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LIGM, Université Gustave Eiffel

in collaboration with Flavien Léger and François-Xavier Vialard
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Wasserstein distance

µ, ν ∈ P2(Rd) probability measures with finite second moment

Pushforward measure: µ = T#ν ⇐⇒ µ(A) = ν(T−1(A))

Γ(µ, ν) = {γ ∈ P(Rd × Rd) : (p1)#γ = µ, (p2)#γ = ν}

Quadratic optimal transport problem: for µ, ν ∈ P2(Rd) solve

W 2
2 (µ, ν) := min

γ∈Γ(µ,ν)

∫
Rd×Rd

|x − y |2 dγ(x , y) (W)

T such that µ = T#ν is an optimal transport map if

W 2
2 (µ, ν) =

∫
Rd

|T (y)− y |2 dν(y)

W2 : P2(Rd)× P2(Rd) → R≥0 is a distance and (P2(Rd),W2) is a geodesic space
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Wasserstein gradient flows

Euclidean gradient flow: ẋ(t) = −∇F (x(t)) for F : Rd → R

Wasserstein gradient flow: for E : P2(Rd) → R, a curve ρ : [0,T ] → P2(Rd)
solution to

∂tρ− div
(
ρ∇δE

δρ
(ρ)

)
= 0 (1)

Example: the linear/nonlinear Fokker-Planck equation

One needs to couple solutions to (1) with a ”dissipation principle”

▶ Generalized Minimizing Movement (GMM)

▶ Energy Dissipation Equality (EDE)

▶ Evolution Variational Inequality (EVI)

▶ Characterization of Wasserstein subdifferential
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Generalized Minimizing Movement (GMM)

JKO scheme1: compute ρn recursively as

ρn ∈ argmin
ρ∈P2(Rd )

1

2τ
W 2

2 (ρ, ρn−1) + E(ρ)

Generalization of Implicit Euler Scheme: find xn iteratively as

xn ∈ argmin
1

2τ
|x − xn−1|2 + F (x) −→ xn − xn−1

τ
= −τ∇F (xn)

At each step
1

2τ
W 2

2 (ρn, ρn−1) + E(ρn) ≤ E(ρn−1)

GMM2: find (weak) limits of this discrete process for τ → 0

▶ connection with PDE by showing this is a solution

▶ general approach: one can replace W 2
2 with any distance squared

▶ ”not quantitative”: how much is the energy decreasing?

1After Jordan, Kinderlehrer, Otto (1998), 2De Giorgi
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Evolution Variational Inequality (EVI)

EVI flow1: for λ ∈ R, a curve ρ : [0,T ] → P2(Rd) such that for (almost every)
t ∈ (0,T )

1

2

d

dt
W 2

2 (σ, ρ(t)) ≤ E(σ)− E(ρ(t))− λ

2
d2(σ, ρ(t)) , ∀σ ∈ P2(Rd)

Generalization of the Euclidean setting: if F : Rd → R λ-convex then

ẋ(t) = −∇F (x(t)) ⇐⇒ 1

2

d

dt
|x(t)− z |2 ≤ F (z)− F (x(t))− λ

2
|x(t)− z |2 , ∀z ∈ Rd

Again, one can replace W 2
2 with any distance squared

Favorable properties:

▶ uniqueness of solutions
▶ stability
▶ exponential decay to the equilibrium (λ > 0)

Example: the linear/nonlinear Fokker-Planck equation is an EVI flow in (P2(Rd),W2)

1Ambrosio, Gigli, Savaré (2005)
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Outline

▶ Ambrosio, Gigli, Savaré original construction of EVI flows

▶ EVI flows via Nonnegative Cross-Curvature (NNCC)

▶ The LJKO scheme
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Evolution Variational Inequality (EVI)

Let (X , d) be a geodesic space, f : X → R

EVI flow1: for λ ∈ R, a curve x : [0,T ] → X such that for (almost every)
t ∈ (0,T )

1

2

d

dt
d2(z , x(t)) ≤ f (z)− f (x(t))− λ

2
d2(z , x(t)) , ∀z ∈ X

Two key ingredients to prove existence of EVI flows:

▶ JKO scheme in metric setting

xn ∈ argmin
1

2τ
d2(x , xn−1) + f (x) (2)

▶ Convexity

The first one is not necessary

On the other hand, some convexity is needed2

1Ambrosio, Gigli, Savaré (2005), 2Daneri, Savaré (2008)
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Discrete EVI

Suppose xn exists, let z ∈ X and γ : [0, 1] → X geodesic, γ(0) = xn and γ(1) = z

Suppose ψ(x) := 1
2τ
d2(x , xn−1) + f (x) is geodesically ( 1

τ
+ λ)-convex

ψ(γ(s)) ≤ (1− s)ψ(xn) + sψ(z)−
( 1

τ
+ λ

) s(1− s)

2
d2(z , xn)

Since xn minimizes ψ and using convexity

0 ≤ ψ(γ(s))− ψ(xn) ≤ s
(
ψ(z)− ψ(xn)

)
−

( 1

τ
+ λ

) s(1− s)

2
d2(z , xn)

Dividing by s and passing to the limit s → 0

0 ≤ 1

2τ
d2(z , xn−1) + f (z)− f (xn)−

1

2τ
d2(xn, xn−1)−

( 1

τ
+ λ

)1
2
d2(z , xn)
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Discrete EVI

Discrete EVI inequality: ∀z ∈ X

1

2τ
d2(z , xn)−

1

2τ
d2(z , xn−1) ≤ f (z)− f (xn)−

λ

2
d2(z , xn)−

1

2τ
d2(xn, xn−1)

Fine characterization of the minimizer xn ( 1
τ
+ λ ≥ 0)

Note that through the Discrete EVI one has

▶ sublinear (λ = 0) / linear (λ > 0) convergence to the global minimizer of f

▶ uniqueness of solution ( 1
τ
+ λ ≥ 0)

Passing to the limit one obtains (formally) the continuous EVI

1

τ
d2(z , xn)−

1

τ
d2(z , xn−1) −→ d

dt
d2(z , x(t))
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Example: NPC spaces

Nonpositively Curved (NPC) space: for any γ : [0, 1] → X geodesic, ∀y ∈ X

d2(γ(t), y) ≤ (1− s)d2(γ(0), y) + sd2(γ(1), y)− s(1− s)d2(γ(0), γ(1)) (3)

The distance function is 1-convex along geodesics

If f is geodesically λ-convex, we have for any z ∈ X ,

ψ(x) :=
1

2τ
d2(x , y) + f (x) is geodesically

( 1

τ
+ λ

)
-convex, ∀y ∈ X

−→ the discrete EVI follows taking y = xn−1

▶ for Hilbert spaces equality holds in (3)

▶ Positively Curved (PC) space: the inequality (3) holds with reverse sign

▶ if (X , d) is PC −→ ψ is not geodesically convex

Unfortunately, the Wasserstein space (P2(Rd),W2) is PC!
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AGS hypothesis

Assumption 4.0.11: ∀x0, x1, y ∈ X , ∃ω : [0, 1] → X , ω(0) = x0, ω(1) = x1 and

ψ(ω(s)) ≤ (1− s)ψ(ω(0)) + sψ(ω(1))− 1
2
( 1
τ
+ λ)s(1− s)d2(ω(0), ω(1)) (4)

−→ there exists a curve along which ϕ is ”
(

1
τ
+ λ

)
-convex”

Equivalently, s 7→ ψ(ω(s))− s2

2
( 1
τ
+ λ)d2(ω(0), ω(1)) is convex

Then discrete EVI follows taking y = xn−1

Condition (4) can be split naturally into: ∀y ∈ X , ∃ω such that

d2(ω(s), y)− s2

2τ
d2(ω(0), ω(1)) is convex −→ ”structural” condition on (X , d)

f (ω(s))− s2

2
λd2(ω(0), ω(1)) is convex −→ condition on f

Additional hypothesis on the structure of (X , d) are needed...

1Ambrosio, Gigli, Savaré (2005)
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Wasserstein space (P2(Rd),W2)

For (P2(Rd),W2) Ambrosio, Gigli and Savaré introduced the generalized geodesics

Let µ0, µ1, ν ∈ P2(Rd) and assume (for simplicity) ∃T0,T1 optimal transport maps, i.e.

W 2
2 (µ0, ν) =

∫
Ω

|T0(y)− y |2ν(y) , W 2
2 (µ1, ν) =

∫
Ω

|T1(y)− y |2ν(y)

Generalized geodesic: ω : [0, 1] → P2(Rd) defined as

ω(s) = ((1− s)T0 + sT1)#ν , s ∈ [0, 1]

Generalization of a geodesic:

ν = µ0 and T0 = Id =⇒ ω geodesic

Then W 2
2 (ω(s), ν)− s2

2τ
W 2

2 (ω(0), ω(1)) is convex

If s 7→ f (ω(s))− s2

2
λd2(ω(0), ω(1)) is convex, take ν = ρn−1 =⇒ discrete EVI
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Another route to discrete EVI

Denote g(x) := f (x) + 1
2τ
d2(x , xn−1)−

(
1
τ
+ λ

)
1
2
d2(x , xn) then discrete EVI is

g(xn) ≤ g(z) , ∀z ∈ X

If we find x(s) with x(0) = xn and x(1) = z , g(x(s)) is convex and d2(x(s),xn)
s

→ 0 then

g(z)− g(xn) ≥
g(x(s))− g(xn)

s
≥ −

( 1

τ
+ λ

)1
2

d2(x(s), xn)

s
→ 0

The convexity condition on g can be split into

s 7→ 1

2τ
d2(x(s), xn−1)−

1

2τ
d2(x(s), xn) convex

s 7→ f (x(s))− λ

2
d2(x(s), xn) convex

Remark: the condition ”below the chord” is sufficient instead of convexity

How to ensure the first condition?
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Smooth NNCC spaces

Let X ,Y smooth manifolds, c ∈ C 4(X × Y ) (plus some other regularity hypotheses)

Kim and McCann1 introduced the pseudo-Riemannian metric

gKM(x , y) = −1

2

[
0 ∇xyc(x , y)

∇xyc(x , y) 0

]
c-segments: (x, y) with x : [0, 1] → X :

∇yc(x(s), y) = (1− s)∇yc(x(0), y) + s∇yc(x(1), y)

−→ particular geodesics where one variable is kept fix

Nonnegative cross-curvature: gKM has nonnegative sectional curvature

Theorem (Kim-McCann1): (X × Y , c) has nonnegative cross-curvature ⇐⇒

s 7→ c(x(s), y)− c(x(s), z) is convex ∀z ∈ Y along c-segments (x, y)

1Kim, McCann (2010)
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Nonsmooth NNCC spaces1

Key observation:

Theorem: Let X ,Y and c be smooth, x : [0, 1] → X a curve such that, ∀z ∈ Y ,

c(x(s), y)−c(x(s), z) ≤ (1−s)
[
c(x(0), y)−c(x(0), z)

]
+s

[
c(x(1), y)−c(x(1), z)

]
then (x, y) is a c-segment.

Let X ,Y be any space and c : X × Y → R ∪ ±∞ any function

Variational c-segment: a curve (x, y) such that ∀z ∈ Y

c(x(s), y)−c(x(s), z) ≤ (1−s)
[
c(x(0), y)−c(x(0), z)

]
+s

[
c(x(1), y)−c(x(1), z)

]
Nonnegatively cross-curved (NNCC) space: (X ×Y , c) is NNCC if ∀x0, x1 ∈ X
and ∀y ∈ Y , there exists a variational c-segment from (x0, y) to (x1, y).

1Léger, Todeschi, Vialard (2024)
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Discrete EVI via NNCC

Let (X × X , c) be a cost space, c : X × X → R≥0, c(x , x) = 0

JKO with general cost: compute xn iteratively as

xn ∈ argmin
1

τ
c(x , xn−1) + f (x)

Suppose xn exists. We want x such that

s 7→ c(x(s), xn−1)− c(x(s), xn) is ”below the chord”

If (X × X , c) is NNCC, take a variational c-segment (x, xn−1)

If (X × X ,−c) is NNCC, take a variational c-segment (x, xn)

Then, if s 7→ f (x(s))− λc(x(s), y) is ”below the chord”, we obtain the discrete EVI

1

τ
c(z , xn)−

1

τ
c(z , xn−1) ≤ f (z)− f (xn)− λc(z , xn)−

1

τ
c(xn, xn−1) , ∀z ∈ X

14 / 25



Discrete EVI via NNCC

Let (X × X , c) be a cost space, c : X × X → R≥0, c(x , x) = 0

JKO with general cost: compute xn iteratively as

xn ∈ argmin
1

τ
c(x , xn−1) + f (x)

Suppose xn exists. We want x such that

s 7→ c(x(s), xn−1)− c(x(s), xn) is ”below the chord”

If (X × X , c) is NNCC, take a variational c-segment (x, xn−1)

If (X × X ,−c) is NNCC, take a variational c-segment (x, xn)

Then, if s 7→ f (x(s))− λc(x(s), y) is ”below the chord”, we obtain the discrete EVI

1

τ
c(z , xn)−

1

τ
c(z , xn−1) ≤ f (z)− f (xn)− λc(z , xn)−

1

τ
c(xn, xn−1) , ∀z ∈ X

14 / 25



Discrete EVI via NNCC

Let (X × X , c) be a cost space, c : X × X → R≥0, c(x , x) = 0

JKO with general cost: compute xn iteratively as

xn ∈ argmin
1

τ
c(x , xn−1) + f (x)

Suppose xn exists. We want x such that

s 7→ c(x(s), xn−1)− c(x(s), xn) is ”below the chord”

If (X × X , c) is NNCC, take a variational c-segment (x, xn−1)

If (X × X ,−c) is NNCC, take a variational c-segment (x, xn)

Then, if s 7→ f (x(s))− λc(x(s), y) is ”below the chord”, we obtain the discrete EVI

1

τ
c(z , xn)−

1

τ
c(z , xn−1) ≤ f (z)− f (xn)− λc(z , xn)−

1

τ
c(xn, xn−1) , ∀z ∈ X

14 / 25



Discrete EVI via NNCC

Let (X × X , c) be a cost space, c : X × X → R≥0, c(x , x) = 0

JKO with general cost: compute xn iteratively as

xn ∈ argmin
1

τ
c(x , xn−1) + f (x)

Suppose xn exists. We want x such that

s 7→ c(x(s), xn−1)− c(x(s), xn) is ”below the chord”

If (X × X , c) is NNCC, take a variational c-segment (x, xn−1)

If (X × X ,−c) is NNCC, take a variational c-segment (x, xn)

Then, if s 7→ f (x(s))− λc(x(s), y) is ”below the chord”, we obtain the discrete EVI

1

τ
c(z , xn)−

1

τ
c(z , xn−1) ≤ f (z)− f (xn)− λc(z , xn)−

1

τ
c(xn, xn−1) , ∀z ∈ X

14 / 25



Examples of NNCC spaces

▶ Hilbert space with c = | · − · |2

−→ variational c-segments are simply x(s) = (1− s)x0 + sx1

▶ Bregman divergences for u : X → R

c(x , y) = u(x)− u(y)−∇u(y)(x − y)

▶ The Bures-Wasserstein distance squared on the space of symmetric positive
semi-definite matrices

BW2(S1,S2) = tr(S1) + tr(S2)− 2 tr((S
1/2
1 S2S

1/2
1 )1/2) .

(a.k.a. the quadratic Wasserstein distance between gaussian measures)

▶ The Hellinger and the Fisher-Rao distances squared between probability measures

▶ The Kullback–Leibler divergence between probability measures

▶ The Gromov-Wasserstein distance squared between measure metric spaces

15 / 25



The Wasserstein space

Let X ,Y be Polish spaces

c : X × Y → R ∪ {+∞} lower semi-continuous and bounded from below

The optimal transport problem is

Tc(µ, ν) := min
γ∈Γ(µ,ν)

∫
X×Y

c(x , y) dγ

Theorem: (X × Y , c) is NNCC ⇐⇒ (P(X )× P(Y ), Tc) is NNCC.

In particular:

The Wasserstein space (P2(Rd)× P2(Rd),W 2
2 ) is NNCC

A similar result holds also for unbalanced optimal transport
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Stability of NNCC

Stability by products (works also for infinite products):

If (X1×Y1, c1) and (X2×Y2, c2) are NNCC then so is
(
(X1×X2)×(Y1×Y2), c1+c2

)
.

Stability by a certain type of projections:

Let P1 : X → X and P2 : Y → Y and

c(x , y) = inf
{
c(x , y) ,P1(x) = x ,P2(y) = y

}
If (X × Y , c) is NNCC then (under some hypotheses) (X × Y , c) is NNCC.

Stability by Gromov-Hausdorff convergence of compact metric spaces:

If (Xk × Xk , d
2
k ) is a sequence of NNCC spaces which converges in the Gromov-

Hausdorff sense to (X × X , d2), the limit is NNCC.
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Wasserstein space

Let (X × Y , c) be an NNCC space, µ0, µ1 ∈ P(X ) and ν ∈ P(Y )

Assume (for simplicity) ∃T0,T1 optimal transport maps for (µ0, ν), (µ1, ν), i.e.

Tc(µ0, ν) =

∫
Y

c(T0(y), y)ν(y) , Tc(µ1, ν) =

∫
Y

c(T1(y), y)ν(y)

Let Λs : X × X × Y maps triplets (x0, x1, y) to evaluation at time s of a corresponding
variational c-segment

Λs(x0, x1, y) 7→ x(s)

Lifted c-segments: µ : [0, 1] → P(X ) defined as

µ(s) = (Λs(T0(y),T1(y), y))#ν , s ∈ [0, 1]

If X = Y = Rd and c = | · − · |2 lifted c-segments are generalized geodesics!

Theorem: Lifted c-segments are variational c-segments on (P(X )× P(Y ), Tc).
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Relation with Assumption 4.0.1

Let (X , d) be geodesic space

Theorem: If (X × X , d2) is NNCC then (X , d) is a PC space.

(extension of a known result for classical NNCC)

Let y ∈ Y and (x, y) be a variational c-segment then

Theorem: d2(x(s), y) is 1-convex in the sense that

d2(x(s), y) ≤ (1− s)d2(x(0), y)) + sd2(x(1), y)− s(1− s)d2(x(0), x(1))

=⇒ variational c-segments satisfy the assumption of Ambrosio, Gigli, Savaré

On the other hand, we do not restrict to metric spaces

19 / 25



Relation with Assumption 4.0.1

Let (X , d) be geodesic space

Theorem: If (X × X , d2) is NNCC then (X , d) is a PC space.

(extension of a known result for classical NNCC)

Let y ∈ Y and (x, y) be a variational c-segment then

Theorem: d2(x(s), y) is 1-convex in the sense that

d2(x(s), y) ≤ (1− s)d2(x(0), y)) + sd2(x(1), y)− s(1− s)d2(x(0), x(1))

=⇒ variational c-segments satisfy the assumption of Ambrosio, Gigli, Savaré
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Outline

▶ Ambrosio, Gigli, Savaré original construction of EVI flows

▶ EVI flows via Nonnegative Cross-Curvature (NNCC)

▶ The LJKO scheme



From JKO to LJKO

JKO scheme: compute ρn recursively as

ρn ∈ argmin
1

2τ
W 2

2 (ρ, ρn−1) + E(ρ)

Dynamical form of the squared Wasserstein distance1:

W 2
2 (µ, ν) = inf

ρ≥0,m

{∫ 1

0

∫
Rd

|m|2

ρ
, ∂tρ+ div(m) = 0, ρ(0, ·) = µ, ρ(1, ·) = ν

}

Suited for Eulerian discretization

W 2
2 (ρ, ρn−1) expensive optimization problem

It holds2 ∥ρ− µ∥
Ḣ−1
µ

= W2(ρ, µ) + o(W2(ρ, µ)), ∀ρ, µ ∈ P2(Rd), where

∥∥ρ− µ
∥∥2

Ḣ−1
µ

= sup
ϕ

{∫
Rd

ϕ(ρ− µ), ||ϕ||H1
µ
≤ 1

}

1Benamou, Brenier (2000), 2Villani (2003)
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From JKO to LJKO

The H−1 norm can be rewritten as∥∥ρ− µ
∥∥2

Ḣ−1
µ

= inf
m

{∫
Rd

|m|2

µ
, µ− ρ+ div(m) = 0

}
−→ one-step time approximation of the dynamical Wasserstein distance

Linearized JKO (LJKO) scheme1: compute ρn recursively as

ρn ∈ arginf
ρ∈P2(Rd )

1

2τ

∥∥ρn−1 − ρ
∥∥2

Ḣ−1
ρ

+ E(ρ)

▶ simpler convex optimization problem

▶ the metric structure (of the discrete scheme) is lost

▶ does c(µ, ν) :=
∥∥µ− ν

∥∥2

Ḣ−1
µ

satisfy NNCC?

1Cancès, Gallouët, Todeschi (2019)
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LJKO scheme

Original PDE formulation LJKO scheme

∂tρ− div
(
ρ∇δE

δρ
(ρ)

)
= 0


1

τ
(ρn − ρn−1)− div(ρn∇ϕn) = 0

ϕn +
τ

2
|∇ϕn|2 =

δE
δρ

(ρn) ρn-a.e.

The HJ equation can be saturated (equality holds almost everywhere)

Convergence towards the PDE for τ → 0

▶ requires some regularity for the potential ϕ

▶ example: linear Fokker-Planck equation
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TPFA discretization

TPFA approximation of the flux

m = ρ∇ϕ ≈ R(ρK , ρL)
(ϕK − ϕL)

|xK − xL|

Upwind choice:

R(ρK , ρL) =

{
ρK if ϕK ≥ ϕL

ρL else

ρK

ρL

K
L

R(ρK , ρL)

▶ preserve monotonicity =⇒ HJ equation can be saturated at the discrete level

▶ very efficient, first order accurate

Centered choice:

R(ρK , ρL) = (1− θ)ρK + θρL , for θ ∈ (0, 1)

▶ does not preserve monotonicity =⇒ HJ equation cannot be saturated

▶ less efficient but second order accurate
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2D convergence test
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Linear Fokker-Planck equation: W2 gradient flow of E(ρ) =
∫
Ω
ρ log(ρ) + ρV

▶ the LJKO scheme is one order accurate in time

▶ energy decreases exponentially fast
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Does c(µ, ν) :=
∥∥µ− ν

∥∥2
Ḣ−1
µ

satisfy NNCC?

A variational c-segment µ(s) between (µ0, ν) and (µ1, ν) must satisfy

ϕ(s) = (1− s)ϕ0 + sϕ1

where ϕ0 optimal for (µ0, ν) and ϕ1 optimal for (µ1, ν)

Then the ”candidate” variational c-segment must solve

µ(s)− ν − div(µ(s)∇ϕ(s)) = 0
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Thank you for your attention!


