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Context and objectives

Long time collaboration with IRSN (Institut de Radioprotection et Streté Nucléaire)

» General context: nuclear safety
~» Numerical simulation of incompressible and compressible flows

> Derive a scheme for the compressible Euler (or Navier-Stokes) equations that is

> stable and precise for all Mach number

» computationally efficient
CALIF®S: https://gforge.irsn.fr/gf/project/califs

> Theoretical proofs of stability, weak consistency... if available



Main features of the schemes

v

All Mach scheme ?
~~ Implicit or semi-implicit (rather than completely segregated) schemes
~- staggered (rather than colocated) grids

Internal energy balance formulation (rather than total energy formulation) even in
the presence of shocks

> easier to deal with on staggered grids
> ~e>0

Upwinding with respect to the material velocity

Consistency in the Lax-Wendroff sense “if a conservative numerical scheme for
a hyperbolic system of conservation laws converges, then it converges towards a
weak solution.”

Lax-Wendroff consistency for an entropy weak solution.



The Euler equations: total energy vs. internal energy

» Compressible Euler equations:

Oto + div(eu) = 0, (mass)

Or(ou) + div(eu ® u) + Vp = 0, (mom)
01(0E) + div[(eE + p)u] = (tot.en)

p=(y—1)ce E=%\Ulz+e~

» For regular functions, (mom) -u & (mass) ~ (kin.en):
1 1
Eat(g\uﬁ) + Ecuv(g\u|2u) +Vp-u=0. (kin.en)
Subtracting from (tot.en) yields the internal energy balance:
O(ee) + div(peu) + pdivu = 0, (int.en)

which implies e > 0.

“Incompressible” schemes use the internal energy (or temperature) equation.



Importance of conservative variables

» Toro, 1999 “Formulations based on variables other than the conserved variables (non-
conservative variables) fail at shock waves. They give the wrong jump conditions; consequently
they give the wrong shock strength, the wrong shock speed and thus the wrong shock position.
... Therefore it appears that there is no choice but to work with conservative methods if shock
waves are part of the solution.”

> Shock speed given by Rankine Hugoniot conditions:
If u, weak solution of

otu+ Ox(f(u)) =0+1C (%)
is discontinuous along a line x = ot then

[f(u)] = f(ue) — F(ur) = o (ue — ur) = o [U]

So if Lax-consistency is proven, shock speeds are correct.



The internal energy equation is not conservative

» Dealing with the internal energy:
# positive internal energy

# convenient for incompressible problems

b peis not a conservative variable — conservative variables : p, pu, pE

Test 5 of [ Toro chapter 4] -
= g Density at t = 0.035, n =
) 2000 cells, with and without
. corrective source terms, and
analytical solution.

with  +

exacy -

04 02 ) 02 04

» Find a way to correct the internal energy equation in order to recover the consis-
tency of the total energy...
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A detour by Burgers’ equation



Right and wrong shock speed for Burgers

Burgers equation: for regular positive solutions

No longer true with irregular solutions:

Rankine-Hugoniot gives

2 2 3 3
u; —u u; — u
o=t T ':uz—&-uranda:%g ;
Up — Uy u? — u2

4
(B) : Ot + x(UP) = 0 <= (BS) : ;% + 3 Oxu® = 0.

(ue + ur).

Wl

Weak solutions of (B) # weak solutions of (BS).
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Explicit upwind Scheme for (B) (top) and (BS) (bottom) with different mesh sizes, CFL = 1.



Burgers, numerical diffusion

» Burgers (B): upwinding “ formarly similar” to add a numerical diffusion.

O + Ox(UP) — Ox((hu — 28t U?)Oxu) =0, X €R, t € Ry
CFL condition: hu — 26t u® > 0

» Burgers “square” (BS): assume u > 0, upwinding also “ formarly similar” to add a
numerical diffusion

o (u?) + %ax(u?’) — Ox((2hu? — 46t uP)dyu) = 0,

> divide by 2u ~~ (formally)

’
Oru + Oy (UP) — D(‘)X((hu2 — 26t 1°)dxu) =0, x €R, t € Ry

Non conservative diffusion ~» wrong shock speed for (B)



Benefit from a non conservative numerical diffusion ?
o+ 0 (?) =0+1C (B)  8y(P) + % ox(U*) =0+IC (BS)
Explicit upwind scheme on (BS) formally equivalent to:

|
o+ Bx(uz)faé)x((huz — 28t U*)ou) = 0.

non conservative numerical diffusion.
» Negative result for a non conservative diffusion

@ Non conservative numerical diffusion on (B) yields
+ wrong shock velocity for (B)

« correct shock velocity for (BS)

» Positive result for a non conservative diffusion ?

2@ Non conservative numerical diffusion on (BS) yields
» wrong shock velocity for (BS)

« correct shock velocity for (B) ?

» How do we choose the non conservative numerical diffusion ?



Non conservative numerical diffusion on (BS)

» Start from viscous Burgers:

Ot + 0x(U?) — e0u = 0. (B).
> Multiply by 2u:
4
a(u?) + 3 B (UP) = 2eudu = 0. (BS).

» Discretize (BS). instead of (BS):
4
(V%) + 5<9X(ua) — heoudxxu =0, (BS), with 2¢ = heg.

» Centered finite volume with non conservative diffusion

(n—1) , -1\ 3 (n—1) | (n—1)
()2 = ()2 + 4d Y- +4 _ u" 4l
i i 3h 2 2

o
(n—1) (n—=1) _ (n 1) (n—1)
+ — eohy; {2ui Uy — Uiy ]




Non conservative numerical diffusion on (BS)

-0.5 —d.3 —d.l 0.1
X

Centered Scheme for (BS).n
yellow: initial condition

black: upwind scheme on (BS)
other colors:  centered scheme with non conservative diffusion on (BS)
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From Burgers to Euler

For regular solutions,

Burgers:
4
DU+ 0y (U7) = 0 <= 9(u?) + 3 x(u®) =0.
Euler:
Oro + div(pu) = 0, Oro + div(eu) =0,

Ot(ou) +div(ou @ u) + Vp =0, <= < i(ou)+div(ou® u)+ Vp=0,

Ot(0E) + div[(eE + p)u] = 0. Ot(ee) + div(peu) + pdivu = 0.

> we had an equation, we now have a system...
> |dea: add a non conservative corrective term to the internal energy equation.

> Which term ? Inspiration comes from copying the formal derivation of the internal
energy equation at the discrete level.



Euler equations: total energy = kinetic energy + internal energy

» kinetic energy equation: From mass balance, for “regular” z:

Oi(pz) + div(pzu) =(0;0 + div(ou))z + p &tz + pu - Vz,
'

—————

=0.

1 1
— Toof) + (o) = pa(f) + pu- V()
= pU;OtU; + puil - VU;
= Uj [pB,u,- + pu - VU,‘] + U;i(Ot0 + div(eu))

N —
0

= 0i(pu;) + div(pu;u) = —u; O;p, from momentum balance.
SN 150{(/) lul?) + %div(p |u® u) = u - [8(pu) + div(pu @ u)]= —u - Vp.
» Total energy (Euler):
O(0E) + div[(eE + p)u] =0, E=e+ %|u|2
= 9i(pe) + div(peu) + pdivu + %a,(p lul?) + %div(p lufPu)+u-Vp=0.

» Internal energy
O(pe) + div(peu) + pdiv(u) = 0.



» Discrete Euler equations solving the internal energy balance

Ot0 + divg(ou) = 0, (mass)y
It(oU) + divg(ou ® U) + Vgp =0, (mom),
O¢(ce) + divg(eeu) + pdivgu = 7, (int.en)4
p=(y—1)ce

» Mimick the continuous computation for the kinetic energy

» Discrete kinetic energy

(mom)y and (mass)y ~~ (kin)g equation

1 1 .
Bu( 5 plu %) + diva( 5 plu Puy+u-Vep+R=0 (kin)y

R : non conservative residual term, R > 0.

» Correct the discrete internal energy equation: d:(pe) + divg(eu) + pdivgu = R
(int.en)y + (kin.en)y = (tot.en)4? not exactly... (because of staggered grids)
But

> [, (inten), + [, (kin.en), = (tot.en),

» at the limit 5t — 0, h — 0, the weak form of the total energy equation is recovered (under
strong compactness.
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Time and space discretization



Required discrete properties

» Discrete transport property,
i.e. discrete equivalent of 8;(pz) + div(pzu) = p &tz + pu - Vz, z = ;.

— Compatible discretization of mass and momentum balance equation

>
i.e. discrete equivalent of div(pu) = pdivu + u - Vp.

» Positivity of the residual R > 0 in the discrete kinetic energy balance equation
(to ensure the positivity of the internal energy).

~~ Points to be taken care of when designing the scheme(s).

» Several possible schemes, segregated explicit, implicit, semi-implicit
» AP scheme : implicit or semi-implicit choice.



Time discretization: implicit or semi-implicit choice

Implicit ,
et ét_ o +div(e™ u™) =0,
%(gn+1un+1 — o™ + div(e™ ™ @ u™ ) + wp =0,
%(Qnﬂ en+1 _ )+d1v(gn+1 n+1un+1) +pn+1 divunﬂ — Fr’”“,
P = (o™, "”) =(v—1""e",

Semi-implicit

P
Pressure gradient scaling step: (Vp)""' = ( - )7 (v
=1

Prediction step — Solve for &™":
E (pnanm o pn 1 n) +d1v(pn n+1 ® un)+(ﬁ)n+1 _ 0’

Correction step — Solve for p™', ™1, p™" and u™":

1 . N
Lo — ey 4 (v — (W)™ =0

ot
ntt _ n
L o LA div(p"" ™"y =0,
1
7(/)n+1en+1 o /)nen) + div(pnqenﬂ n+1) + p (di\r‘(un+1)) _
pn+1 — ( n+17pn+1)_

Rn+1

(mass)s ¢

(int.en) 4

(€08)s.4

(mass);_g

(int.en)g 4

(e0s)s 4



Meshes
Colocated
» Advantages

Easier Data structure, easily refined K

Total ener: fin Q
otal energy easy to define s pics 8 Uk

» Pressure correction scheme studied for
the Euler equations (C. Zaza’s thesis).

» Drawback: No native inf-sup condition

Staggered:

Crouzeix-Raviart (on simplices)
Rannacher-Turek (on quadrangles)
MAC: ~~ normal velocities on the edges (faces)

> Inf-sup conditionVp € P, [p=0,3v € V : [ pdivv > Bp|l 2V,
l

~ full velocities on the edges (faces)

» Drawback: Total energy difficult to compute

(2)
Usn
—
H

Usy,

K K
T ull)

°
w &
Pk PK > €K E

L]
Pk Pk, €K

=
=

Uss u®

s
Rannacher-Turek unknowns
MAC unknowns, Arakawa C-grid




Space discretization: Finite volume discretization of the mass equation

. 1 1
+div(p" ") =0, (mass), 4

> /K(mass) ~

» discretization of the fluxes:

K
‘Otl (p’n<+1 o + z Fﬂ 1 _

oce&(K) (e
Fn+1 ‘(T‘ pn+1 n+1 ‘NK.o

numencal flux through o.
> ™" upwind approximation of p™*! at the face o with respect to u™*" - nk .

> - Positive density: o™ > 0if (" > 0 and p > 0 at inflow boundary)



Discretization of the momentum equation

Implicit scheme
1

ﬁ( n+1un+1 _ gnun) +div(gn+1 un+1 ® un+1) + vpn+1 _ 0’ (mom)n
1 ;
> /(mom)" - P 4 [ e @ u™ g+ /(vp)n 1_o.
Do ot Jp, 9D Do

¢t (p,u)

» Space discretization

D,
Pel s wt — o, )+ XS FE W 10,1V, = 0,
e€&(Dy)
g o
> Grad-div duality : > |K| px (divt)x + D |Do| ts - (VP)y =0 o
KeT o€l N

~ Do |(VP")o = |o| (b} — Pk) Nk.or 0 = K|L.

n+1 n+1
> rp, ? Foe?




Discretization of the convection operator

> Choose pjp_, pp" and FJ'in C*"(p, u) so as to obtain a discrete kinetic energy balance.

» Copy the continuous kinetic energy balance: (mom) -u & (mass) ~~ (kin.en)

» Same at the discrete level requires compatible mass and momentum equations
[od

D, = Dk,o UDL »

b Momentum on dual cells, mass on primal cells...

t Idea: reconstruct a mass balance on the the dual cells
Choose

» oo, = 757 (IDk.o| Pk + |DLo | pL)

» Fg . :linear combination of the primal fluxes (Fi,o)oce(k)-
so that a discrete mass balance holds on the dual cells D, :

Ds| , »
Yo € Ein, ‘M B =)+ > Frl=o0
ec&(Ds)

D, 5 5
Then take "' (p, u) = % (hul™ = ph Ul + S il A
c€€&(Dy)

with 0" = 3 (U2 + 7))



Discrete kinetic energy balance: computation of R,

» Continuous setting: Multiply continuous momentum by u:

(8,(pu)+div(pu® u)+Vp=20 ) -u
.. with some formal algebra, using ;p + div(p u) = 0,
~~ continuous kinetic energy balance:
P 1 2 . 1 2 f
()[(ép\u\ )+d1v((§p|u| Ju)+Vp-u=0  (kinen)

» Discrete setting: Similarly, multiply discrete momentum by u”*1

D,
(u (pg+1 un+1 gug) + Z Fg+61 uf” + \DUI(Vp"H)a _ 0) . u2+1

ot D, | sEE(Da)
.. with some algebra, using % (o3 )+ > Rl =
o c€€(Do)
~- discrete kinetic energy balance:
1 (Dol 1 nis AaT I R 2] 1 nt et ot
= u, u — Folou,™" -u_
55 1 P, U] +2Dzm AT
e=lo L 1

+ 1D, [ (Vp™ ), - u™ + RTT = owith RZTT >0,  (kinen),



From R, to Rk

n+1
et

ot _ Dol

" & Poo |u, u” |> — 0 for regular functions, but NOT for discontinuous functions.

Redistribution of R, on the primal cells.
By definition of pp, , for o = K|L,

Dk ‘ 1 2 |DL a‘ n,.n+1 ni2
RnH:‘ ol n un+ 7un 5 u+ —u
I 25t Pk |Us a‘ +725t pL U
1 Dk .
— Ff;éﬁ _ 5 Z ‘ gt ‘pz ‘ugﬂ _ ug‘z
oc€e&(K)

= > R -SRI =0

KeT o€e€



Discrete internal energy equation and E.O.S.

1 ;
E(pn+1en+1 _ pnen) + din(pn+1 en-¢—1 un+1) + pn+1 (divd(u"+1)) _ Hn 1

» Discretization by upwind finite volume of the discrete internal energy

K
Wlopront — sy + S0 ARl + Kl o @ e = AL
o EE(K)
« €"! upwind choice ~ positivity of e (since R,"" > 0 and px = 0if ex < 0.)
< Kl (divu)k = > o] Uy - Nk o
oeE(K)

» discrete E.O.S.

1 (v =N et ifex >0
P = (e0s)g

0 otherwise.
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Entropy



Discrete entropy inequality

» Derivation of a discrete entropy inequality
9t(ps) + diva(pus) < 0

For Euler perfect gas s = ¢(p) + pii(€), ¢(p) = pln(p), v(e) = — 15Ine.

x¢'(p)=1+1Ino, ¢" >0
1
(v—1)e’

3i($(0)) + diva(@(e)u) + (e ¢'(0) — ¢(e)) divgu+ 1, =0
—_—

-

9t0 + divg(pu) = 0
' >0

di(ee) + divg(oue) + pdivgu =0 x'(e) = — >

=e
Ot(ov(e)) + divg(ouy(e)) + u“)’(e)p divgu + re = z"(e)Ff
—— ——
<0

>
=—0

3(es) + divaleus) + [26(0) — #le) + v/ (e)p] divau < —r, — e
=0
> Ifr, > 0andr. > 0 ~ discrete entropy estimates: : implicit upwind scheme

» Ifr, + re > r — 0 ~ limit entropy estimates: explicit upwind scheme
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Lax-Wendroff analysis



Weak consistency theorems

» [Godunov, Math. Sbornik 1959]
Godunov’s scheme for barotropic Euler equations on a uniform 1D mesh
If with the diminishing mesh size the difference solution converges

then it converges to the generalized solution of the differential equation

> [Lax and Wendroff, Comm. pure appl. math. 1960] Consider a numerical scheme for a
system of nonlinear (hyperbolic) conservation laws on a uniform 1D mesh

if the scheme is conservative, with consistent fluxes, and converges boundedly almost
everywhere towards a limit as 6t and htend to 0

then this limit is necessarily a weak solution of the system

e Lax-Wendroff theorem: if up 5; — U a.e. as h, 5t — 0 and ||up, st oo
solution to (%), i.e., V¢ € CH(R x Ry, R)

// u(x, t)ore(x, t)dxdt+// f(U(x, t))oxe(x, t) dx dt+/uo
e Sketch of proof ¢ € CZ°, multiply (*) by ¢, sum over i, sum over n
Z Z i(g / / f(Un,5¢)Oxpn,st dx dt

—>/R+/R F()Byp(x) dx dt

< Cthen uis a weak

»(x,0) dx = 0.

‘P+1*
+3 9 12 Zg:+‘( U ) h



Lax Wendroff analysis: total energy recovered

> Kinetic energy
D, 1
iy = 22l g = ) 4y 30 R (TR = R
f:Do'\Dﬂ/
> Internal energy
\KI

|nt _ 10 pn+1 n+1 en n F 6 4K pn+1 dlvun+1 K= H” 1’
K = K K,oc%o
ge&(K)

> ¢ : test function
Multiply (kin),, by interpolate ¢! and (int), by interpolate ik

DD kinges + > > (inkek => > dRkek — > > 5tRopy

n ocg& n KeT n KeT n ocg&

! !

,/UT/n[pE8W+(pE+p)uV<p] */QPO(X)Eo(X)Lp(X,O) - 0

In particular, the pressure terms combine themselves to converge to —pu - V.

Same kind of computation on the discrete entropy inequality ~~ weak entropy solution.
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Higher order



A limited centered scheme

Higher order on the convective fluxes: modification of the semi-implicit scheme

Correction step — Solve for p™', ™', p™ and u™":

n

1 . —
o (U — @™ + (W™ — (Wp)™ = 0,

st

. 1517 4 v u™) = o, (mass) 4
Ol[( S 1M L div(p"e ™) + p™ (div(u™ ) = AT, (inten), 4
pn+1 — ‘Q(en+17pn+1). (eos)s.d

Upwind cr]oice:
divi (p" u"") = X, ey FR.o With FR o = 0] (pk (U - Nik,o)" — p[(Us - Nk,0) 7).

& o _
o = (1 “ K > UUI,0> PRE TR D lolug . (oD

a€E(K) o €E(K)

~s min pe < ! < max pi.



A limited centered scheme

Start from a centered scheme: p" second order approximation of p on o

divg(p" ") = > Fg , with Fg = |o] (PR (Us - ko) — P
N —

K
UK, o

@ ~ physical bounds may be not respected

Find p7 , limitation of 5 so as to keep the bounds on p;
Foro = KIL, p}, = pk + p}) — pi and p, = p{ + pJ — p] ~

divg(p"u" ) =D FR , with Fe = |ol(pk + py — pi)(Uk,0) "
K

ot ot
i = (1 > |a|uz,g> e 2 loluko (o]

ccE(K) oc&(K)

o

oeE(K)

o
+ lolug .o + —
IKI| 2 AT

U, ‘nK,a)i)'

— (oL +ro — P)Uk,0) ™

- Pk)

Y loluc (07

oc&(K)

PL)

).



Conditions for physical bounds

For a given o, K™, (K™): upwind (downwind) cell to o, Ukt o 2 0, (Ug— , <0)
suppose o, B, € [0,1] and M # K™, neighbour of K ;

P = Pr+ = (Pt — Pun); limit-M

Py — Pg— = Bo(Pk— — Pk—)- limit-L

o o
o= (1 TR S lolug (1 +aﬁ)> Pk + Gl > Jolug gof Py,

cc&(K) o €E(K) "
>0
>0 under CFL
o _ o _
TR D loluc (1 =85) ol + Il D> lolug B85l
o €E(K) ——~—— o€ E(K) ~—~—

>0 >0
K]

VK eT, 5t <

S
2 > lollugs|

ccE(K)



Algorithm for the limitation

For o = K|L € &, p.: second order approximation by linear combination of px, p; and neighbours
of K and L.
» Limit g, to enforce the condition (limit-M).
Jk : set of neighbours M of K such that px — py # 0
sign(pk — pm) = sign (ps — pk)- -If Jx = 0 then p, = px (upwind choice). -
Otherwise, choose M, € Jk such that |px — pum, | = max{|px — pm|, M € Tk}, compute
a = min (1, u), and set
PK — PMy

Po = Pk + ak,o(Pk — Pu,)-
The value p, satisfies the condition (limit-M).
» Limit g, to obtain a value p, satisfying (limit-L) :

> If 5, — pk and p. — px do not have the same sign, set p, = px (upwind choice).
> Otherwise,

-if |pe — pr| 2> |pL — pk|, we set po = py,

- else we set p, = po-
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Numerical results



Numerical tests - | Euler, high Mach

Mach 3 facing step (Woodward Collela)
MAC space discretization, 1200 x 400 uniform grid, 6t = h/4 = 0.001, (u1 + ¢ = 4 at the inlet
(=] = = =

boundary). = 9ace



Numerical tests - Il Flow past cylinder, low Mach

Flow past a cylinder, benchmark Schafer and S. Turek, Mach ~ 0.003, Re ~ 100. Pressure
correction scheme, Rannacher-Turek FE.

coarse mesh fine mesh
Mesh Space unks Cd, max Cl,max St
m2 64840 3.4937 0.9141 0.2850
m3 215545 3.2887 0.9891 0.2955
m4 381119 3.2614 1.0062 0.2972
m5 531301 3.2365 1.0148 0.2976
Reference range 3.22-3.24 0.99-1.01 0.295-0.305

Table: Drag and lift coefficients and Strouhal number.



Numerical tests - || Flow past cylinder, high Mach

Flow past a cylinder, Mach ~ 3, Re ~ 100.

Pext = 7/1opv c=0.1.

mes = 1073,

impermeability and and perfect slip condition at the upper and lower boundaries
u=(1,0)". atinlet.

5t = 10~*. Rannacher-Turek FE.

t = 5, mesh of 10°
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