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The Heat equation with multiplicative Lipschitz noise
The continuous problem

du−∆u dt = g(u) dW (t), in Ω× (0, T )× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

u(0, ·) = u0, in Ω× Λ;

where:
(Ω,A,P, (Ft)t≥0, (Wt)t≥0) is a stochastic basis with a real-valued Brownian
motion (Wt)t≥0;

W (0) = 0 almost surely;
W (t) is almost surely continuous in t;
∀0 ≤ s ≤ t, W (t)−W (s) ∼ N (0, t− s);
∀0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, W (t

1
), W (t

2
)−W (t

1
), · · · , W (t

k
)−W (t

k−1
) are

independent.

g : R→ R is Lipschitz continuous;
u0 ∈ L2(Ω;H1(Λ)) is a F0-measurable random variable.
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(Ω,A,P, (Ft)t≥0, (Wt)t≥0) is a stochastic basis with a real-valued Brownian
motion (Wt)t≥0;
g : R→ R is Lipschitz continuous;
u0 ∈ L2(Ω;H1(Λ)) is a F0-measurable random variable.

Definition

A variational solution to the heat equation with multiplicative Lipschitz noise is a
(Ft)t≥0-adapted stochastic process

u ∈ L2(Ω; C([0, T ];L2(Λ))) ∩ L2(Ω;L2(0, T ;H1(Λ)))

such that, for all t ∈ [0, T ], in L2(Λ), P-a.s. in Ω,

u(t)− u0 −
ˆ t

0
∆u(s) ds =

ˆ t
0
g(u(s)) dWs.

 From classical results existence and uniqueness of a variational solution is
well-known. Pardoux(1975), Krylov-Rozovskii(1981), Liu-Röckner(2015), . . .
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Goal: Convergence of the TPFA scheme towards the variational solution.
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Stochastic PDEs with Itô noise: Heat equation
Time discretization

PDE’s formulation:

∂t

(
u(t, x)−

ˆ t
0
g(u(s, x))dWs

)
−∆u(t, x) = 0

Time discretization:

N ∈ N∗ ⇒ Time step: ∆t =
T

N
and ∀n ∈ J0, NK, tn = n∆t.

Unknowns: We are looking for un ∼ u(tn, ·)

Implicit Euler method:

un+1(x)− un(x)

∆t
−

1

∆t

ˆ tn+1

tn
g(u(s, x))dWs −∆un+1(x) = 0

andˆ tn+1

tn
g(u(s, x))dWs ∼ g(un(x))W (tn+1)−W (tn)︸ ︷︷ ︸

∼N (0,∆t)

=
√

∆tg(un(x)) ξn+1︸ ︷︷ ︸
∼N (0,1)

since ˆ T
0
XsdWs = lim

∆t→0

N−1∑
n=0

Xtn
(
W (tn+1)−W (tn)

)
un+1(x)− un(x)

∆t
−∆un+1(x) =

1
√

∆t
g(un(x))ξn+1
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Stochastic PDEs with Itô noise: Heat equation
Space discretization

xK xL

σ = K|L

~nKL

Unknowns:
We are looking for unK ∼ u(tn, xK)

Notation: unT = ((unK)K∈T ) .

TPFA scheme

Let unT ∈ RT be a Ftn -measurable random vector. We look for a
Ftn+1 -measurable random vector un+1

T ∈ RT such that for almost every ω ∈ Ω,
for any K ∈ T ,

mK(un+1
K −unK) + ∆t

∑
σ∈EintK

mσ

dK,L
(un+1
K −un+1

L ) = mKg(u
n
K)
(
W (tn+1)−W (tn)

)
,

where
W (tn+1)−W (tn) =

√
∆tξn+1, for n ∈ {0, . . . , N − 1}.

 Existence of a discrete solution.
Need of uniqueness to obtain measurability

6 / 31



Stochastic PDEs with Itô noise: Heat equation
Space discretization

xK xL

σ = K|L

~nKL

Unknowns:
We are looking for unK ∼ u(tn, xK)

Notation: unT = ((unK)K∈T ) .

TPFA scheme

Let unT ∈ RT be a Ftn -measurable random vector. We look for a
Ftn+1 -measurable random vector un+1

T ∈ RT such that for almost every ω ∈ Ω,
for any K ∈ T ,

mK(un+1
K −unK) + ∆t

∑
σ∈EintK

mσ

dK,L
(un+1
K −un+1

L ) = mKg(u
n
K)
(
W (tn+1)−W (tn)

)
,

where
W (tn+1)−W (tn) =

√
∆tξn+1, for n ∈ {0, . . . , N − 1}.

 Existence of a discrete solution.
Need of uniqueness to obtain measurability

6 / 31



Analysis of the TPFA scheme
Convergence

Let (Tm)m and (Nm)m be s.t. size(Tm) −−−−−−→
m→+∞

0 and ∆tm =
T

Nm
−−−−−−→
m→+∞

0.

(Bauzet-Nabet-Schmitz-Zimmermann, ’22)

Theorem (Convergence)

Let u0 ∈ L2(Ω, H1(Λ)) F0-measurable, then

uTm,Nm −−−−−−→m→+∞
u in Lp(Ω;L2(0, T ;L2(Λ))) with 1 ≤ p < 2,

where u is the unique variational solution of the heat equation with multiplicative
Lipschitz noise.
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Convergence of the TPFA scheme
Sketch of proof

Step 1: Bounds on the discrete solution∑
K∈T

un+1
K ×

(
mK(un+1

K − unK) + ∆t
∑

σ∈EintK

mσ

dK,L
(un+1
K − un+1

L )

= mKg(u
n
K)
(
W (tn+1)−W (tn)

) )
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Convergence of the TPFA scheme
Sketch of proof

Step 1: Bounds on the discrete solution

1

2

(∥∥∥un+1
T

∥∥∥2

L2(Λ)
− ‖unT ‖

2
L2(Λ)

+
∥∥∥un+1
T − unT

∥∥∥2

L2(Λ)

)
+ ∆t

∣∣∣un+1
T

∣∣∣2
1,T

=
∑
K∈T

mKg(u
n
K)un+1

K

(
W (tn+1)−W (tn)

)
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T

∥∥∥2

L2(Λ)
− ‖unT ‖

2
L2(Λ)

+
∥∥∥un+1
T − unT

∥∥∥2

L2(Λ)

)
+ ∆t

∣∣∣un+1
T

∣∣∣2
1,T

=
∑
K∈T

mKg(u
n
K)[unK + (un+1

K − unK)]
(
W (tn+1)−W (tn)

)
1 Martingale property:

E
[
g(unK)unK

(
W (tn+1)−W (tn)

)]
= E [g(unK)unK]E

[(
W (tn+1)−W (tn)

)]
= 0
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[
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(
W (tn+1)−W (tn)

)]
= E [g(unK)unK]E

[(
W (tn+1)−W (tn)

)]
= 0

2 Young inequality:∑
K∈T

mKg(u
n
K)(un+1

K − unK)
(
W (tn+1)−W (tn)

)
≤

1

4

∥∥∥un+1
T − unT

∥∥∥2

L2(Λ)
+
∑
K∈T

mK
∣∣g(unK)

(
W (tn+1)−W (tn)

)∣∣2
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n
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K − unK)
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W (tn+1)−W (tn)

)
≤

1

4

∥∥∥un+1
T − unT

∥∥∥2

L2(Λ)
+
∑
K∈T

mK
∣∣g(unK)

(
W (tn+1)−W (tn)

)∣∣2
3 Itô isometry:

E
[∣∣g(unK)

(
W (tn+1)−W (tn)

)∣∣2] = E

∣∣∣∣∣
ˆ tn+1

tn
g(unK)dWs

∣∣∣∣∣
2


= E

[ˆ tn+1

tn
(g(unK))2 ds

]
= ∆tE

[
|g(unK)|2

]
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Convergence of the TPFA scheme
Sketch of proof

Proposition (Bounds on the discrete solutions)

For any n ∈ {1, . . . , N},

E
[
‖unT ‖2L2(Λ)

]
+ E

[
n−1∑
i=0
‖un+1
T − unT ‖2L2(Λ)

]
+ 2∆t

n−1∑
i=0

E
[∣∣∣un+1
T

∣∣∣2
1,T

]
≤ C.

Consequences: Weak convergence

There exists u ∈ L2(Ω;L2(0, T ;H1(Λ)) such that (up to a subsequence):

uT ,N −−−−−−−−−−⇀
size(T ),∆t→0

u weakly in L2(Ω;L2(0, T ;L2(Λ)),

∇T uT ,N −−−−−−−−−−⇀
size(T ),∆t→0

∇u weakly in L2(Ω;L2(0, T ;L2(Λ)).

BUT weak convergence not sufficient for nonlinear term:

∃gu ∈ L2(Ω;L2(0, T ;L2(Λ)) s.t. g(ulT ,N ) −−−−−−−−−−⇀
size(T ),∆t→0

gu

gu = g(u)??

⇒ Need of stochastic compactness.
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Convergence of the TPFA scheme
Sketch of proof

Step 2: Stochastic compactness argument

Theorem (Skorokhod’s representation theorem)

Let (Xm)m be a sequence of random variables on a measurable space s.t.

Xm
L−→ X. Then, there exists a probability space (Ω′,A′,P′) and random

variables Y, (Ym)m s.t.:

L(Xm) = L(Ym), ∀m, L(X) = L(Y ), and Ym → Y P′-a.s. in Ω′.

Prokhorov’s theorem: If (P ◦ (uT ,N )−1)m on L2(0, T ;L2(Λ)) is tight, then it
is relatively compact.
⇒ Up to a subsequence, (ulT ,N )m converges in law to a probability measure
µ∞ ∈ L2(0, T ;L2(Λ)).
The laws of (uT ,N ) are tight if, for any ε there exists a compact set Kε s.t.

L(uT ,N )(Kε) = [P ◦ (uT ,N )−1](Kε) ≥ 1− ε.

W = L2(0, T ;Wα,2(Λ)) ∩Wα,2(0, T ;L2(Λ))
compact
↪→ L2(0, T ;L2(Λ))

BW (0, R) := {v ∈ W : ‖v‖W ≤ R} compact in L2(0, T ;L2(Λ))

[P◦(uT ,N )−1](BW (0, R)) = 1−[P◦(uT ,N )−1](BW (0, R)c) = 1−
ˆ
{‖uT ,N‖W>R}

1 dP

Markov inequalityˆ
{‖uT ,N‖W>R}

1 dP ≤
1

R2

ˆ
{‖uT ,N‖W>R}

‖uT ,N‖2W dP ≤
1

R2
E
[
‖uT ,N‖2W

]
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Convergence of the TPFA scheme
Sketch of proof

Step 2: Stochastic compactness argument

Bounds on the Gagliardo seminorm for α ∈ (0,
1

2
):

W = L2(0, T ;Wα,2(Λ)) ∩Wα,2(0, T ;L2(Λ))

L
2
(0, T ;W

α,2
(Λ)) bound:

ˆ
R

ˆ
R

|ūT ,N (t, x)− ūh,N (t, y)|2

|x− y|2+2α
dx dy

=

ˆ
|η|>R

ˆ
R

|ūT ,N (t, x)− ūh,N (t, x+ η)|2

|η|2(1+α)
dx dη +

ˆ
|η|<R

ˆ
R

|ūT ,N (t, x)− ūh,N (t, x+ η)|2

|η|2(1+α)
dx dη

≤ 4‖ūh,N (t)‖2
L2(R)

ˆ
|η|>R

|η|−2(1+α)
dη + C

(
|uT ,N |21,h + ‖uT ,N‖2L2(Λ)

) ˆ
|η|<R

|η|−2(1+α)+1
dη

=⇒ Need of space translate estimates.

W
α,2

(0, T ;L
2
(Λ))-bound:

E

ˆ T
0

ˆ T
0

‖ūh,N (s)− ūh,N (t)‖2
L2(Λ)

|t− s|1+2α
ds dt


=⇒ Need of time translate estimates.
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Convergence of the TPFA scheme
Sketch of proof

Step 2: Stochastic compactness argument

Skorokhod’s theorem:
On a new probability space (Ω′,A′,P′):

there exist random variables v0, (vm)m, u∞ with L(v0) = L(u0),
L(vm) = L(uTm,Nm ) for all m ∈ N, L(u∞) = µ∞ and

vm −−−−−−→
m→+∞

u∞ in L2(0, T ;L2(Λ)), P′-a.s. in Ω′;

there exists a stochastic process W∞ and a sequence of Brownian motions
(Wm)m such that

Wm −−−−−−→
m→+∞

W∞ in C([0, T ]), P′-a.s. in Ω′.

Consequences:
For m ∈ N∗, vm is a step function i.e.

∃vTm,Nm ∈ RTm×Nm s.t. vm = vTm,NmP
′-a.s. in Ω′

⇒ vm(t, x) = vnK, ∀t ∈ [tn, tn+1),∀x ∈ K.
For m ∈ N∗, any n ∈ {0, . . . , Nm − 1} and any K ∈ Tm, the random vector
vn+1
Tm is solution to

mK(vn+1
K − vnK) + ∆t

∑
σ∈EintK

mσ

dK,L
(vn+1
K − vn+1

L )−mKg(vnK)(Wm(tn+1)−Wm(tn)) = 0.
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Convergence of the TPFA scheme
Sketch of proof

Step 3: Identification of the stochastic integral

mK(vn+1
K − vnK) + ∆t

∑
σ∈EintK

mσ

dK,L
(vn+1
K − vn+1

L ) =mKg(v
n
K)
(
Wm(tn+1)−Wm(tn)

)

For any m ∈ N, there exists a filtration (Fmt )t≥0 such that (vm)m is adapted
to (Fmt )t≥0 and Wm = (Wm(t))t≥0 is a Brownian motion with respect to
(Fmt )t≥0.

Wm −−−−−−→
m→+∞

W∞ in L2(Ω′;C([0, T ]))

There exists a filtration (F∞t )t≥0 such that u∞ has a predictable
dP′ ⊗ dt-representative and W∞ = (W∞(t))t≥0 is a Brownian motion with
respect to (F∞t )t≥0.

Wm −−−−−−→
m→+∞

W∞ in probability in C([0, T ]).

v
l
Tm,Nm −−−−−−→m→+∞

u∞ in L2
(0, T ;L

2
(Λ)), P′-a.s. in Ω

′

⇒ g(v
l
Tm,Nm ) −−−−−−→

m→+∞
g(u∞) in probability in L2

(0, T ;L
2
(Λ)).
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⇒ g(v
l
Tm,Nm ) −−−−−−→
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2
(Λ)).

(Debussche,Glatt-Holtz,Temam, ’11)
ˆ t

0
g(vT ,N ) dWm(t) dx −−−−−−→

m→+∞

ˆ t
0
g(u∞) dW∞(t) dx

in probability in L2(0, T ;L2(Λ)).
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Up to a subsequence (Debussche,Glatt-Holtz,Temam, ’11)
ˆ t

0
g(vT ,N ) dWm(t) dx −−−−−−→

m→+∞

ˆ t
0
g(u∞) dW∞(t) dx in L2(0, T ;L2(Λ)), P′-a.s. in Ω′.
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Convergence of the TPFA scheme
Sketch of proof

Proposition (Weak martingale solution)

(Ω′,P′,A′, (F∞t )t≥0,W
∞, u∞, v0) is a martingale solution for the heat equation

with multiplicative Lipschitz noise.

Step 4: Strong convergence of finite-volume approximations
1 Pathwise uniqueness: Let u1, u2 be two solutions w.r.t. the F0-initial values
u1

0, u
2
0 ∈ L2(Ω;L2(Λ)) on (Ω,A,P, (Ft)t≥0, (W (t))t≥0), then

E
[
‖u1(t)− u2(t)‖2

L2(Λ)

]
≤ CE

[∥∥u1
0 − u2

0

∥∥2

L2(Λ)

]
, ∀t ∈ [0, T ].

2 (Gyöngy-Krylov, ’96)

uTm,Nm −−−−−−→m→+∞
u in probability in L2(0, T ;L2(Λ)).

3 Up to a subsequence,

uTm,Nm −−−−−−→m→+∞
u P-a.s. in L2(0, T ;L2(Λ)).

4 Uniform bounds in L2(Ω;L2(0, T ;L2(Λ))) ⊕ Vitali’s theorem:

uTm,Nm −−−−−−→m→+∞
u in Lp(Ω;L2(0, T ;L2(Λ))) for 1 ≤ p < 2.

u is the unique variational solution of the heat equation with
multiplicative Lipschitz noise.
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Numerical results


du−∆u dt = LudW (t), in Ω× (0, T )× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

u(0, ·) = u0, in Ω× Λ.

Initial data

u0(x, y) = 2 cos(πx) cos(πy)⇒ ∆u0 = −2π2u0 = −λ2u0

Black Scholes model
u(t, (x, y)) = S(t)u0(x, y) solution iff S(t) satisfies{

dS(t) = −λ2S(t) dt+ LS(t) dW (t);

S(0) = 1.

S(t) = S(0)e(−λ2−L
2

2
)teLW (t) and ‖u(t, (x, y))‖L2(Λ) = S(t)

Comparison between S(tn) and ‖unT ‖L2(Λ)

W (tn) = W (0)︸ ︷︷ ︸
=0

+
n∑
i=1

(
W (ti)−W (ti−1)

)︸ ︷︷ ︸
=
√

∆tξi

=
√

∆t
n∑
i=1

ξi.

Discretization:
T = 0.2, Mesh size ∼ 1.66.10−2
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Numerical results
Comparison with the Black Scholes model

On a given trajectory

L = 0 L = 1

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 10−3

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 2.10−4
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Numerical results
Comparison with the Black Scholes model

On a given trajectory

L = 5 L = 2π

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 10−3

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 2.10−4
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Numerical results
Comparison with the Black Scholes model

On a given trajectory

L = 10 L = 15

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 10−3

S(tn), + + + ‖unT ‖L2(Λ) , ∆t = 2.10−4
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Numerical results
Comparison with the Black Scholes model

Relative error size(T ) ∼ 0.016

∣∣∣S(tn)− ‖unT ‖
∣∣∣

S(tn)

L = 0 L = 1

∆t = 10−3 ⇒
√

∆t ∼ 0.03 ∆t = 2.10−4 ⇒
√

∆t ∼ 0.014

20 / 31



Numerical results
Comparison with the Black Scholes model

Relative error size(T ) ∼ 0.016

∣∣∣S(tn)− ‖unT ‖
∣∣∣

S(tn)

L = 5 L = 2π

∆t = 10−3 ⇒
√

∆t ∼ 0.03 ∆t = 2.10−4 ⇒
√

∆t ∼ 0.014

21 / 31



Numerical results
Comparison with the Black Scholes model

Relative error size(T ) ∼ 0.016

∣∣∣S(tn)− ‖unT ‖
∣∣∣

S(tn)

L = 10 L = 15

∆t = 10−3 ⇒
√

∆t ∼ 0.03 ∆t = 2.10−4 ⇒
√

∆t ∼ 0.014

22 / 31



Numerical results

du−∆u dt = LudW (t), in Ω× (0, T )× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

u(0, ·) = u0, in Ω× Λ.

Black Scholes model
u(t, (x, y)) = S(t)u0(x, y) with ‖u0‖L2(Λ) = 1

S(t) = e(−λ2−L
2

2
)teLW (t) and ‖u(t, (x, y))‖L2(Λ) = S(t)

e−
L2

2
t+LW (t) is a martingale:

1

J

∑
J

‖unT ‖L2(Λ) ∼ E
[
‖u(tn, (x, y))‖L2(Λ)

]
= e−λ2t

n

‖u(t, (x, y))‖2
L2(Λ)

= e(−2λ2−L2)te2LW (t) and e−2L2t+2LW (t) is a martingale:

1

J

∑
J

‖unT ‖
2
L2(Λ)

∼ E
[
‖u(tn, (x, y))‖2

L2(Λ)

]
= e(L

2−2λ2)tn

J: total number of trajectories
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Numerical results
Comparison with the Black Scholes model

Comparison between the mean of the norm

∣∣∣ 1
J

∑
J ‖unT ‖L2(Λ) − e

−λ2t
n
∣∣∣

e−λ2tn

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2

L = 0

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2

L = 1

0 5 · 10−2 0.1 0.15 0.2

10−5

10−3

10−1

L = 5

0 5 · 10−2 0.1 0.15 0.2

10−5

10−3

10−1

L = 2π

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2

100

L = 10

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2

100

L = 15

∆t = 2.10−4, J = 2048 ∆t = 10−3, J = 2048 ∆t = 10−3, J = 5000
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Numerical results
Comparison with the Black Scholes model

Comparison between the mean of the square of the norm∣∣∣ 1
J

∑
J ‖unT ‖

2
L2(Λ)

− e(L2−λ2)tn
∣∣∣

e(L
2−λ2)tn

0 5 · 10−2 0.1 0.15 0.2
10−5

10−3

10−1

L = 0

0 5 · 10−2 0.1 0.15 0.2

10−5
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L = 1
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L = 5

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2
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L = 2π

0 5 · 10−2 0.1 0.15 0.2

10−4

10−2
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L = 10

0 5 · 10−2 0.1 0.15 0.2

10−2
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L = 15

∆t = 2.10−4, J = 2048 ∆t = 10−3, J = 2048 ∆t = 10−3, J = 5000
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2 Numerical results

3 Ongoing work: stochastic PDE with Stratonovich
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Stochastic PDEs with Stratonovich transport noise

De Bouard - Goudenège - Nabet
The continuous problem

du−∆u dt = b · ∇u ◦ dW (t), in Ω× (0, T )× Λ;

u(0, .) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

where:
W is independent standard Brownian motion;
div(b) = 0 in [0, T ]× Λ and b · n = 0 on [0, T ]× ∂Λ.

Difference with Itô integral

evaluated at the midpoint
the standard-calculus chain rule holds
the martingale property does not hold
the Itô isometry does not hold
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Difference with Itô integral

integrand evaluated at the midpoint instead of the left-end point:
ˆ T

0
Xs ◦ dWs = lim

∆t→0

N−1∑
n=0

Xtn +Xtn+1

2

(
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the standard-calculus chain rule holds
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du−∆u dt = b · ∇u ◦ dW (t), in Ω× (0, T )× Λ;

u(0, .) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

Difference with Itô integral

evaluated at the midpoint;
constructed in a way so that the standard-calculus chain rule holds:

f(Wt)− f(W0) =

ˆ t
0
f ′(Ws) ◦ dWs

instead of

f(Wt)− f(W0) =

ˆ t
0
f ′(Ws)dWs +

1

2

ˆ t
0
f ′′(Ws)ds.

 natural choice for a variety of models in physics and computational
biology.

the martingale property does not hold
the Itô isometry does not hold
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du−∆u dt = b · ∇u ◦ dW (t), in Ω× (0, T )× Λ;

u(0, .) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

Difference with Itô integral

evaluated at the midpoint;
the standard-calculus chain rule holds;
the martingale property does not hold :

E
[ˆ t

0
Xs ◦ dWs

]
6= 0

 the Itô integral widely used in stochastic financial analysis.

the Itô isometry does not hold
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E

[∣∣∣∣ˆ t
0
Xs ◦ dWs

∣∣∣∣2
]
6= E

[ˆ t
0
|Xs|2ds

]
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Stochastic PDEs with Stratonovich transport noise

De Bouard - Goudenège - Nabet
The continuous problem

du−∆u dt = b · ∇u ◦ dW (t), in Ω× (0, T )× Λ;

u(0, .) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ;

Difference with Itô integral
evaluated at the midpoint;
the standard-calculus chain rule holds;
the martingale property does not hold;
the Itô isometry does not hold.

Interest of Stratonovich transport noise
Regularization: additive noises do not provide enough regularization by noise
(for uniqueness of solution)
 introduction to multiplicative noises of transport type (for ex. for 3D
incompressible Navier-Stokes equation).
Fluid dynamical problems: effect of small scales on large scale
 small scale transport noise produces in the limit an extra dissipative term:
the "eddy dissipation".
 Turbulent flow: allow to describe the motion of large scale structures,
where the noise replaces part of the influence of small scale structures on
large scale ones
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Stochastic PDEs with Stratonovich transport noise
Discretization

Time discretization:

un+1(x)− un(x)−∆t∆un+ 1
2 (x) =

√
∆tξn+1b(x) · ∇un+ 1

2 (x)

A TPFA scheme:
ˆ
K
b · ∇u =

ˆ
K

div(bu) =

ˆ
∂K

ub · ~nσK =
∑

σ∈∂K

ˆ
σ
ub · ~nσK ∼

∑
σ∈∂K

uσ

ˆ
σ
b · ~nσK︸ ︷︷ ︸
:=bσK

mK(un+1
K − unK) + ∆t

∑
σ∈∂K

mσ

dK,L

(
u
n+ 1

2
K − un+ 1

2
L

)
=
√

∆t
∑

σ∈∂K
bσKu

n+ 1
2

σ ξn+1

Choice for uσ?

Upwind:

uσ =

{
uK if bσKξn+1 ≥ 0

uL otherwise.

Centered:
uσ =

uK + uL

2

Scharfetter-Gummel??
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Stochastic PDEs with Stratonovich transport noise
Numerical analysis

mK(un+1
K − unK) + ∆t

∑
σ∈∂K

mσ

dK,L

(
u
n+ 1

2
K − un+ 1

2
L

)
=
√

∆t
∑

σ∈∂K
bσKu

n+ 1
2

σ ξn+1

On the convergence analysis

Energy estimates =⇒ L∞(0, T ;L2(Λ)) and L2(0, T ;H1(Λ)) (on u
n+ 1

2
T )

bounds X
Existence X

Link with Itô formulation: b · ∇u ◦ dW = b · ∇u dW +
1

2
b · ∇(b · ∇u) dt.

Semi-discrete scheme: un+1 = un + ∆t∆un+ 1
2 +
√

∆tb · ∇un+ 1
2 ξn+1

l∑
n=0

√
∆tξn+1

(
b · ∇un+ 1

2 , ϕ
)
L2(Λ)

=−
l∑

n=0

√
∆tξn+1

(
un+ 1

2 , div(bϕ)
)
L2(Λ)

=−
l∑

n=0

√
∆tξn+1 (un, div(bϕ))

L2(Λ)

−
1

2

l∑
n=0

√
∆tξn+1

(
un+1 − un, div(bϕ)

)
L2(Λ)
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Perspectives / Work in progress

Stochastic PDEs with Itô noise
Convergence in the general case:

du−∆u dt+ div
(
vf(u)

)
dt = g(u) dW (t) + β(u) dt, in Ω× (0, T )× Λ;

u(0, .) = u0, in Ω× Λ;

∇u · n = 0, on Ω× (0, T )× ∂Λ.

More numerical results:
with smaller time step;
with non linear convertion term;
...

Stochastic PDEs with Stratonovich noise
Numerical results
Convergence

Thank you for your attention
31 / 31


	The Heat equation with multiplicative Lipschitz noise
	The continuous equation
	Discrete approximation
	Convergence analysis of the TPFA scheme

	Numerical results
	Ongoing work: stochastic PDE with Stratonovich transport noise
	Conclusion

