EVI flows via Nonnegative Cross-Curvature

Gabriele Todeschi LIGM, Université Gustave Eiffel

in collaboration with Flavien Léger and François-Xavier Vialard

FVOT Workshop, Orsay, 20/11/2024

メロメ メ都 メメモメ メモメー

准

 299

Wasserstein distance

 $\mu,\nu\in \mathcal{P}_2(\mathbb{R}^d)$ probability measures with finite second moment Pushforward measure: $\mu = \mathcal{T}_{\#}\nu \iff \mu(\mathcal{A}) = \nu(\mathcal{T}^{-1}(\mathcal{A}))$ $\Gamma(\mu, \nu) = \{ \gamma \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : (\mathsf{p}_1)_\# \gamma = \mu, (\mathsf{p}_2)_\# \gamma = \nu \}$

Quadratic optimal transport problem: for $\mu,\nu\in \mathcal{P}_2(\mathbb{R}^d)$ solve

$$
W_2^2(\mu,\nu) \coloneqq \min_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\gamma(x,y) \tag{W}
$$

T such that $\mu = T_{\#}\nu$ is an optimal transport map if

$$
W_2^2(\mu,\nu)=\int_{\mathbb{R}^d} \left| \mathcal{T}(y) - y \right|^2 d\nu(y)
$$

 $W_2: \mathcal{P}_2(\mathbb{R}^d)\times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}_{\geq 0}$ is a distance and $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a geodesic space

Wasserstein gradient flows

Euclidean gradient flow: $\dot{x}(t) = -\nabla F(x(t))$ for $F: \mathbb{R}^d \to \mathbb{R}$

 $\mathsf{Wasserstein}$ gradient flow: for $\mathcal{E}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$, a curve $\rho:[0,\mathcal{T}]\to\mathcal{P}_2(\mathbb{R}^d)$ solution to

$$
\partial_t \rho - \operatorname{div} \left(\rho \nabla \frac{\delta \mathcal{E}}{\delta \rho}(\rho) \right) = 0 \tag{1}
$$

Example: the linear/nonlinear Fokker-Planck equation

One needs to couple solutions to [\(1\)](#page-2-0) with a "dissipation principle"

- ▶ Generalized Minimizing Movement (GMM)
- Energy Dissipation Equality (EDE)
- ▶ Evolution Variational Inequality (EVI)
- ▶ Characterization of Wasserstein subdifferential

Generalized Minimizing Movement (GMM)

 $\mathsf{JKO}\ \mathsf{scheme}^1$: compute ρ_n recursively as

$$
\rho_n \in \operatornamewithlimits{argmin}_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) + \mathcal{E}(\rho)
$$

Generalization of Implicit Euler Scheme: find x_n iteratively as

$$
x_n \in \operatorname{argmin} \frac{1}{2\tau} |x - x_{n-1}|^2 + F(x) \longrightarrow \frac{x_n - x_{n-1}}{\tau} = -\tau \nabla F(x_n)
$$

At each step

$$
\frac{1}{2\tau}W_2^2(\rho_n,\rho_{n-1})+\mathcal{E}(\rho_n)\leq \mathcal{E}(\rho_{n-1})
$$

GMM²: find (weak) limits of this discrete process for $\tau \to 0$

- \triangleright connection with PDE by showing this is a solution
- general approach: one can replace W_2^2 with any distance squared
- \triangleright "not quantitative": how much is the energy decreasing?

¹ After Jordan, Kinderlehrer, Otto (1998), ² De Giorgi

Evolution Variational Inequality (EVI)

EVI flow 1 : for $\lambda\in\mathbb{R}$, a curve $\rho:[0,T]\rightarrow\mathcal{P}_2(\mathbb{R}^d)$ such that for (almost every) $t \in (0, T)$

$$
\frac{1}{2}\frac{d}{dt}W_2^2(\sigma,\rho(t))\leq \mathcal{E}(\sigma)-\mathcal{E}(\rho(t))-\frac{\lambda}{2}d^2(\sigma,\rho(t)),\quad \forall \sigma\in \mathcal{P}_2(\mathbb{R}^d)
$$

Generalization of the Euclidean setting: if $F: \mathbb{R}^d \to \mathbb{R}$ λ -convex then

$$
\dot{x}(t)=-\nabla F(x(t)) \iff \frac{1}{2}\frac{d}{dt}|x(t)-z|^2 \leq F(z)-F(x(t))-\frac{\lambda}{2}|x(t)-z|^2, \ \forall z\in\mathbb{R}^d
$$

Again, one can replace \mathcal{W}_2^2 with any distance squared Favorable properties:

- ▶ uniqueness of solutions
- \blacktriangleright stability
- \blacktriangleright exponential decay to the equilibrium $(\lambda > 0)$

Example: the linear/nonlinear Fokker-Planck equation is an EVI flow in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$

 $¹$ Ambrosio, Gigli, Savaré (2005)</sup>

Outline

K ロ ▶ K 레 ≯ K X B X X B → X D A Q Q Q

- ▶ Ambrosio, Gigli, Savaré original construction of EVI flows
- ▶ EVI flows via Nonnegative Cross-Curvature (NNCC)
- ▶ The LJKO scheme

Outline

K ロ ▶ K 레 ≯ K 제 B → X 제 B → X → O Q Q → O Q Q Q

▶ Ambrosio, Gigli, Savaré original construction of EVI flows

▶ EVI flows via Nonnegative Cross-Curvature (NNCC)

▶ The LJKO scheme

Evolution Variational Inequality (EVI)

Let (X, d) be a geodesic space, $f : X \to \mathbb{R}$

EVI flow¹: for $\lambda \in \mathbb{R}$, a curve $x : [0,T] \rightarrow X$ such that for (almost every) $t \in (0, T)$ 1 2 $\frac{d}{dt}d^2(z,x(t)) \leq f(z) - f(x(t)) - \frac{\lambda}{2}$ $\frac{\lambda}{2}d^2(z,x(t)), \quad \forall z \in X$

Two key ingredients to prove existence of EVI flows:

 \blacktriangleright JKO scheme in metric setting

$$
x_n \in \operatorname{argmin} \frac{1}{2\tau} d^2(x, x_{n-1}) + f(x) \tag{2}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

▶ Convexity

The first one is not necessary

On the other hand, some convexity is needed²

¹ Ambrosio, Gigli, Savaré (2005), ²Daneri, Savaré (2008)

Suppose x_n exists, let $z \in X$ and $\gamma : [0,1] \to X$ geodesic, $\gamma(0) = x_n$ and $\gamma(1) = z$ Suppose $\psi(x) \coloneqq \frac{1}{2\tau} d^2(x, x_{n-1}) + f(x)$ is geodesically $(\frac{1}{\tau} + \lambda)$ -convex

$$
\psi(\gamma(s)) \leq (1-s)\psi(x_n) + s\psi(z) - \left(\frac{1}{\tau} + \lambda\right)\frac{s(1-s)}{2}d^2(z,x_n)
$$

Suppose x_n exists, let $z \in X$ and $\gamma : [0,1] \to X$ geodesic, $\gamma(0) = x_n$ and $\gamma(1) = z$ Suppose $\psi(x) \coloneqq \frac{1}{2\tau} d^2(x, x_{n-1}) + f(x)$ is geodesically $(\frac{1}{\tau} + \lambda)$ -convex

$$
\psi(\gamma(s)) \leq (1-s)\psi(x_n) + s\psi(z) - \left(\frac{1}{\tau} + \lambda\right)\frac{s(1-s)}{2}d^2(z,x_n)
$$

Since x_n minimizes ψ and using convexity

$$
0\leq \psi(\gamma(s))-\psi(x_n)\leq s\Big(\psi(z)-\psi(x_n)\Big)-\Big(\frac{1}{\tau}+\lambda\Big)\frac{s(1-s)}{2}d^2(z,x_n)
$$

Suppose x_n exists, let $z \in X$ and $\gamma : [0, 1] \to X$ geodesic, $\gamma(0) = x_n$ and $\gamma(1) = z$ Suppose $\psi(x) \coloneqq \frac{1}{2\tau} d^2(x, x_{n-1}) + f(x)$ is geodesically $(\frac{1}{\tau} + \lambda)$ -convex

$$
\psi(\gamma(s)) \leq (1-s)\psi(x_n) + s\psi(z) - \left(\frac{1}{\tau} + \lambda\right)\frac{s(1-s)}{2}d^2(z,x_n)
$$

Since x_n minimizes ψ and using convexity

$$
0\leq \psi(\gamma(s))-\psi(x_n)\leq s\Big(\psi(z)-\psi(x_n)\Big)-\Big(\frac{1}{\tau}+\lambda\Big)\frac{s(1-s)}{2}d^2(z,x_n)
$$

Dividing by s and passing to the limit $s \to 0$

$$
0 \leq \frac{1}{2\tau}d^2(z,x_{n-1}) + f(z) - f(x_n) - \frac{1}{2\tau}d^2(x_n,x_{n-1}) - \left(\frac{1}{\tau} + \lambda\right)\frac{1}{2}d^2(z,x_n)
$$

Discrete EVI inequality: $\forall z \in X$ 1 $\frac{1}{2\tau}d^2(z,x_n) - \frac{1}{2\tau}$ $\frac{1}{2\tau}d^2(z,x_{n-1}) \leq f(z) - f(x_n) - \frac{\lambda}{2}$ $\frac{\lambda}{2}d^2(z, x_n) - \frac{1}{2\pi}$ $\frac{1}{2\tau}d^2(x_n, x_{n-1})$

Fine characterization of the minimizer x_n $(\frac{1}{\tau} + \lambda \ge 0)$

Discrete EVI inequality: $\forall z \in X$ 1 $\frac{1}{2\tau}d^2(z,x_n) - \frac{1}{2\tau}$ $\frac{1}{2\tau}d^2(z,x_{n-1}) \leq f(z) - f(x_n) - \frac{\lambda}{2}$ $\frac{\lambda}{2}d^2(z, x_n) - \frac{1}{2\pi}$ $\frac{1}{2\tau}d^2(x_n, x_{n-1})$

Fine characterization of the minimizer x_n $(\frac{1}{\tau} + \lambda \ge 0)$

Note that through the Discrete EVI one has

- **▶** sublinear $(\lambda = 0)$ / linear $(\lambda > 0)$ convergence to the global minimizer of f
- ightharpoonup in the uniqueness of solution $(\frac{1}{\tau} + \lambda \ge 0)$

Passing to the limit one obtains (formally) the continuous EVI

$$
\frac{1}{\tau}d^2(z,x_n)-\frac{1}{\tau}d^2(z,x_{n-1})\longrightarrow \frac{d}{dt}d^2(z,x(t))
$$

7 / 25

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Example: NPC spaces

Nonpositively Curved (NPC) space: for any $\gamma : [0,1] \to X$ geodesic, $\forall y \in X$ $d^2(\gamma(t),y) \leq (1-s)d^2(\gamma(0),y) + sd^2(\gamma(1),y) - s(1-s)d^2(\gamma(0),\gamma(1)) \quad \text{(3)}$

The distance function is 1-convex along geodesics

If f is geodesically λ -convex, we have for any $z \in X$,

$$
\psi(x) \coloneqq \frac{1}{2\tau} d^2(x, y) + f(x)
$$
 is geodesically $\left(\frac{1}{\tau} + \lambda\right)$ -convex, $\forall y \in X$

 \longrightarrow the discrete EVI follows taking $y = x_{n-1}$

Example: NPC spaces

Nonpositively Curved (NPC) space: for any $\gamma : [0,1] \to X$ geodesic, $\forall y \in X$ $d^2(\gamma(t),y) \leq (1-s)d^2(\gamma(0),y) + sd^2(\gamma(1),y) - s(1-s)d^2(\gamma(0),\gamma(1)) \quad \text{(3)}$

The distance function is 1-convex along geodesics

If f is geodesically λ -convex, we have for any $z \in X$,

$$
\psi(x) \coloneqq \frac{1}{2\tau} d^2(x,y) + f(x) \text{ is geodesically } \left(\frac{1}{\tau} + \lambda\right) \text{-convex, } \forall y \in X
$$

 \longrightarrow the discrete EVI follows taking $y = x_{n-1}$

 \triangleright for Hilbert spaces equality holds in [\(3\)](#page-13-0)

- \triangleright Positively Curved (PC) space: the inequality [\(3\)](#page-13-0) holds with reverse sign
- \triangleright if (X, d) is PC $\longrightarrow \psi$ is not geodesically convex

Unfortunately, the Wasserstein space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is PC!

AGS hypothesis

 ${\sf Assumption~4.0.1^1}: \ \forall x_0, x_1, y \in X, \ \exists \omega : [0,1] \rightarrow X, \ \omega(0) = x_0, \ \omega(1) = x_1$ and $\psi(\omega(\mathsf{s})) \leq (1-\mathsf{s})\psi(\omega(0)) + \mathsf{s}\psi(\omega(1)) - \frac{1}{2}(\frac{1}{\tau} + \lambda)\mathsf{s}(1-\mathsf{s})d^2(\omega(0),\omega(1)) \tag{4}$

→ there exists a curve along which ϕ is " $\left(\frac{1}{\tau} + \lambda\right)$ -convex"

Equivalently, $s \mapsto \psi(\omega(s)) - \frac{s^2}{2}$ $\frac{\sigma^2}{2}(\frac{1}{\tau}+\lambda)d^2(\omega(0),\omega(1))$ is convex

Then discrete EVI follows taking $y = x_{n-1}$

 $¹$ Ambrosio, Gigli, Savaré (2005)</sup>

AGS hypothesis

 ${\sf Assumption~4.0.1^1}: \ \forall x_0, x_1, y \in X, \ \exists \omega : [0,1] \rightarrow X, \ \omega(0) = x_0, \ \omega(1) = x_1$ and $\psi(\omega(\mathsf{s})) \leq (1-\mathsf{s})\psi(\omega(0)) + \mathsf{s}\psi(\omega(1)) - \frac{1}{2}(\frac{1}{\tau} + \lambda)\mathsf{s}(1-\mathsf{s})d^2(\omega(0),\omega(1)) \tag{4}$

→ there exists a curve along which ϕ is " $\left(\frac{1}{\tau} + \lambda\right)$ -convex"

Equivalently, $s \mapsto \psi(\omega(s)) - \frac{s^2}{2}$ $\frac{\sigma^2}{2}(\frac{1}{\tau}+\lambda)d^2(\omega(0),\omega(1))$ is convex

Then discrete EVI follows taking $y = x_{n-1}$

Condition [\(4\)](#page-15-0) can be split naturally into: $\forall y \in X$, $\exists \omega$ such that

 $d^2(\omega(s), y) - \frac{s^2}{2\pi}$ $\frac{s^2}{2\tau}d^2(\omega(0), \omega(1))$ is convex $\quad \longrightarrow \quad$ "structural" condition on (X, d) $f(\omega(s)) - \frac{s^2}{2}$ $\frac{z^2}{2}\lambda d^2(\omega(0),\omega(1))$ is convex $\quad\longrightarrow\quad$ condition on t

Additional hypothesis on the structure of (X, d) are needed...

 $¹$ Ambrosio, Gigli, Savaré (2005)</sup>

Wasserstein space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$

For $(\mathcal{P}_2(\mathbb{R}^d),\mathcal{W}_2)$ Ambrosio, Gigli and Savaré introduced the generalized geodesics Let $\mu_0,\mu_1,\nu\in \mathcal{P}_2(\mathbb{R}^d)$ and assume (for simplicity) $\exists\, T_0,\, T_1$ optimal transport maps, i.e.

$$
W_2^2(\mu_0,\nu)=\int_{\Omega} |T_0(y)-y|^2 \nu(y), \quad W_2^2(\mu_1,\nu)=\int_{\Omega} |T_1(y)-y|^2 \nu(y)
$$

Generalized geodesic: $\omega: [0,1] \rightarrow \mathcal{P}_2(\mathbb{R}^d)$ defined as

$$
\omega(\mathsf{s}) = \left((1-\mathsf{s})\,T_0 + \mathsf{s}\,T_1\right)_\#\nu\,,\quad \mathsf{s} \in [0,1]
$$

Generalization of a geodesic:

$$
\nu = \mu_0 \text{ and } T_0 = \text{Id} \implies \omega \text{ geodesic}
$$

10 / 25

イロメ 不倒 メイモメ イモメー 走っ

Wasserstein space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$

For $(\mathcal{P}_2(\mathbb{R}^d),\mathcal{W}_2)$ Ambrosio, Gigli and Savaré introduced the generalized geodesics Let $\mu_0,\mu_1,\nu\in \mathcal{P}_2(\mathbb{R}^d)$ and assume (for simplicity) $\exists\, T_0,\, T_1$ optimal transport maps, i.e.

$$
W_2^2(\mu_0,\nu)=\int_{\Omega} |T_0(y)-y|^2 \nu(y), \quad W_2^2(\mu_1,\nu)=\int_{\Omega} |T_1(y)-y|^2 \nu(y)
$$

Generalized geodesic: $\omega: [0,1] \rightarrow \mathcal{P}_2(\mathbb{R}^d)$ defined as

$$
\omega(\mathsf{s}) = \left((1-\mathsf{s})\,T_0 + \mathsf{s}\,T_1\right)_\#\nu\,,\quad \mathsf{s} \in [0,1]
$$

Generalization of a geodesic:

$$
\nu = \mu_0 \text{ and } T_0 = \text{Id} \implies \omega \text{ geodesic}
$$

Then $\mathcal{W}_2^2(\omega(\mathsf{s}), \nu) - \frac{\mathsf{s}^2}{2\tau} \mathcal{W}_2^2(\omega(0), \omega(1))$ is convex If $s \mapsto f(\omega(s)) - \frac{s^2}{2}$ $\frac{\partial^2}{\partial z^2} \lambda d^2(\omega(0), \omega(1))$ is convex, take $\nu = \rho_{n-1} \implies$ discrete EVI

Outline

▶ Ambrosio, Gigli, Savaré original construction of EVI flows

▶ EVI flows via Nonnegative Cross-Curvature (NNCC)

▶ The LJKO scheme

Denote $g(x)\coloneqq f(x)+\frac{1}{2\tau}d^2(x,x_{n-1})-\left(\frac{1}{\tau}+\lambda\right)\frac{1}{2}d^2(x,x_n)$ then discrete EVI is $g(x_n) \leq g(z)$, $\forall z \in X$

Denote $g(x)\coloneqq f(x)+\frac{1}{2\tau}d^2(x,x_{n-1})-\left(\frac{1}{\tau}+\lambda\right)\frac{1}{2}d^2(x,x_n)$ then discrete EVI is $g(x_n) \leq g(z), \quad \forall z \in X$

If we find $x(s)$ with $x(0) = x_n$ and $x(1) = z$, $g(x(s))$ is convex and $\frac{d^2(x(s),x_n)}{s} \to 0$ then

$$
g(z)-g(x_n)\geq \frac{g(\textup{x}(s))-g(x_n)}{s}\geq -\Big(\frac{1}{\tau}+\lambda\Big)\frac{1}{2}\frac{d^2(\textup{x}(s),x_n)}{s}\rightarrow 0
$$

Denote $g(x)\coloneqq f(x)+\frac{1}{2\tau}d^2(x,x_{n-1})-\left(\frac{1}{\tau}+\lambda\right)\frac{1}{2}d^2(x,x_n)$ then discrete EVI is $g(x_n) \leq g(z), \quad \forall z \in X$

If we find $x(s)$ with $x(0) = x_n$ and $x(1) = z$, $g(x(s))$ is convex and $\frac{d^2(x(s),x_n)}{s} \to 0$ then

$$
g(z)-g(x_n)\geq \frac{g(\textup{x}(s))-g(x_n)}{s}\geq -\Big(\frac{1}{\tau}+\lambda\Big)\frac{1}{2}\frac{d^2(\textup{x}(s),x_n)}{s}\rightarrow 0
$$

The convexity condition on g can be split into

$$
s \mapsto \frac{1}{2\tau} d^2(x(s), x_{n-1}) - \frac{1}{2\tau} d^2(x(s), x_n)
$$
 convex
\n
$$
s \mapsto f(x(s)) - \frac{\lambda}{2} d^2(x(s), x_n)
$$
 convex

11 / 25

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Denote $g(x)\coloneqq f(x)+\frac{1}{2\tau}d^2(x,x_{n-1})-\left(\frac{1}{\tau}+\lambda\right)\frac{1}{2}d^2(x,x_n)$ then discrete EVI is $g(x_n) \leq g(z), \quad \forall z \in X$

If we find $x(s)$ with $x(0) = x_n$ and $x(1) = z$, $g(x(s))$ is convex and $\frac{d^2(x(s),x_n)}{s} \to 0$ then

$$
g(z)-g(x_n)\geq \frac{g(\textup{x}(s))-g(x_n)}{s}\geq -\Big(\frac{1}{\tau}+\lambda\Big)\frac{1}{2}\frac{d^2(\textup{x}(s),x_n)}{s}\rightarrow 0
$$

The convexity condition on g can be split into

$$
s \mapsto \frac{1}{2\tau} d^2(x(s), x_{n-1}) - \frac{1}{2\tau} d^2(x(s), x_n)
$$
 convex
\n
$$
s \mapsto f(x(s)) - \frac{\lambda}{2} d^2(x(s), x_n)
$$
 convex

Remark: the condition "below the chord" is sufficient instead of convexity How to ensure the first condition?

Smooth NNCC spaces

Let X, Y smooth manifolds, $c \in C^4(X \times Y)$ (plus some other regularity hypotheses) Kim and McCann¹ introduced the pseudo-Riemannian metric

$$
g_{KM}(x,y)=-\frac{1}{2}\begin{bmatrix}0 & \nabla_{xy}c(x,y)\\ \nabla_{xy}c(x,y) & 0\end{bmatrix}
$$

c-segments: (x, y) with $x : [0, 1] \rightarrow X$:

$$
\nabla_{\mathbf{y}}c(\mathbf{x(s)},\mathbf{y})=(1-s)\nabla_{\mathbf{y}}c(\mathbf{x(0)},\mathbf{y})+s\nabla_{\mathbf{y}}c(\mathbf{x(1)},\mathbf{y})
$$

 \rightarrow particular geodesics where one variable is kept fix

Nonnegative cross-curvature: g_{KM} has nonnegative sectional curvature

KORKARYKERKE PROGRAM 12 / 25

 $¹$ Kim, McCann (2010)</sup>

Smooth NNCC spaces

Let X, Y smooth manifolds, $c \in C^4(X \times Y)$ (plus some other regularity hypotheses) Kim and McCann¹ introduced the pseudo-Riemannian metric

$$
g_{KM}(x,y)=-\frac{1}{2}\begin{bmatrix}0 & \nabla_{xy}c(x,y)\\ \nabla_{xy}c(x,y) & 0\end{bmatrix}
$$

c-segments:
$$
(x, y)
$$
 with $x : [0, 1] \rightarrow X$:

$$
\nabla_{\mathbf{y}}c(\mathbf{x(s)},\mathbf{y})=(1-s)\nabla_{\mathbf{y}}c(\mathbf{x(0)},\mathbf{y})+s\nabla_{\mathbf{y}}c(\mathbf{x(1)},\mathbf{y})
$$

 \rightarrow particular geodesics where one variable is kept fix

Nonnegative cross-curvature: g_{KM} has nonnegative sectional curvature

Theorem (Kim-McCann¹): $(X \times Y, c)$ has nonnegative cross-curvature \iff $s \mapsto c(x(s), y) - c(x(s), z)$ is convex $\forall z \in Y$ along c-segments (x, y)

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A}$ 12 / 25

 $¹$ Kim, McCann (2010)</sup>

Nonsmooth NNCC spaces¹

Key observation:

Theorem: Let X, Y and c be smooth, $x : [0,1] \rightarrow X$ a curve such that, $\forall z \in Y$, $c(x(s), y) - c(x(s), z) \le (1-s) \left[c(x(0), y) - c(x(0), z) \right] + s \left[c(x(1), y) - c(x(1), z) \right]$ then (x, y) is a c-segment.

 1 Léger, Todeschi, Vialard (2024)

Nonsmooth NNCC spaces¹

Key observation:

Theorem: Let X, Y and c be smooth, $x : [0,1] \rightarrow X$ a curve such that, $\forall z \in Y$, $c(x(s), y) - c(x(s), z) \le (1-s) \left[c(x(0), y) - c(x(0), z) \right] + s \left[c(x(1), y) - c(x(1), z) \right]$ then (x, y) is a c-segment.

Let X, Y be any space and $c: X \times Y \to \mathbb{R} \cup \pm \infty$ any function

Variational c-segment: a curve (x, y) such that $\forall z \in Y$

 $c(x(s), y) - c(x(s), z) \le (1-s) \left[c(x(0), y) - c(x(0), z) \right] + s \left[c(x(1), y) - c(x(1), z) \right]$

Nonnegatively cross-curved (NNCC) space: $(X \times Y, c)$ is NNCC if $\forall x_0, x_1 \in X$ and $\forall y \in Y$, there exists a variational c-segment from (x_0, y) to (x_1, y) .

 1 Léger, Todeschi, Vialard (2024)

Let $(X \times X, c)$ be a cost space, $c: X \times X \rightarrow \mathbb{R}_{>0}$, $c(x, x) = 0$

JKO with general cost: compute x_n iteratively as

$$
x_n\in \text{argmin}\ \frac{1}{\tau}c(x,x_{n-1})+f(x)
$$

Suppose x_n exists. We want x such that

$$
s \mapsto c(x(s), x_{n-1}) - c(x(s), x_n)
$$
 is "below the chord"

Let $(X \times X, c)$ be a cost space, $c: X \times X \rightarrow \mathbb{R}_{>0}$, $c(x, x) = 0$

JKO with general cost: compute x_n iteratively as

$$
x_n\in \text{argmin}\ \frac{1}{\tau}c(x,x_{n-1})+f(x)
$$

Suppose x_n exists. We want x such that

$$
s \mapsto c(x(s), x_{n-1}) - c(x(s), x_n)
$$
 is "below the chord"

If $(X \times X, c)$ is NNCC, take a variational c-segment (x, x_{n-1})

Let $(X \times X, c)$ be a cost space, $c: X \times X \rightarrow \mathbb{R}_{\geq 0}$, $c(x, x) = 0$

JKO with general cost: compute x_n iteratively as

$$
x_n\in \text{argmin}\ \frac{1}{\tau}c(x,x_{n-1})+f(x)
$$

Suppose x_n exists. We want x such that

 $s \mapsto c(x(s), x_{n-1}) - c(x(s), x_n)$ is "below the chord"

If $(X \times X, c)$ is NNCC, take a variational c-segment (x, x_{n-1}) If $(X \times X, -c)$ is NNCC, take a variational c-segment (x, x_n)

Let $(X \times X, c)$ be a cost space, $c: X \times X \rightarrow \mathbb{R}_{\geq 0}$, $c(x, x) = 0$

JKO with general cost: compute x_n iteratively as

$$
x_n\in \text{argmin}\ \frac{1}{\tau}c(x,x_{n-1})+f(x)
$$

Suppose x_n exists. We want x such that

 $s \mapsto c(x(s), x_{n-1}) - c(x(s), x_n)$ is "below the chord"

If $(X \times X, c)$ is NNCC, take a variational c-segment (x, x_{n-1})

If $(X \times X, -c)$ is NNCC, take a variational c-segment (x, x_n)

Then, if $s \mapsto f(x(s)) - \lambda c(x(s), y)$ is "below the chord", we obtain the discrete EVI

$$
\frac{1}{\tau}c(z,x_n)-\frac{1}{\tau}c(z,x_{n-1})\leq f(z)-f(x_n)-\lambda c(z,x_n)-\frac{1}{\tau}c(x_n,x_{n-1}),\quad \forall z\in X
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$ 14 / 25

Examples of NNCC spaces

▶ Hilbert space with $c = | \cdot - \cdot |^2$

 \longrightarrow variational c-segments are simply $x(s) = (1-s)x_0 + sx_1$

▶ Bregman divergences for $u: X \to \mathbb{R}$

$$
c(x,y) = u(x) - u(y) - \nabla u(y)(x - y)
$$

▶ The Bures-Wasserstein distance squared on the space of symmetric positive semi-definite matrices

$$
BW^2(S_1, S_2) = tr(S_1) + tr(S_2) - 2tr((S_1^{1/2}S_2S_1^{1/2})^{1/2}).
$$

(a.k.a. the quadratic Wasserstein distance between gaussian measures)

- \blacktriangleright The Hellinger and the Fisher-Rao distances squared between probability measures
- ▶ The Kullback–Leibler divergence between probability measures
- ▶ The Gromov-Wasserstein distance squared between measure metric spaces

The Wasserstein space

Let X, Y be Polish spaces

 $c: X \times Y \to \mathbb{R} \cup \{+\infty\}$ lower semi-continuous and bounded from below

The optimal transport problem is

$$
\mathcal{T}_c(\mu,\nu) \coloneqq \min_{\gamma \in \Gamma(\mu,\nu)} \int_{X \times Y} c(x,y) \, d\gamma
$$

Theorem: $(X \times Y, c)$ is NNCC $\iff (P(X) \times P(Y), T_c)$ is NNCC.

In particular:

The Wasserstein space $(\mathcal{P}_2(\mathbb{R}^d) \times \mathcal{P}_2(\mathbb{R}^d),$ $\mathcal{W}_2^2)$ is NNCC

A similar result holds also for unbalanced optimal transport

KORKAR KERKER ORA 16 / 25

Stability of NNCC

Stability by products (works also for infinite products):

If $(X_1 \times Y_1, c_1)$ and $(X_2 \times Y_2, c_2)$ are NNCC then so is $\big((X_1 \!\times\! X_2)\!\times\!(Y_1 \!\times\! Y_2), c_1\!+\!c_2\big).$

Stability by a certain type of projections:

Let $P_1: X \to X$ and $P_2: Y \to Y$ and $\underline{c}(\underline{x}, y) = \inf \{ c(x, y), P_1(x) = \underline{x}, P_2(y) = y \}$

If $(X \times Y, c)$ is NNCC then (under some hypotheses) $(X \times Y, c)$ is NNCC.

Stability by Gromov-Hausdorff convergence of compact metric spaces:

If $(X_k \times X_k, d_k^2)$ is a sequence of NNCC spaces which converges in the Gromov-Hausdorff sense to $(X \times X, d^2)$, the limit is NNCC.

Wasserstein space

Let $(X \times Y, c)$ be an NNCC space, $\mu_0, \mu_1 \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$

Assume (for simplicity) $\exists T_0, T_1$ optimal transport maps for $(\mu_0, \nu), (\mu_1, \nu)$, i.e.

$$
\mathcal{T}_c(\mu_0,\nu)=\int_Y c(T_0(y),y)\nu(y),\quad \mathcal{T}_c(\mu_1,\nu)=\int_Y c(T_1(y),y)\nu(y)
$$

Let $\Lambda_s: X \times X \times Y$ maps triplets (x_0, x_1, y) to evaluation at time s of a corresponding variational c-segment

$$
\Lambda_s(x_0,x_1,y)\mapsto \mathrm{x}(s)
$$

Wasserstein space

Let $(X \times Y, c)$ be an NNCC space, $\mu_0, \mu_1 \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$

Assume (for simplicity) $\exists T_0, T_1$ optimal transport maps for $(\mu_0, \nu), (\mu_1, \nu)$, i.e.

$$
\mathcal{T}_c(\mu_0,\nu)=\int_Y c(T_0(y),y)\nu(y), \quad \mathcal{T}_c(\mu_1,\nu)=\int_Y c(T_1(y),y)\nu(y)
$$

Let $\Lambda_s: X \times X \times Y$ maps triplets (x_0, x_1, y) to evaluation at time s of a corresponding variational c-segment

$$
\Lambda_s(x_0,x_1,y)\mapsto x(s)
$$

Lifted c-segments: $\mu : [0,1] \to \mathcal{P}(X)$ defined as

$$
\mu(\mathsf{s})=(\Lambda_{\mathsf{s}}(\mathit{T}_0(\mathit{y}),\mathit{T}_1(\mathit{y}),\mathit{y}))_{\#}\nu\,,\quad \mathsf{s}\in[0,1]
$$

If $X = Y = \mathbb{R}^d$ and $c = |\cdot - \cdot|^2$ lifted c-segments are generalized geodesics!

Wasserstein space

Let $(X \times Y, c)$ be an NNCC space, $\mu_0, \mu_1 \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$

Assume (for simplicity) $\exists T_0, T_1$ optimal transport maps for $(\mu_0, \nu), (\mu_1, \nu)$, i.e.

$$
\mathcal{T}_c(\mu_0,\nu)=\int_Y c(T_0(y),y)\nu(y),\quad \mathcal{T}_c(\mu_1,\nu)=\int_Y c(T_1(y),y)\nu(y)
$$

Let Λ_s : $X \times X \times Y$ maps triplets (x_0, x_1, y) to evaluation at time s of a corresponding variational c-segment

$$
\Lambda_s(x_0,x_1,y)\mapsto x(s)
$$

Lifted c-segments: $\mu : [0,1] \to \mathcal{P}(X)$ defined as

$$
\mu(s) = (\Lambda_{s}(\, T_{0}(y),\, T_{1}(y), y))_{\#}\nu\,, \quad s\in [0,1]\,.
$$

If $X = Y = \mathbb{R}^d$ and $c = |\cdot - \cdot|^2$ lifted c-segments are generalized geodesics!

Theorem: Lifted c-segments are variational c-segments on $(\mathcal{P}(X) \times \mathcal{P}(Y), \mathcal{T}_c)$.

Relation with Assumption 4.0.1

Let (X, d) be geodesic space

Theorem: If $(X \times X, d^2)$ is NNCC then (X, d) is a PC space.

(extension of a known result for classical NNCC)

Relation with Assumption 4.0.1

Let (X, d) be geodesic space

Theorem: If $(X \times X, d^2)$ is NNCC then (X, d) is a PC space.

(extension of a known result for classical NNCC)

Let $y \in Y$ and (x, y) be a variational c-segment then

Theorem: $d^2(x(s), y)$ is 1-convex in the sense that

 $d^2(x(s), y) \leq (1-s)d^2(x(0), y)) + sd^2(x(1), y) - s(1-s)d^2(x(0), x(1))$

 \implies variational c-segments satisfy the assumption of Ambrosio, Gigli, Savaré

On the other hand, we do not restrict to metric spaces

Outline

K ロ ▶ K 레 ≯ K 제품 X X 제품 → 있는 게 이익만

▶ Ambrosio, Gigli, Savaré original construction of EVI flows

▶ EVI flows via Nonnegative Cross-Curvature (NNCC)

▶ The LJKO scheme

JKO scheme: compute ρ_n recursively as

$$
\rho_n \in \operatorname{argmin} \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) + \mathcal{E}(\rho)
$$

 1 Benamou, Brenier (2000), 2 Villani (2003)

JKO scheme: compute ρ_n recursively as

$$
\rho_n \in \operatorname{argmin} \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) + \mathcal{E}(\rho)
$$

Dynamical form of the squared Wasserstein distance $^1\!$:

$$
W_2^2(\mu,\nu) = \inf_{\rho \ge 0, m} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|m|^2}{\rho}, \ \partial_t \rho + \text{div}(m) = 0, \ \rho(0,\cdot) = \mu, \ \rho(1,\cdot) = \nu \right\}
$$

Suited for Eulerian discretization

 $W_2^2(\rho, \rho_{n-1})$ expensive optimization problem

 1 Benamou, Brenier (2000), ²Villani (2003)

JKO scheme: compute ρ_n recursively as

$$
\rho_n \in \operatorname{argmin} \frac{1}{2\tau} W_2^2(\rho, \rho_{n-1}) + \mathcal{E}(\rho)
$$

Dynamical form of the squared Wasserstein distance $^1\!$:

$$
W_2^2(\mu,\nu) = \inf_{\rho \ge 0, m} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|m|^2}{\rho}, \ \partial_t \rho + \text{div}(m) = 0, \ \rho(0,\cdot) = \mu, \ \rho(1,\cdot) = \nu \right\}
$$

Suited for Eulerian discretization

 $W_2^2(\rho, \rho_{n-1})$ expensive optimization problem It holds $^2 \|\rho-\mu\|_{\dot H^{-1}_\mu} = \mathcal{W}_2(\rho,\mu) + o(\mathcal{W}_2(\rho,\mu)), \ \forall \rho,\mu \in \mathcal{P}_2(\mathbb{R}^d),$ where $\left\Vert \rho-\mu\right\Vert _{\dot{H}_{\mu}^{-1}}^{2}=\sup_{\phi}% \left\Vert \rho-\mu\right\Vert _{\dot{H}_{\mu}^{-1}}^{2}$ \int $\left\{\int\limits_{\mathbb R^d} \phi(\rho-\mu),\; ||\phi||_{H^1_\mu} \leq 1\right\}.$

20 / 25

 1 Benamou, Brenier (2000), ²Villani (2003)

The H^{-1} norm can be rewritten as

$$
\left\|\rho-\mu\right\|_{\dot{H}^{-1}_{\mu}}^2 = \inf_{m} \left\{ \int_{\mathbb{R}^d} \frac{|m|^2}{\mu}, \ \mu - \rho + \text{div}(m) = 0 \right\}
$$

 \rightarrow one-step time approximation of the dynamical Wasserstein distance

¹Cancès, Gallouët, Todeschi (2019)

The H^{-1} norm can be rewritten as

$$
\left\|\rho-\mu\right\|_{\dot{H}^{-1}_{\mu}}^2 = \inf_{m} \left\{ \int_{\mathbb{R}^d} \frac{|m|^2}{\mu}, \ \mu - \rho + \text{div}(m) = 0 \right\}
$$

 \rightarrow one-step time approximation of the dynamical Wasserstein distance

Linearized JKO (LJKO) scheme 1 : compute ρ_n recursively as

$$
\rho_n \in \underset{\rho \in \mathcal{P}_2(\mathbb{R}^d)}{\text{arginf}} \frac{1}{2\tau} \left\| \rho^{n-1} - \rho \right\|_{\dot{H}_\rho^{-1}}^2 + \mathcal{E}(\rho)
$$

- ▶ simpler convex optimization problem
- \triangleright the metric structure (of the discrete scheme) is lost

$$
\blacktriangleright \text{ does } c(\mu,\nu) \coloneqq \big\|\mu-\nu\big\|^2_{\dot{H}^{-1}_\mu} \text{ satisfy NNCC?}
$$

1 Cancès, Gallouët, Todeschi (2019)

 QQ

 $\mathbf{E} = \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{E} \mathbf{A} + \mathbf{A} \mathbf{B} \mathbf{A}$

Original PDE formulation LJKO scheme

$$
\partial_t \rho - \operatorname{div} \left(\rho \nabla \frac{\delta \mathcal{E}}{\delta \rho}(\rho) \right) = 0
$$

Original PDE formulation LJKO scheme

$$
\begin{cases} \partial_t \rho - \operatorname{div}(\rho \nabla \phi) = 0 \\ \phi = \frac{\delta \mathcal{E}}{\delta \rho}(\rho) \quad \rho \text{-a.e.} \end{cases}
$$

Original PDE formulation LJKO scheme

$$
\begin{cases} \partial_t \rho - \text{div}(\rho \nabla \phi) = 0 \\ \phi = \frac{\delta \mathcal{E}}{\delta \rho}(\rho) \quad \rho \text{-a.e.} \end{cases} \qquad \qquad \begin{cases} \frac{1}{\tau} (\rho_n - \rho_{n-1}) - \text{div}(\rho_n \nabla \phi_n) = 0 \\ \phi_n + \frac{\tau}{2} |\nabla \phi_n|^2 = \frac{\delta \mathcal{E}}{\delta \rho}(\rho_n) \quad \rho_n \text{-a.e.} \end{cases}
$$

Original PDE formulation LJKO scheme

22 / 25

 2990

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

$$
\begin{cases} \partial_t \rho - \text{div}(\rho \nabla \phi) = 0 \\ \phi = \frac{\delta \mathcal{E}}{\delta \rho}(\rho) \quad \rho \text{-a.e.} \end{cases} \qquad \qquad \begin{cases} \frac{1}{\tau} (\rho_n - \rho_{n-1}) - \text{div}(\rho_n \nabla \phi_n) = 0 \\ \phi_n + \frac{\tau}{2} |\nabla \phi_n|^2 = \frac{\delta \mathcal{E}}{\delta \rho}(\rho_n) \quad \rho_n \text{-a.e.} \end{cases}
$$

The HJ equation can be saturated (equality holds almost everywhere)

Convergence towards the PDE for $\tau \to 0$

- ▶ requires some regularity for the potential ϕ
- ▶ example: linear Fokker-Planck equation

TPFA discretization

TPFA approximation of the flux

$$
m = \rho \nabla \phi \approx \mathcal{R}(\rho_K, \rho_L) \frac{(\phi_K - \phi_L)}{|x_K - x_L|}
$$

TPFA discretization

TPFA approximation of the flux

$$
m = \rho \nabla \phi \approx \mathcal{R}(\rho_K, \rho_L) \frac{(\phi_K - \phi_L)}{|x_K - x_L|}
$$

Upwind choice:

$$
\mathcal{R}(\rho_K, \rho_L) = \begin{cases} \rho_K & \text{if } \phi_K \ge \phi_L \\ \rho_L & \text{else} \end{cases}
$$

$$
\rho_{K}
$$

▶ preserve monotonicity $\implies HJ$ equation can be saturated at the discrete level ▶ very efficient, first order accurate

TPFA discretization

 p reserve monotonicity $\implies HJ$ equation can be saturated at the discrete level ▶ very efficient, first order accurate

Centered choice:

$$
\mathcal{R}(\rho_K, \rho_L) = (1 - \theta)\rho_K + \theta \rho_L, \quad \text{for } \theta \in (0, 1)
$$

 $▶$ does not preserve monotonicity \implies HJ equation cannot be saturated

▶ less efficient but second order accurate

2D convergence test

Linear Fokker-Planck equation: W_2 gradient flow of $\mathcal{E}(\rho) = \int_{\Omega}\rho\log(\rho) + \rho V$

- \blacktriangleright the LJKO scheme is one order accurate in time
- ▶ energy decreases exponentially fast

Does
$$
c(\mu, \nu) := ||\mu - \nu||_{\dot{H}^{-1}_{\mu}}
$$
 satisfy NNCC?

A variational c-segment $\mu(s)$ between (μ_0, ν) and (μ_1, ν) must satisfy

 $\phi(s) = (1 - s)\phi_0 + s\phi_1$

where ϕ_0 optimal for (μ_0, ν) and ϕ_1 optimal for (μ_1, ν)

Then the "candidate" variational c-segment must solve

$$
\mu(s)-\nu-{\rm div}(\mu(s)\nabla\phi(s))=0
$$

Does
$$
c(\mu, \nu) := ||\mu - \nu||_{\dot{H}^{-1}_{\mu}}
$$
 satisfy NNCC?

A variational c-segment $\mu(s)$ between (μ_0, ν) and (μ_1, ν) must satisfy

 $\phi(s) = (1 - s)\phi_0 + s\phi_1$

where ϕ_0 optimal for (μ_0, ν) and ϕ_1 optimal for (μ_1, ν)

Then the "candidate" variational c-segment must solve

$$
\mu(s)-\nu-{\rm div}(\mu(s)\nabla\phi(s))=0
$$

 QQ 25 / 25

Thank you for your attention!

K ロ ▶ K 레 ≯ K 제 차 X 제 화 사 제 화 사 제 화 사 제 화 사 제 화 사 제 화 사 제 하