\rho \boldsymbol{v} \cdot \boldsymbol{n} = 0 \quad \text{on } \mathbb{R}_{>0} \times \partial \Omega$$

Expression for the velocity¹

 $oldsymbol{v} = |oldsymbol{u}|^{q-2}oldsymbol{u}$ with $oldsymbol{u} = -oldsymbol{
abla}[\eta'(
ho) + \Psi]$ in $\mathbb{R}_{>0} imes \Omega$

• Initial profile $\rho^0 \ge 0$ with finite energy

$$\int_{\Omega}
ho^{0} = 1, \qquad \mathcal{E}(
ho^{0}) < +\infty,$$

with $\mathcal{E}(\rho) = \int_{\Omega} [\eta(\rho) + \rho \Psi].$

 ^{1}p and q are conjugate, i.e. 1/p + 1/q = 1

Pressure, metric slope and velocity in \mathbb{W}_p

[Ambrosio, Gigli & Savaré (2005)]

▶ Pressure function $\phi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ increasing

$$\phi(s) = s\eta'(s) - \eta(s) + \eta(0) = \int_0^s r\eta''(r) \mathrm{d}r$$

• Metric slope: given $\rho \in \mathcal{P}_{ac}(\Omega)$ with $\mathcal{E}(\rho) < +\infty$ and $\phi(\rho) \in W^{1,1}(\Omega)$

$$|\partial \mathcal{E}(\rho)|^q = \int_{\Omega} \rho |\boldsymbol{u}|^q \text{ with } \boldsymbol{u} = -\frac{\boldsymbol{\nabla}\phi(\rho)}{
ho} - \boldsymbol{\nabla}\Psi \text{ on } \{
ho > 0\}$$

• Metric velocity: if $t \mapsto \rho(t)$ solves

 $\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0 + \text{no-flux BC}$

then

$$|
ho'|^{p} \leq \int_{\Omega}
ho |oldsymbol{v}|^{p}$$

Solution concepts

Weak solution

 $ho:\mathbb{R}_{\geq0} imes\Omega
ightarrow\mathbb{R}_{\geq0}$ is a weak solution if

• $\rho(t, \cdot)$ is a probability density at each $t \ge 0$;

- $\phi(\rho) \in L^1_{\mathsf{loc}}(\mathbb{R}_{\geq 0}, W^{1,1}(\Omega));$
- the time-dependent vector field ${\boldsymbol{u}}: \mathbb{R}_{>0} \times \Omega \to \mathbb{R}^d$ defined by

$$\boldsymbol{u} = -rac{
abla \phi(
ho)}{
ho} -
abla \Psi$$
 on $\{
ho > 0\}, \quad \boldsymbol{u} \equiv 0$ on $\{
ho = 0\}$

satisfies $\rho | \boldsymbol{u} |^{q} \in L^{1}_{loc}(\mathbb{R}_{\geq 0} \times \overline{\Omega});$

• the nonlinear continuity equation holds: $\forall \varphi \in C_c^{\infty}(\mathbb{R}_{\geq 0} \times \overline{\Omega})$,

$$\int_0^\infty \int_\Omega \left(\rho \,\partial_t \varphi + \rho |\boldsymbol{u}|^{q-2} \boldsymbol{u} \cdot \nabla \varphi\right) \mathrm{d} x \mathrm{d} t + \int_\Omega \rho^0 \varphi(0, x) \mathrm{d} x = 0$$

Solution concepts

p-gradient flow

Assumptions

(A) $\eta \in C^2(\mathbb{R}_{>0}) \cap C(\mathbb{R}_{\geq 0})$ is strictly convex and superlinear at $+\infty$ (B) $\Psi \in W^{1,\infty}(\Omega; \mathbb{R}_{\geq 0})$ is semi-convex if $p \geq 2$ and convex if p < 2(C) η satisfies McCann's and the doubling conditions

Then $|\partial \mathcal{E}(\rho)|$ is a strong upper gradient, cf. [Ambrosio, Gigli & Savaré (2005)]

$\rho: \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}_{\geq 0}$ is a *p*-gradient flow solution if

- ρ is a weak solution
- $t\mapsto \mathcal{E}(
 ho(t))$ is absolutely continuous and

$$\mathcal{E}(\rho(t_*)) + \frac{1}{q} \int_0^{t_*} |\partial \mathcal{E}(\rho)|^q + \frac{1}{\rho} \int_0^{t_*} |\rho'|^\rho \le \mathcal{E}(\rho^0), \qquad \forall t_* \ge 0$$
 (EDI)

Remark: The Energy Dissipation Inequality (EDI) is in fact an equality (EDE)

Full gradient approximation required for $p, q \neq 2$

 $oldsymbol{v} = |oldsymbol{u}|^{q-2}oldsymbol{u}$ with $oldsymbol{u} = -oldsymbol{
abla}[\eta'(
ho) + \Psi]$ in $\mathbb{R}_{>0} imes \Omega$

▲ Strategies based on simple TPFA² finite volumes merely approximate $u \cdot n$ → Conformal (Lagrange) \mathbb{P}_1 finite elements space V_h

Full gradient approximation required for $p, q \neq 2$

 $oldsymbol{v} = |oldsymbol{u}|^{q-2}oldsymbol{u}$ with $oldsymbol{u} = -oldsymbol{
abla}[\eta'(
ho) + \Psi]$ in $\mathbb{R}_{>0} imes \Omega$

▲ Strategies based on simple TPFA² finite volumes merely approximate $u \cdot n$ → Conformal (Lagrange) \mathbb{P}_1 finite elements space V_h

► For computational reasons, backward Euler rather than JKO

Full gradient approximation required for $p, q \neq 2$

 $oldsymbol{v} = |oldsymbol{u}|^{q-2}oldsymbol{u}$ with $oldsymbol{u} = -oldsymbol{
abla}[\eta'(
ho) + \Psi]$ in $\mathbb{R}_{>0} imes \Omega$

▲ Strategies based on simple TPFA² finite volumes merely approximate $u \cdot n$ → Conformal (Lagrange) \mathbb{P}_1 finite elements space V_h

For computational reasons, backward Euler rather than JKO

Non-monotone numerical method:

▲ Possible undershoots on the approximate density ρ_h mitigated by "Lagrange multipliers" for the positivity

$$\mu_h(a) \in \partial \eta(\rho_h(a)) = \begin{cases} \{\eta'(\rho_h(a))\} & \text{if } \rho_h(a) > 0, \\ (-\infty, \eta'(0)] & \text{if } \rho_h(a) = 0 \in \mathsf{Dom}(\partial \eta), \end{cases} \quad a \in \mathcal{V}_h$$

Full gradient approximation required for $p, q \neq 2$

 $oldsymbol{v} = |oldsymbol{u}|^{q-2}oldsymbol{u}$ with $oldsymbol{u} = -oldsymbol{
abla}[\eta'(
ho) + \Psi]$ in $\mathbb{R}_{>0} imes \Omega$

▲ Strategies based on simple TPFA² finite volumes merely approximate $u \cdot n$ → Conformal (Lagrange) \mathbb{P}_1 finite elements space V_h

For computational reasons, backward Euler rather than JKO

Non-monotone numerical method:

▲ Possible undershoots on the approximate density ρ_h mitigated by "Lagrange multipliers" for the positivity

$$\mu_h(\mathbf{a}) \in \partial \eta(\rho_h(\mathbf{a})) = \begin{cases} \{\eta'(\rho_h(\mathbf{a}))\} & \text{if } \rho_h(\mathbf{a}) > 0, \\ (-\infty, \eta'(0)] & \text{if } \rho_h(\mathbf{a}) = 0 \in \text{Dom}(\partial \eta), \end{cases} \quad \mathbf{a} \in \mathcal{V}_h$$

► Mass lumping³ provides piecewise constant reconstruction $\overline{\rho}_h, \overline{\mu}_h$ fulfilling

 $\overline{\mu}_h \in \partial \eta(\overline{\rho}_h)$ for a.e. $(t, x) \in \mathbb{R}_{>0} \times \Omega$.

Simplicial mesh and reconstructions

Piecewise linear reconstruction

 $V_h = \{f_h \in C(\overline{\Omega}) \mid f_h \in \mathbb{P}_1(T), \ T \in \mathcal{T}_h\}$

• Piecewise constant reconstruction $\widetilde{V}_h = \{\widetilde{f}_h \in L^{\infty}(\Omega) \mid \widetilde{f}_h \in \mathbb{P}_0(\mathcal{T}), \ \mathcal{T} \in \mathcal{T}_h\}$

Given $\rho_h \in V_h$, one defines $\widetilde{\rho}_h \in \widetilde{V}_h$ by

$$\widetilde{
ho}_h(x) = rac{1}{d+1} \sum_{a \in \mathcal{V}_T}
ho_h(a), \quad x \in T$$

Simplicial mesh cell $T \in \mathcal{T}_h$.

Donald mesh and mass lumping

Donald mesh: To each a ∈ V_h, we associate ω_a ⊂ Ω by joining the centers of gravity of the simplices and those of the edges (d=2)

Donald mesh cell ω_a for $a \in \mathcal{V}_h$.

Donald mesh and mass lumping

- Donald mesh: To each a ∈ V_h, we associate ω_a ⊂ Ω by joining the centers of gravity of the simplices and those of the edges (d=2)
- Mass lumped reconstruction

 $X_h = \{ \overline{f}_h \in L^{\infty} \mid \overline{f_h}_{\mid_{\omega_a}} \text{ is constant}, \ a \in \mathcal{V}_h \}$

Given $\rho_h \in V_h$, one defines $\overline{\rho}_h$ by

$$\rho_h(a) = \overline{\rho}_h(a), \quad a \in \mathcal{V}_h$$

Donald mesh cell ω_a for $a \in \mathcal{V}_h$.

Donald mesh and mass lumping

- Donald mesh: To each a ∈ V_h, we associate ω_a ⊂ Ω by joining the centers of gravity of the simplices and those of the edges (d=2)
- Mass lumped reconstruction

 $X_h = \{ \overline{f}_h \in L^{\infty} \mid \overline{f_h}_{\mid_{\omega_a}} \text{ is constant}, \ a \in \mathcal{V}_h \}$

Given $\rho_h \in V_h$, one defines $\overline{\rho}_h$ by

$$\rho_h(a) = \overline{\rho}_h(a), \quad a \in \mathcal{V}_h$$

Donald mesh cell ω_a for $a \in \mathcal{V}_h$.

 $\int_{\Omega} \rho_h \widetilde{\varphi}_h = \int_{\Omega} \overline{\rho}_h \widetilde{\varphi}_h = \int_{\Omega} \widetilde{\rho}_h \widetilde{\varphi}_h \qquad \qquad \text{For } f : \mathbb{R} \to \mathbb{R} \text{ continuous and } \rho_h \in V_h,$

$$f(\overline{\rho}_h) = \overline{f(\rho_h)} \in X_h$$

The numerical scheme

Data discretization

$$ho_h^0(a) = rac{1}{|\omega_a|} \int_{\omega_a}
ho^0, \qquad \Psi_h(a) = rac{1}{|\omega_a|} \int_{\omega_a} \Psi, \qquad orall a \in \mathcal{V}_h$$

March in time

Discrete conservation law

$$\int_{\Omega} (\overline{\rho}_h^n - \overline{\rho}_h^{n-1}) \overline{\varphi}_h - \tau \int_{\Omega} \rho_h^n |\boldsymbol{u}_h^n|^{q-2} \boldsymbol{u}_h^n \cdot \boldsymbol{\nabla} \varphi_h = 0, \qquad \forall \varphi_h \in V_h, \ n \ge 1.$$

Force / velocity relation

$$\boldsymbol{u}_h^n = -\boldsymbol{\nabla}(\mu_h^n + \Psi_h) \in (\widetilde{V}_h)^d.$$

Chemical potential with positivity constraint

 $\mu_h^n(a) \in \partial \eta(\rho_h^n(a)), \qquad \forall a \in \mathcal{V}_h.$

The numerical scheme

Data discretization

$$ho_h^0(a) = rac{1}{|\omega_a|} \int_{\omega_a}
ho^0, \qquad \Psi_h(a) = rac{1}{|\omega_a|} \int_{\omega_a} \Psi, \qquad orall a \in \mathcal{V}_h$$

March in time

Discrete conservation law

$$\int_{\Omega} (\overline{\rho}_h^n - \overline{\rho}_h^{n-1}) \overline{\varphi}_h - \tau \int_{\Omega} \widetilde{\rho}_h^n |\boldsymbol{u}_h^n|^{q-2} \boldsymbol{u}_h^n \cdot \boldsymbol{\nabla} \varphi_h = 0, \qquad \forall \varphi_h \in V_h, \ n \ge 1.$$

Force / velocity relation

$$\boldsymbol{u}_h^n = -\boldsymbol{\nabla}(\mu_h^n + \Psi_h) \in (\widetilde{V}_h)^d.$$

Chemical potential with positivity constraint

 $\mu_h^n(a) \in \partial \eta(\rho_h^n(a)), \qquad \forall a \in \mathcal{V}_h.$

Remark: The mobility $\rho_h^n \in V_h$ can be equivalently replaced by $\widetilde{\rho}_h^n \in \widetilde{V}_h$

Elementary a priori estimates

A priori estimates

• Global mass conservation ($\varphi_h \equiv 1$)

$$\int_{\Omega} \rho_h^n = \int_{\Omega} \overline{\rho}_h^n = \int_{\Omega} \overline{\rho}_h^{n-1} = \int_{\Omega} \rho^0 = 1$$

• Nonnegativity (positivity if $\eta'(0) = -\infty$)

 $\rho_h^n \in \mathsf{Dom}(\partial \eta) \subset \mathbb{R}_{\geq 0}$

• Energy dissipation
$$(\varphi_h = \mu_h^n + \Psi_h)$$

$$\mathcal{E}_{h}(\overline{\rho}_{h}^{n}) + \tau \int_{\Omega} \rho_{h}^{n} |\mathbf{v}_{h}^{n}|^{p} \leq \mathcal{E}_{h}(\overline{\rho}_{h}^{n-1}), \quad n \geq 1$$

 (\star)

Elementary a priori estimates

A priori estimates

• Global mass conservation ($\varphi_h \equiv 1$)

$$\int_{\Omega} \rho_h^n = \int_{\Omega} \overline{\rho}_h^n = \int_{\Omega} \overline{\rho}_h^{n-1} = \int_{\Omega} \rho^0 = 1$$

• Nonnegativity (positivity if $\eta'(0) = -\infty$)

 $\rho_h^n \in \mathsf{Dom}(\partial \eta) \subset \mathbb{R}_{\geq 0}$

• Energy dissipation $(\varphi_h = \mu_h^n + \Psi_h)$

$$\mathcal{E}_h(\overline{
ho}_h^n) + au \int_\Omega
ho_h^n |oldsymbol{v}_h^n|^p \leq \mathcal{E}_h(\overline{
ho}_h^{n-1}), \quad n \geq 1$$

Remark: Estimate (\star) is stronger than the usual one provided by JKO

$$\int_{\Omega} \rho_h^n |\boldsymbol{v}_h^n|^p = \frac{1}{p} \int_{\Omega} \rho_h^n |\boldsymbol{v}_h^n|^p + \frac{1}{q} \int_{\Omega} \rho_h^n |\boldsymbol{u}_h^n|^q$$

(*)

Uniform positivity for singular energies

(A1) $\eta \in C^2(\mathbb{R}_{>0}) \cap C(\mathbb{R}_{\geq 0})$ is strictly convex and superlinear at $+\infty$ with $\lim_{s \searrow 0} \eta'(s) = -\infty$

Uniform positivity

Under (A1), there exists $\epsilon_h > 0$ not depending on ρ^0 such that

 $\rho_h^n \ge \epsilon_h \quad \text{for all } n \ge 1$

Sketch of the proof:

- As $\rho_h^n \in \mathcal{P}(\Omega)$, there exists $a_0 \in \mathcal{V}_h$ s.t. $\rho_h^n(a_0) \ge |\Omega|^{-1}$.
- Let $T_0 \in \mathcal{T}_h$ s.t. $a_0 \in \mathcal{V}_{T_0}$, then $\widetilde{\rho}_h^n \geq \frac{1}{(d+1)|\Omega|}$ on T_0
- $\bullet\,$ By the control of the energy dissipation on $\,{\cal T}_0$

 $|\mu_h^n(a_1) - \mu_h^n(a_0)|^q \le h^q | \boldsymbol{
abla} \mu_h^n|^q \lesssim q \, h^q (\widetilde{
ho}_h^n | \boldsymbol{u}_h^n|^q + C_{\Psi}) \lesssim 1$

- Thanks to (A1), $\mu_h^n(a_1) = \eta'(\rho_h(a_1)) \rightsquigarrow \text{ bound on } \rho_h(a_1)$
- Induction + finiteness of the graph corresponding to the mesh

Uniform positivity for singular energies

(A1) $\eta \in C^2(\mathbb{R}_{>0}) \cap C(\mathbb{R}_{\geq 0})$ is strictly convex and superlinear at $+\infty$ with $\lim_{s \searrow 0} \eta'(s) = -\infty$

Uniform positivity

Under (A1), there exists $\epsilon_h > 0$ not depending on ρ^0 such that

 $\rho_h^n \ge \epsilon_h \quad \text{for all } n \ge 1$

Existence of a discrete solution #1

Under (A1), there exists (at least) one solution ρ_h^n to the scheme corresponding to the previous iterate $\rho_h^{n-1} \in V_h \cap \mathcal{P}(\Omega)$.

Sketch of the proof:

- Well posed convex problem for frozen positive mobility $\max(\alpha, \tilde{\rho}_h^*)$
- Fixed point argument: existence of a solution with mobility $\max(\alpha, \tilde{\rho}_{h}^{n})$
- Choose $\alpha \leq \epsilon_h$

Nonsingular energies

(A2) $\eta \in C^2(\mathbb{R}_{>0}) \cap C^1(\mathbb{R}_{\geq 0})$ is strictly convex and superlinear at $+\infty$ $\eta'(0) > -\infty$

Approximation by singular energies

• Solution $\rho_{h,\epsilon}^n$ corresponding to the approximate entropy

$$\eta_\epsilon(s) = \eta(s) + eta_\epsilon(s) \quad ext{with} \quad eta_\epsilon(s) = s \log\left(rac{s}{\epsilon}
ight) - s + \epsilon$$

• Boundedness + finite dimension

$$\rho_{h,\epsilon}^n \xrightarrow[\epsilon \to 0]{} \rho_h^n \ge 0 \quad \text{pointwise}$$

• ρ_h^n is a solution to the scheme for the entropy η

Nonsingular energies

(A2) $\eta \in C^2(\mathbb{R}_{>0}) \cap C^1(\mathbb{R}_{\geq 0})$ is strictly convex and superlinear at $+\infty$ $\eta'(0) > -\infty$

Approximation by singular energies

• Solution $\rho_{h,\epsilon}^n$ corresponding to the approximate entropy

$$\eta_{\epsilon}(s) = \eta(s) + \beta_{\epsilon}(s) \quad ext{with} \quad \beta_{\epsilon}(s) = s \log\left(rac{s}{\epsilon}
ight) - s + \epsilon$$

• Boundedness + finite dimension

$$\rho_{h,\epsilon}^n \xrightarrow[\epsilon \to 0]{} \rho_h^n \ge 0 \quad \text{pointwise}$$

• ρ_h^n is a solution to the scheme for the entropy η

Existence of a discrete solution #2

Under (A2), there exists (at least) one solution ρ_h^n to the scheme corresponding to the previous iterate $\rho_h^{n-1} \in V_h \cap \mathcal{P}(\Omega)$.

Control on the discrete pressure

Pressure function

$$\phi(s)=s\eta'(s)-\eta(s)+\eta(0)=\int_0^s r\eta''(r)\mathrm{d}r\geq 0,\qquad s\geq 0.$$

Approximate pressure

$$\phi_h^n(a) = \phi(\rho_h^n(a)), \qquad a \in \mathcal{V}_h.$$

Control on the approximate pressure

There exists C depending only on the dimension of the ambiant space d and on the (Ciarlet's) regularity of the mesh T_h such that

 $|\boldsymbol{\nabla}\phi_h^n| \leq C\widetilde{\rho}_h^n|\boldsymbol{\nabla}\mu_h^n|.$

Moreover,

$$\int_{\Omega} |\phi_h^n| \lesssim \left(1 + \int_{\Omega} |oldsymbol{
abla} \phi_h^n|
ight)$$

Space-time approximations

From the sequence $(\rho_h^n)_{n\geq 0}$, we build piecewise constant in time and piecewise linear/constant in space approximations

$$\begin{split} \overline{\rho}_{h\tau}(t,x) &= \overline{\rho}_{h}^{n}(x) \in X_{h} \\ \widetilde{\rho}_{h\tau}(t,x) &= \widetilde{\rho}_{h}^{n}(x) \in \widetilde{V}_{h} \\ \mu_{h\tau}(t,x) &= \mu_{h}^{n}(x) \in V_{h} \\ \phi_{h\tau}(t,x) &= \phi_{h}^{n}(x) \in V_{h} \\ \overline{\delta}_{h\tau}(t,x) &= \frac{\overline{\rho}_{h}^{n}(x) - \overline{\rho}_{h}^{n-1}(x)}{\tau} \in X_{h} \\ \boldsymbol{u}_{h\tau} &= -\boldsymbol{\nabla}(\mu_{h\tau} + \Psi_{h}) \in \widetilde{V}_{h}^{d} \\ \boldsymbol{v}_{h\tau} &= |\boldsymbol{u}_{h\tau}|^{q-2} \boldsymbol{u}_{h\tau} \in \widetilde{V}_{h}^{d} \end{split}$$

18/29

Uniform estimates

Mass preservation:

$$\int_{\Omega} \rho_{h\tau}(t,x) \mathrm{d}x = \int_{\Omega} \overline{\rho}_{h\tau}(t,x) \mathrm{d}x = \int_{\Omega} \widetilde{\rho}_{h\tau}(t,x) \mathrm{d}x = 1, \qquad t \ge 0$$

Energy decay

$$\mathcal{E}_{h}(\overline{\rho}_{h\tau})(t^{n}) + \int_{t^{\ell}}^{t^{n}} \int_{\Omega} \widetilde{\rho}_{h\tau} |\boldsymbol{u}_{h\tau}|^{q} \mathrm{d}t \mathrm{d}x \leq \mathcal{E}_{h}(\overline{\rho}_{h\tau})(t^{\ell}), \qquad n \geq \ell \geq 0$$

▶ Bounded entropy \rightsquigarrow equi-integrability on $\overline{\rho}_{h\tau}$

 $\int_{\Omega} \eta(\overline{\rho}_{h\tau}(t,x)) \mathrm{d}x \leq \mathcal{E}_{h}(\overline{\rho}_{h\tau})(t) \leq \mathcal{E}_{h}(\overline{\rho}_{h}^{0}) \leq \mathcal{E}(\rho^{0}) + Ch$

► $L^q_{loc}(\mathbb{R}_{\geq 0}, W^{1,1}(\Omega))$ estimate on the pressure:

$$\int_{\Omega} |\boldsymbol{\nabla} \phi_{h\tau}| \lesssim \int_{\Omega} \widetilde{\rho}_{h\tau} |\boldsymbol{\nabla} \mu_{h\tau}| \lesssim 1 + \int_{\Omega} \widetilde{\rho}_{h\tau} |\boldsymbol{u}_{h\tau}| \lesssim 1 + \left(\int_{\Omega} \widetilde{\rho}_{h\tau} |\boldsymbol{u}_{h\tau}|^{q}\right)^{1/q}$$

Time translate estimate

 $\mathbb{W}_1(\overline{
ho}_{h au}(t),\overline{
ho}_{h au}(s))\lesssim (|t-s|+ au)^{1/q}$

٠

Compactness properties

▶ Refined Arzelà-Ascoli theorem⁴ + equi-integrability

 $\overline{\rho}_{h\tau}(t,\cdot) \underset{h,\tau \to 0}{\longrightarrow} \rho(t,\cdot) \quad \text{weakly in } L^1(\Omega) \quad \text{with } \rho \in C(\mathbb{R}_{\geq 0},L^1(\Omega)\text{-w})$

• All reconstructions share the same limit ρ

 $\mathbb{W}_1(\overline{
ho}_{h au}(t),\widetilde{
ho}_{h au}(t))+\mathbb{W}_1(\overline{
ho}_{h au}(t),
ho_{h au}(t))\lesssim h,\qquad t\geq 0$

Nonlinear discrete Aubin-Simon Lemma⁵

 $\overline{\rho}_{h\tau} \xrightarrow[h,\tau \to 0]{} \rho \quad \text{a.e. in } \mathbb{R}_{\geq 0} \times \Omega, \qquad \phi_{h\tau} \xrightarrow[h,\tau \to 0]{} \phi(\rho) \quad \text{weakly in } L^q_{\mathsf{loc}}(W^{1,1})$

⁴[Ambrosio, Gigli & Savaré (2005)] ⁵[Andreianov, CC & Moussa (2017)]

Clément Cancès (Inria – Univ. Lille)

There exists $\boldsymbol{u}:\mathbb{R}_{\geq 0}\times\Omega \to \mathbb{R}^d$ such that

 $\widetilde{\rho}_{h\tau} \boldsymbol{u}_{h\tau} \xrightarrow[h, \tau \to 0]{} \rho \boldsymbol{u} = -\boldsymbol{\nabla} \phi(\rho) - \rho \boldsymbol{\nabla} \Psi \quad \text{weakly in } L^q(\mathbb{R}_{\geq 0}; L^1(\Omega))$

and

$$|\partial \mathcal{E}(
ho)|^q = \int_\Omega
ho |oldsymbol{u}|^q \in L^1(\mathbb{R}_{\geq 0})$$

There exists $\boldsymbol{u}: \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^d$ such that

 $\widetilde{\rho}_{h\tau} \boldsymbol{u}_{h\tau} \xrightarrow[h, \tau \to 0]{} \rho \boldsymbol{u} = -\boldsymbol{\nabla} \phi(\rho) - \rho \boldsymbol{\nabla} \Psi \quad \text{weakly in } L^q(\mathbb{R}_{\geq 0}; L^1(\Omega))$

and

$$|\partial \mathcal{E}(\rho)|^q = \int_{\Omega} \rho |\boldsymbol{u}|^q \in L^1(\mathbb{R}_{\geq 0})$$

There exists $\mathbf{v}: \mathbb{R}_{\geq 0} \times \Omega \rightarrow \mathbb{R}^d$ such that

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0$$

such that

$$\int_0^{t_*} \int_{\Omega} \rho |\boldsymbol{\nu}|^{\rho} \leq \liminf_{h,\tau \to 0} \int_0^{t_*} \int_{\Omega} \widetilde{\rho}_{h\tau} |\boldsymbol{\nu}_{h\tau}|^{\rho}$$

hence

$$|
ho'|^{
ho} \leq \int_{\Omega}
ho |oldsymbol{v}|^{
ho} \in L^1(\mathbb{R}_{\geq 0})$$

21/29

There exists $\boldsymbol{u}:\mathbb{R}_{\geq 0}\times\Omega\rightarrow\mathbb{R}^{d}$ such that

 $\widetilde{\rho}_{h\tau} \boldsymbol{u}_{h\tau} \xrightarrow[h, \tau \to 0]{} \rho \boldsymbol{u} = -\boldsymbol{\nabla} \phi(\rho) - \rho \boldsymbol{\nabla} \Psi \quad \text{weakly in } L^q(\mathbb{R}_{\geq 0}; L^1(\Omega))$

and

$$|\partial \mathcal{E}(\rho)|^q = \int_{\Omega} \rho |\boldsymbol{u}|^q \in L^1(\mathbb{R}_{\geq 0})$$

There exists $\mathbf{v}: \mathbb{R}_{\geq 0} \times \Omega \rightarrow \mathbb{R}^d$ such that

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0$$

such that

$$\int_0^{t_*} \int_{\Omega} \rho |\mathbf{v}|^p \leq \liminf_{h,\tau \to 0} \int_0^{t_*} \int_{\Omega} \widetilde{\rho}_{h\tau} |\mathbf{v}_{h\tau}|^p,$$

hence

$$|
ho'|^{
ho} \leq \int_{\Omega}
ho |oldsymbol{v}|^{
ho} \in L^1(\mathbb{R}_{\geq 0})$$

 $\mathcal{E}(
ho)(t) \leq \liminf_{h, au o 0} \mathcal{E}_h(
ho_{h au})(t) \qquad ext{and} \quad \mathcal{E}_h(
ho_h^0) \xrightarrow{}_{h o 0} \mathcal{E}(
ho^0)$

Passing to the lim inf in the discrete energy dissipation inequality

$$\mathcal{E}_h(
ho_{h au})(t) + \int_0^t \int_\Omega \widetilde{
ho}_{h au} |oldsymbol{u}_{h au}|^q \leq \mathcal{E}_h(
ho_h^0), \qquad t\geq 0$$

provides (EDI):

$$\mathcal{E}(
ho)(t)+rac{1}{
ho}\int_0^t |
ho'|^
ho+rac{1}{q}\int_0^t |\partial\mathcal{E}(
ho)|^q\leq \mathcal{E}(
ho^0), \qquad t\geq 0.$$

The limit profile ρ is a gradient flow solution

Passing to the lim inf in the discrete energy dissipation inequality

$$\mathcal{E}_h(
ho_{h au})(t) + \int_0^t \int_\Omega \widetilde{
ho}_{h au} |oldsymbol{u}_{h au}|^q \leq \mathcal{E}_h(
ho_h^0), \qquad t\geq 0$$

provides (EDI):

$$\mathcal{E}(
ho)(t)+rac{1}{
ho}\int_0^t |
ho'|^
ho+rac{1}{q}\int_0^t |\partial\mathcal{E}(
ho)|^q\leq \mathcal{E}(
ho^0), \qquad t\geq 0.$$

The limit profile ρ is a gradient flow solution

A posteriori enhanced convergence for the fluxes

The discrete flux $\tilde{\rho}_{h\tau} \mathbf{v}_{h\tau}$ converges strongly in $L^1_{loc}(\mathbb{R}_{\geq 0} \times \Omega)^d$ towards $\rho \mathbf{v}$.

About the practical implementation

▶ Numerical implementation by Flore Nabet using FreeFEM

• Making the energy singular by replacing $\eta(\rho)$ by

 $\eta(
ho) - \epsilon_k \log(
ho)$ with $\epsilon_k
ightarrow 0$

▶ Each step *k* requires the resolution of a nonlinear system

 $\boldsymbol{\mathcal{F}}^{n,k}(\rho_{h\tau}^{n,k}) = \boldsymbol{0}_{\mathbb{R}^{\mathcal{V}_h}} \quad \Longleftrightarrow \quad \rho_{h\tau}^{n,k} \in \operatorname*{argmin}_{w_{h\tau} > 0} \frac{1}{2} \left\| \boldsymbol{\mathcal{F}}^{n,k}(w_{h\tau}) \right\|^2$ (\star) while $\epsilon_k > \epsilon_\star$ do $\left| \begin{array}{c} \rho_{h\tau}^{n,k,0} \leftarrow \rho_{h\tau}^{n,k-1} \\ \text{while } \left\| \mathcal{F}^{n,k}(\rho_{h\tau}^{n,k,\ell}) \right\| > \theta \text{ do} \end{array} \right|$ Newton (+ linesearch) solve for (\star) $\ell \leftarrow \ell + 1$ end while $\epsilon_k \leftarrow \alpha \epsilon_k \text{ and } k \leftarrow k+1$ $\rho_{h\pi}^{n,k} \leftarrow \rho_{h\pi}^{n,k,\ell}$

The *q*-Laplace equation and Barenblatt profile

Classical *q*-Laplace equation:

$$\partial_t \rho = \boldsymbol{\nabla} \cdot \left(|\boldsymbol{\nabla} \rho|^{q-2} \boldsymbol{\nabla} \rho \right) = \boldsymbol{\nabla} \cdot \left(\rho |\boldsymbol{\nabla} \eta'(\rho)|^{q-2} \boldsymbol{\nabla} \eta'(\rho) \right)$$

with the non-singular energy density

$$\eta(\rho) = rac{q-1}{q-2} \left(rac{q-1}{2q-3} \left(
ho^{rac{2q-3}{q-1}} - 1
ight) -
ho + 1
ight) \qquad (q>2).$$

Exact solution⁶

$$\rho(t,x) = (t+t_0)^{-k} \left(\left(M - \alpha \left| \xi \right|^p \right)^+ \right)^{\frac{1}{2-\rho}}$$

with $k = \frac{1}{q-2+\frac{q}{d}}$, $\alpha = \frac{q-2}{q} \left(\frac{k}{d}\right)^{\frac{1}{q-1}}$, $\xi = x(t+t_0)^{-\frac{k}{d}}$ and M set to fulfill the mass constraint.

⁶[Kamin & Vazquez (1988]

Clément Cancès (Inria – Univ. Lille)

Error in function of the mesh size p = 5/4, q = 5

Error in function of the parameter ϵ

\mathbb{W}_p gradient flow involving a confining potential

• Quadratic entropy density $\eta(\rho) = \frac{1}{2}\rho^2$

• Quadratic confining potential $\Psi(x) = \frac{1}{2}|x - x_{\star}|^2$

Energy dissipation along time

Conclusion and prospects

Conclusion

- Approximation of \mathbb{W}_p gradient flows more involved for $p \neq 2$:
 - more involved continuous theory (displacement convexity)
 - \blacktriangleright need of reconstructing the whole gradient \rightsquigarrow simple TPFA approach fails
- ▶ Backward Euler scheme as a simpler alternative to the JKO scheme
- ▶ Difficulty with the non-negativity constraint ~→ interior point type approach [Natale-Todeschi (2020)]
- ► Convergence proof based of [Ambrosio-Gigli-Savaré (2005)]

Prospects

...

▶ Extend to (Hybrid?) Finite Volumes