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Wasserstein distance

w,v € Pa(RY) probability measures with finite second moment
Pushforward measure: = Tav <= u(A) = v(T(A))

Mk, v) = {7y € PRY x RY) : (py)sy = ps (p2)wy = v}
Quadratic optimal transport problem: for p, v € P»(R9) solve

W2(s,v) = min / Ix =y dr(x,¥) )
YET(p,v) Jrd x Rd

T such that g = Txv is an optimal transport map if
WEGn,v) = [ 1T() =y duly)
R

Wa : Pa(RY) x P2(RY) — R is a distance and (P2(R?), Ws) is a geodesic space
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Wasserstein gradient flows

Euclidean gradient flow: x(t) = —VF(x(t)) for F: RY - R

Wasserstein gradient flow: for £ : P>(RY) — R, a curve p : [0, T] — P2(RY)
solution to

Oep — diV(pV%(p)) =0 (1)

Example: the linear/nonlinear Fokker-Planck equation
One needs to couple solutions to (1) with a "dissipation principle”

> Generalized Minimizing Movement (GMM)
» Energy Dissipation Equality (EDE)
» Evolution Variational Inequality (EVI)

» Characterization of Wasserstein subdifferential
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Generalized Minimizing Movement (GMM)

JKO scheme!: compute p, recursively as

1
pn € argmin —W;(p, pa-1) + E(p)
peP(RY) 2T

Generalization of Implicit Euler Scheme: find x, iteratively as

.1 n — Xn—
Xn € argmin 2—\x —xpaP + F(x) — X0 L TF(x)
T T

At each step
1

> W5 (pny pr—1) + E(pn) < E(pn—1)

GMM?: find (weak) limits of this discrete process for 7 — 0

> connection with PDE by showing this is a solution
> general approach: one can replace W$ with any distance squared
> "not quantitative”: how much is the energy decreasing?

! After Jordan, Kinderlehrer, Otto (1998), 2De Giorgi
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Evolution Variational Inequality (EVI)

EVI flow': for A € R, a curve p : [0, T] — P2(RY) such that for (almost every)
€(0,7)
1d 2 A 2 d
19 Wi(o,p(1)) < £(0) ~ E(p(8) ~ 560, p(t)), Vo € Pa(RY)

Generalization of the Euclidean setting: if F : RY — R A-convex then

x(t) = =VF(x(t)) §E|X(f)—2| < F(z) = F(x(1)) - g\X(t)—Zﬁ vz € R?

Again, one can replace W2 with any distance squared
Favorable properties:

> uniqueness of solutions
> stability
> exponential decay to the equilibrium (A > 0)

Example: the linear/nonlinear Fokker-Planck equation is an EVI flow in (P2(R?), W5)

! Ambrosio, Gigli, Savaré (2005)
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Outline

» Ambrosio, Gigli, Savaré original construction of EVI flows
» EVI flows via Nonnegative Cross-Curvature (NNCC)

» The LJKO scheme
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Evolution Variational Inequality (EVI)

Let (X, d) be a geodesic space, f : X = R

EVI flow': for A € R, a curve x : [0, T] — X such that for (almost every)
te(0,T)

22 Pz, x(1) < Fl2) ~ F(x(1) ~ 30X x(1)), VzeEX

Two key ingredients to prove existence of EVI flows:

> JKO scheme in metric setting
.1
X, € argmin Edz(x,xn_l) + f(x) (2

> Convexity
The first one is not necessary

On the other hand, some convexity is needed?

! Ambrosio, Gigli, Savaré (2005), 2Daneri, Savaré (2008)
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Discrete EVI

Suppose x, exists, let z € X and « : [0,1] — X geodesic, v(0) = x, and (1) = z
Suppose (x) = 2= d*(x, xo—1) + f(x) is geodesically (£ -+ X)-convex

B((6) < (1= 9)a) +56(2) — (2 +2) LDz )
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Discrete EVI

Suppose x, exists, let z € X and « : [0,1] — X geodesic, v(0) = x, and (1) = z
Suppose (x) = 2= d*(x, xo—1) + f(x) is geodesically (£ -+ X)-convex

B((6) < (1= 9)a) +56(2) — (2 +2) LDz )

Since x, minimizes v and using convexity

0 < w(r(s)) — xn) < 5((2) — ) — (2 +2) 0Dz, )
Dividing by s and passing to the limit s — 0

1, 1, 1 1,
< — n— - n) — 5= nyXn—1) — \ = A s Xn
0< 2Td (z,%n—1) + f(2) = f(xn) 27_d (Xny Xn—1) (T +)\)2d (z,xn)
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Discrete EVI

Discrete EVI inequality: Vz € X

1 5 1 5 A2 1 5
. n) — 7 n—1) < - n) — & sXn) — 5 ny Xn—
27_d (z,xn) 27_d (z,xn—1) < f(2) — f(xn) 2d (z, xn) 27_d (Xn, Xn—1)

Fine characterization of the minimizer x, (£ + A > 0)
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Discrete EVI

Discrete EVI inequality: Vz € X

1 5 1 5 Ao 1 5
n 3 Xn— < n y Xn ny Xn—
5 d“(z, xn) 3 d(z,xn—1) < f(2) — f(xn) 2d(zx) 3 d”(Xn, Xn—1)

Fine characterization of the minimizer x, (£ + A > 0)

Note that through the Discrete EVI one has

» sublinear (A = 0) / linear (A > 0) convergence to the global minimizer of f
> uniqueness of solution (£ 4+ X > 0)

Passing to the limit one obtains (formally) the continuous EVI

1, 1, d .
Td (z,xn) 7_d (z,Xn-1) — dtd (z,x(t))
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Example: NPC spaces

Nonpositively Curved (NPC) space: for any v : [0,1] — X geodesic, Vy € X
d*(7(t),y) < (1 = 5)d*(7(0), y) + sd*(7(1), y) = s(1 = s)d*(+(0),%(1)) (3)
The distance function is 1-convex along geodesics
If f is geodesically \-convex, we have for any z € X,
1 5 . . 1
P(x) = Zd (x,y) + f(x) is geodesically (; + )\)—convex, Yy € X

— the discrete EVI follows taking y = xp—1
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Example: NPC spaces

Nonpositively Curved (NPC) space: for any v : [0,1] — X geodesic, Vy € X
d*(4(t),¥) < (1 = 5)d*(4(0), y) + sd*(7(1),¥) — s(L — s)d*(7(0),7(1)) (3)

The distance function is 1-convex along geodesics

If f is geodesically \-convex, we have for any z € X,
1 5 . . 1
P(x) = 2—d (x,y) + f(x) is geodesically (f + )\)—convex, Yy € X
T T

— the discrete EVI follows taking y = xp—1

> for Hilbert spaces equality holds in (3)
> Positively Curved (PC) space: the inequality (3) holds with reverse sign
> if (X,d)is PC — 1 is not geodesically convex

Unfortunately, the Wasserstein space (P2(R?), W) is PC!
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AGS hypothesis

Assumption 4.0.1": Vxo,x1,y € X, Jw : [0,1] = X, w(0) = x0, w(1) = x1 and
P(w(s)) < (1= 5)p(w(0)) + spp(w(1)) — 3(3 + A)s(L — 5)d*(w(0),w(1)) (4)
— there exists a curve along which ¢ is " (% + )\) -convex”

Equivalently, s — t(w(s)) — %(% + A)d?(w(0),w(1)) is convex

Then discrete EVI follows taking y = xp—1

! Ambrosio, Gigli, Savaré (2005)
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AGS hypothesis

Assumption 4.0.1": Vxo,x1,y € X, Jw : [0,1] = X, w(0) = x0, w(1) = x1 and

P(w(s)) < (1= 5)p(w(0)) + spp(w(1)) — 3(3 + A)s(L — 5)d*(w(0),w(1)) (4)
— there exists a curve along which ¢ is " (% + )\) -convex”

Equivalently, s — t(w(s)) — %(% + A)d?(w(0),w(1)) is convex
Then discrete EVI follows taking y = xp—1

Condition (4) can be split naturally into: Vy € X, Jw such that
d*(w(s),y) — ;dZ(w(O),w(l)) is convex — "structural” condition on (X, d)
f(w(s)) — $Ad*(w(0),w(1)) is convex ~ — condition on f

Additional hypothesis on the structure of (X, d) are needed...

! Ambrosio, Gigli, Savaré (2005)
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Wasserstein space (P2(R9), Wa)

For (P2(R?), W) Ambrosio, Gigli and Savaré introduced the generalized geodesics

Let po, p1,v € 732(Rd) and assume (for simplicity) 3To, T1 optimal transport maps, i.e.
> (o, v / [ To(y) = yPPul(y), W5(m,v)= / I Ta(y) — y[Pu(y)
Q

Generalized geodesic: w : [0,1] — P»(R?) defined as
w(s) e ((1 = S) To + STl)#l/7 s E [0, 1]

Generalization of a geodesic:

po and To =1d = w geodesic

10/25



Wasserstein space (P2(R9), Wa)

For (P2(R?), W) Ambrosio, Gigli and Savaré introduced the generalized geodesics

Let po, p1,v € 732(Rd) and assume (for simplicity) 3To, T1 optimal transport maps, i.e.

2 (0, v / ITo(y) — yPly),  Wa(u1,v) = / ITay) — yPu(y)

Generalized geodesic: w : [0,1] — P»(R?) defined as

w(s)=((1—s)To+sT1)zv, se€]o0,1]

Generalization of a geodesic:

po and To =1d = w geodesic
Then W2(w(s),v) — §W22(w(0)7w(1)) is convex

If s — F(w(s)) — SAd*(w(0),w(1)) is convex, take v = p,—1 —> discrete EVI
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» EVI flows via Nonnegative Cross-Curvature (NNCC)
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Another route to discrete EVI

Denote g(x) := f(x) + 5= d(x, xo—1) — (% + /\) 1d°(x, xs) then discrete EVI is

g(xn) < g(z), VzeX
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Another route to discrete EVI

Denote g(x) := f(x) + 5= d(x, xo—1) — (% + /\) 1d°(x, xs) then discrete EVI is
g(xn) <g(z), VzeX
If we find x(s) with x(0) = x» and x(1) = z, g(x(s)) is convex and L)1) _, 0 then

£(2) — glx) > EXEN 8C) 5 (1 )14 6lm)

s 2 s
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Denote g(x) := f(x) + 5= d(x, xo—1) — (% + /\) 1d°(x, xs) then discrete EVI is
g(xn) <g(z), VzeX
If we find x(s) with x(0) = x» and x(1) = z, g(x(s)) is convex and L)1) _, 0 then

£(2) — glx) > EXEN 8C) 5 (1 )14 6lm)

s 2 s

The convexity condition on g can be split into
s idz(x(s) Xn—1) — id2(x(s) Xn) convex
27 ’ 27 ’

s F(x(s)) - %d2(x(s),x,,) convex
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Another route to discrete EVI

Denote g(x) := f(x) + 5= d(x, xo—1) — (% + /\) 1d°(x, xs) then discrete EVI is
g(xn) < g(z), VzeX
If we find x(s) with x(0) = x» and x(1) = z, g(x(s)) is convex and L)1) _, 0 then

£(2) — glx) > EXEN 8C) 5 (1 )14 6lm)

s 2 s

The convexity condition on g can be split into
s idz(x(s) Xp—1) — id2(x(s) ) n
7 ) Xn-1) = 5 s Xn convex
s F(x(s)) - %dQ(x(s),x,,) convex

Remark: the condition "below the chord” is sufficient instead of convexity

How to ensure the first condition?
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Smooth NNCC spaces

Let X, Y smooth manifolds, c € C*(X x Y) (plus some other regularity hypotheses)
Kim and McCann! introduced the pseudo-Riemannian metric

1 0 Viyc(x,y)
M) =73 |Vyeley) 0

c-segments: (x,y) with x: [0,1] — X:

Vye(x(s),y) = (1 = s)Vye(x(0),y) + sVye(x(1),y)

— particular geodesics where one variable is kept fix

Nonnegative cross-curvature: gxv has nonnegative sectional curvature

!Kim, McCann (2010)
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Smooth NNCC spaces

Let X, Y smooth manifolds, c € C*(X x Y) (plus some other regularity hypotheses)
Kim and McCann! introduced the pseudo-Riemannian metric

1 0 Viyc(x,y)
M) =73 |Vyeley) 0

c-segments: (x,y) with x: [0,1] — X:
Vye(x(s),y) = (1 = 5)Vye(x(0), y) + sVyc(x(1),y)
— particular geodesics where one variable is kept fix
Nonnegative cross-curvature: gxv has nonnegative sectional curvature

Theorem (Kim-McCann'): (X x Y, ¢) has nonnegative cross-curvature <=

s = c(x(s), y) — c(x(s), z) is convex Vz € Y along c-segments (x,y)

!Kim, McCann (2010)
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Nonsmooth NNCC spaces!

Key observation:
Theorem: Let X, Y and ¢ be smooth, x : [0,1] — X a curve such that, Vz € Y/,

c(x(s), y)—c(x(s), z) < (1=s5) [e(x(0), y) —c(x(0), 2)] +5[c(x(1), ) —c(x(1), 2)]

then (x, y) is a c-segment.

! éger, Todeschi, Vialard (2024)
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Nonsmooth NNCC spaces!

Key observation:
Theorem: Let X, Y and ¢ be smooth, x : [0,1] — X a curve such that, Vz € Y/,
c(x(s), y)—c(x(s), 2) < (1-5)[c(x(0), y)—c(x(0), 2)] +s[c(x(1), y) —c(x(1), 2)]
then (x, y) is a c-segment.

Let X, Y be any space and c: X X Y — R U +oo any function

Variational c-segment: a curve (x,y) such that Vz € Y

c(x(s), y)—e(x(s), 2) < (1=s)[e(x(0), y) —c(x(0), 2)] +s[c(x(1), ) —c(x(1), 2)]

Nonnegatively cross-curved (NNCC) space: (X x Y, c) is NNCC if Vxp, x1 € X
and Vy € Y, there exists a variational c-segment from (xo, y) to (x1,y).

!Léger, Todeschi, Vialard (2024)
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Discrete EVI via NNCC

Let (X x X, ¢) be a cost space, ¢ : X X X — Rx>g, c(x,x) =0
JKO with general cost: compute x, iteratively as

.1
Xp € argmin ;c(x,x,,_l) + f(x)

Suppose x, exists. We want x such that

s+ c(x(s), xn—1) — c(x(s), x») is "below the chord”
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Let (X x X, ¢) be a cost space, ¢ : X X X — Rx>g, c(x,x) =0
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.1
X € argmin —c(x, xp—1) + f(x)
T
Suppose x, exists. We want x such that
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Let (X x X, ¢) be a cost space, ¢ : X X X — Rx>g, c(x,x) =0
JKO with general cost: compute x, iteratively as

.1
Xp € argmin ;c(x,x,,_l) + f(x)

Suppose x, exists. We want x such that
s+ c(x(s), xn—1) — c(x(s), x») is "below the chord”
If (X x X, c)is NNCC, take a variational c-segment (X, Xn—1)
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Discrete EVI via NNCC

Let (X x X, ¢) be a cost space, ¢ : X X X — Rx>g, c(x,x) =0
JKO with general cost: compute x, iteratively as

.1
Xp € argmin ;c(x,x,,_l) + f(x)

Suppose x, exists. We want x such that

s+ c(x(s), xn—1) — c(x(s), x») is "below the chord”
If (X x X, c)is NNCC, take a variational c-segment (X, Xn—1)
If (X x X,—c) is NNCC, take a variational c-segment (x, x»)

Then, if s — f(x(s)) — Ac(x(s),y) is "below the chord”, we obtain the discrete EVI

L c(zm) = Le(z,x0m1) < F(2) = Flm) = A2, %) — S cloemxa1), ¥z € X
T T T
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Examples of NNCC spaces

Hilbert space with ¢ = |- — - |2
— variational c-segments are simply x(s) = (1 — s)xo + sx1
Bregman divergences for u: X — R

c(x,y) = u(x) — u(y) = Vu(y)(x — y)

The Bures-Wasserstein distance squared on the space of symmetric positive
semi-definite matrices

BW2(S1,5:) = tr(S1) + tr(S2) — 2tr((51/25,51/%)1/?).

(a.k.a. the quadratic Wasserstein distance between gaussian measures)

» The Hellinger and the Fisher-Rao distances squared between probability measures

» The Kullback—Leibler divergence between probability measures

The Gromov-Wasserstein distance squared between measure metric spaces
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The Wasserstein space

Let X, Y be Polish spaces
c: X xY — RU{+oo} lower semi-continuous and bounded from below

The optimal transport problem is

Te(p,v) = min/ c(x,y) dvy
YEM(p,v) Jxxy

Theorem: (X X Y, c) is NNCC < (P(X) x P(Y),7Tc) is NNCC.

In particular:

The Wasserstein space (P2(R?) x P»(RY), WZ) is NNCC

A similar result holds also for unbalanced optimal transport
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Stability of NNCC

Stability by products (works also for infinite products):

If (X1x Y1, 1) and (X2 X Y2, ¢2) are NNCC then sois ((XixXz) x (Y1 X Y2), c1+c2).

Stability by a certain type of projections:

Let P,: X > Xand P,: Y — Y and
c(x,y) = inf {c(x, ), Pi(x) = x, Paly) = v}
If (X X Y,c)is NNCC then (under some hypotheses) (X X Y, ¢) is NNCC.

Stability by Gromov-Hausdorff convergence of compact metric spaces:

If (Xk x X, d?) is a sequence of NNCC spaces which converges in the Gromov-
Hausdorff sense to (X x X, d?), the limit is NNCC.
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Wasserstein space

Let (X x Y, c) be an NNCC space, po, 1 € P(X) and v € P(Y)
Assume (for simplicity) 3To, Ty optimal transport maps for (o, v), (u1,v), i.e.
Teuo) = [ M)y ly), Telimnv) = [ (i) pmy)
4 1%
Let As : X X X X Y maps triplets (xo, x1, y) to evaluation at time s of a corresponding

variational c-segment
As(x0, x1,y) — x(s)
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Assume (for simplicity) 3To, Ty optimal transport maps for (o, v), (u1,v), i.e.
Teuo) = [ M)y ly), Telimnv) = [ (i) pmy)
1% 1%
Let As : X X X X Y maps triplets (xo, x1, y) to evaluation at time s of a corresponding
variational c-segment
As(x0, x1,y) — x(s)
Lifted c-segments: p : [0,1] — P(X) defined as
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Wasserstein space

Let (X x Y, c) be an NNCC space, po, 1 € P(X) and v € P(Y)
Assume (for simplicity) 3To, Ty optimal transport maps for (o, v), (u1,v), i.e.
Teuo) = [ M)y ly), Telimnv) = [ (i) pmy)
1% 1%
Let As : X X X X Y maps triplets (xo, x1, y) to evaluation at time s of a corresponding
variational c-segment
As(x0, x1,y) — x(s)
Lifted c-segments: p : [0,1] — P(X) defined as
/,L(S) = (AS(TO(y)7 Tl()/)zy))#yv s € [07 1]

If X =Y =R%and c = |- — - |? lifted c-segments are generalized geodesics!

Theorem: Lifted c-segments are variational c-segments on (P(X) x P(Y), T¢).
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Relation with Assumption 4.0.1

Let (X, d) be geodesic space
Theorem: If (X x X, d?) is NNCC then (X, d) is a PC space.

(extension of a known result for classical NNCC)
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Relation with Assumption 4.0.1

Let (X, d) be geodesic space
Theorem: If (X x X, d?) is NNCC then (X, d) is a PC space.

(extension of a known result for classical NNCC)

Let y € Y and (x,y) be a variational c-segment then
Theorem: d°(x(s), y) is 1-convex in the sense that

d*(x(s), y) < (1 = )d*(x(0),y)) + sd®(x(1), ) — s(1 — s)d*(x(0), x(1))

= variational c-segments satisfy the assumption of Ambrosio, Gigli, Savaré

On the other hand, we do not restrict to metric spaces
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» The LJKO scheme



From JKO to LJKO

JKO scheme: compute p, recursively as

1
pn € argmin —— W3 (p, pn1) + €(p)

!Benamou, Brenier (2000), 2Villani (2003)
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From JKO to LJKO

JKO scheme: compute p, recursively as

pn € argmin —— L2 (ps pn—1) + E(p)

27

Dynamical form of the squared Wasserstein distance’:

W3 (u,v) = nf {/ /Rd ; Oep +div(m) =0, p(0,-) = p, p(1,-) = V}

Suited for Eulerian discretization

W2 (p, pn—1) expensive optimization problem

!Benamou, Brenier (2000), 2Villani (2003)
20/25



From JKO to LJKO

JKO scheme: compute p, recursively as

pn € argmin —— L2 (ps pn—1) + E(p)

27

Dynamical form of the squared Wasserstein distance’:

W3 (u,v) = nf {/ /Rd ; Oep +div(m) =0, p(0,-) = p, p(1,-) = V}

Suited for Eulerian discretization
W2 (p, pn—1) expensive optimization problem

It holds® ||p — /L”H;l = Wa(p, ) + o(Wa(p, 1)), Vp, u € P2(R?), where

pruHZ;l = sip{/Rd o(p— 1), llgllm < 1}

!Benamou, Brenier (2000), 2Villani (2003)
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From JKO to LJKO

The H™! norm can be rewritten as
2 . |m|? .
Hp—p”l_-l,l = inf —, p—p+div(m)=0
W m Rd

7

— one-step time approximation of the dynamical Wasserstein distance

Cances, Gallouét, Todeschi (2019)
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From JKO to LJKO

The H™! norm can be rewritten as
2
. m .
lp = ulf}y -1 = inf {/ 1M~ o+ div(m) = 0}
H m RY

7

— one-step time approximation of the dynamical Wasserstein distance

Linearized JKO (LJKO) scheme’: compute p, recursively as
5 1 n—1 2
pn € arginf ——||p"" —p||,—1 + E(p)
e L

» simpler convex optimization problem

> the metric structure (of the discrete scheme) is lost

> does c(u,v) = H,u — Z/Hi-i_1 satisfy NNCC?
i

Cances, Gallouét, Todeschi (2019)
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LJKO scheme

Original PDE formulation LJKO scheme

. o0&
Orp — d|v(pV5(p)) =0
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LJKO scheme

Original PDE formulation LJKO scheme

¢ = g(p) p-a.e.

{(%p —div(pV¢) =0
p
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LJKO scheme

Original PDE formulation LJKO scheme
. 1 .
{0tp —div(pV) =0 ~(pn = pn-1) = div(p Vo) = 0
o0&
¢=(p) pae Tivel2 =% ]
op $n + 5[Vl 5 (pn) po-ace.
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LJKO scheme

Original PDE formulation LJKO scheme
. 1 .
Oep — div(pV¢) =0 —(pn = pn—1) = div(pnVdn) = 0
o0&
¢ = f(p) p-a.e. |v¢n\ = 55(,)") pn-a.e.

The HJ equation can be saturated (equality holds almost everywhere)

Convergence towards the PDE for 7 — 0

> requires some regularity for the potential ¢
> example: linear Fokker-Planck equation
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TPFA discretization

TPFA approximation of the flux “f -
| N
Pk — ¢L 5 \
m=pV¢ = R(pK,pL)ﬁ e b

Ko | R(Pk,pL) |
% |

PA’L N
L
K\
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TPFA discretization

TPFA approximation of the flux “f ~
| N
m=pVo ~ R(Pm/ﬁ% o T
Ko | R(Pk,pL) |
Upwind choice: Drc k :
T L
pk  if ok > ¢1 LN
Rpk,pL) = {
pL else

> preserve monotonicity = HJ equation can be saturated at the discrete level

> very efficient, first order accurate
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TPFA discretization

TPFA approximation of the flux “f ~
| N
m=pVo ~ R(ﬂmﬁﬂ% o T
Ko | R(Pk,pL) |
Upwind choice: Drc k :
T L
pk  if ok > ¢1 LN
Rpk,pL) = {
pL else

> preserve monotonicity = HJ equation can be saturated at the discrete level

> very efficient, first order accurate

Centered choice:
R(pk,pr) = (1 —0)pk +6pr, for € (0,1)

> does not preserve monotonicity = HJ equation cannot be saturated

> less efficient but second order accurate
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2D convergence test

L' error Dissipation upwind scheme
107
10° Ty
1 TNy
73Ny
\\ 7oy
102 N o g
N\
107
10°
—H=—upwind
—H—centered
— — order 1
—-—-order 2 P
10 10
10? 101 0 0.05 0.1 0.15 0.2 0.25

Linear Fokker-Planck equation: W, gradient flow of £(p) = [, plog(p) + pV

» the LJKO scheme is one order accurate in time
> energy decreases exponentially fast
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Does c(p,v) = || — I/Hifl satisfy NNCC?
I

A variational c-segment p(s) between (uo,v) and (u1,v) must satisfy
¢(s) = (1 = s)¢o + s¢1
where ¢ optimal for (10, v) and ¢1 optimal for (p1,v)

Then the "candidate” variational c-segment must solve

w(s) — v —div(u(s)Ve(s)) = 0
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Does c(p,v) = || — I/Hi'l—l satisfy NNCC?
w

A variational c-segment p(s) between (uo,v) and (u1,v) must satisfy
¢(s) = (1 = s)¢o + s¢1
where ¢ optimal for (10, v) and ¢1 optimal for (p1,v)

Then the "candidate” variational c-segment must solve

w(s) — v —div(u(s)Ve(s)) = 0

—c(p(s),v) — e(uls), )
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Thank you for your attention!



