Optimal transport and its (semi-)discretization

Quentin Mérigot Université Paris-Saclay

Finite volume and optimal transport, LMO, 19-21 Novembre 2024

1 Introduction: the JKO scheme

- 2 Continuous optimal transport
- 3 Semidiscrete optimal transport
- 4 An illustration: moving meshes

▶ We follow the evolution of a population of particles living in \mathbb{R}^d , described by its initial distribution $\rho_0 \in \mathcal{P}(\Omega)$ and by its **displacement**

 $X:[0,T] \to \mathrm{L}^2(\rho_0,\mathbb{R}^d).$

▶ We follow the evolution of a population of particles living in \mathbb{R}^d , described by its initial distribution $\rho_0 \in \mathcal{P}(\Omega)$ and by its **displacement**

 $X:[0,T] \to \mathrm{L}^2(\rho_0,\mathbb{R}^d).$

• $\rho_t = \text{distribution of particles} = X_{t\#}\rho_0 \in \mathcal{P}_2(\mathbb{R}^d).$

▶ We follow the evolution of a population of particles living in \mathbb{R}^d , described by its initial distribution $\rho_0 \in \mathcal{P}(\Omega)$ and by its **displacement**

 $X:[0,T] \to \mathrm{L}^2(\rho_0,\mathbb{R}^d).$

- $\rho_t = \text{distribution of particles} = X_{t\#}\rho_0 \in \mathcal{P}_2(\mathbb{R}^d).$
- ▶ The displacement follows $\dot{X} \in -\partial E(X)$ or $\ddot{X} \in -\partial E(X)$.

We follow the evolution of a population of particles living in ℝ^d, described by its initial distribution ρ₀ ∈ P(Ω) and by its displacement

 $X:[0,T]\to \mathrm{L}^2(\rho_0,\mathbb{R}^d).$

- $\rho_t = \text{distribution of particles} = X_{t\#}\rho_0 \in \mathcal{P}_2(\mathbb{R}^d).$
- The displacement follows $\dot{X} \in -\partial E(X)$ or $\ddot{X} \in -\partial E(X)$.
- Main assumption: The energy *E* only depends on the distribution of particles.

i.e. $E(X) = \mathcal{E}(X \# \rho_0)$ with $\mathcal{E} \colon \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}.$

We follow the evolution of a population of particles living in ℝ^d, described by its initial distribution ρ₀ ∈ P(Ω) and by its displacement

 $X:[0,T]\to \mathrm{L}^2(\rho_0,\mathbb{R}^d).$

- $\rho_t = \text{distribution of particles} = X_{t\#}\rho_0 \in \mathcal{P}_2(\mathbb{R}^d).$
- The displacement follows $\dot{X} \in -\partial E(X)$ or $\ddot{X} \in -\partial E(X)$.
- Main assumption: The energy *E* only depends on the distribution of particles.

i.e.
$$E(X) = \mathcal{E}(X \# \rho_0)$$
 with $\mathcal{E} \colon \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \cup \{+\infty\}.$

Example of energies:

$$\begin{split} \mathcal{E}_{\mathsf{ent}}(\rho) &= \begin{cases} \int \rho \log \rho & \text{if } \rho \in \mathcal{P}_2^{\mathsf{ac}}(\Omega), \\ +\infty & \text{otherwise.} \end{cases} \qquad \qquad \mathcal{E}_{\mathsf{inc}}(\rho) &= \begin{cases} 0 & \text{if } \rho = \mathsf{Leb}_\Omega, \\ +\infty & \text{otherwise.} \end{cases} \\ \mathcal{E}_{\mathsf{cong}}(\rho) &= \begin{cases} 0 & \text{if } \rho \leq \mathsf{Leb}_\Omega, \\ +\infty & \text{otherwise.} \end{cases} \qquad \qquad \qquad \mathcal{E}_{\mathsf{pot}}(\rho) &= \int V \, d\rho. \end{split}$$

	$\dot{X}\in -\partial E(X)$	$\ddot{X}\in -\partial E(X)$
$\mathcal{E}_{ ext{inc}}$		incompressible Euler equation
$\mathcal{E}_{\rm cong} + \mathcal{E}_{\rm pot}$	crowd motion	pressureless Euler equation
$\mathcal{E}_{\rm ent} + \mathcal{E}_{\rm pot}$	linear Fokker-Planck equation	isentropic Euler equation

	$\dot{X}\in -\partial E(X)$	$\ddot{X} \in -\partial E(X)$
$\mathcal{E}_{ ext{inc}}$		incompressible Euler equation
$\mathcal{E}_{\rm cong} + \mathcal{E}_{\rm pot}$	crowd motion	pressureless Euler equation
$\mathcal{E}_{\rm ent} + \mathcal{E}_{\rm pot}$	linear Fokker-Planck equation	isentropic Euler equation

► The Euler side was started by [Arnold '66] and [Brenier 87], while the the gradient flow side was initiated by [Otto '99]–[Jordan-Kinderlehrer-Otto '98].

	$\dot{X}\in -\partial E(X)$	$\ddot{X} \in -\partial E(X)$
$\mathcal{E}_{ ext{inc}}$		incompressible Euler equation
$\mathcal{E}_{\rm cong} + \mathcal{E}_{\rm pot}$	crowd motion	pressureless Euler equation
$\mathcal{E}_{\rm ent} + \mathcal{E}_{\rm pot}$	linear Fokker-Planck equation	isentropic Euler equation

- ► The Euler side was started by [Arnold '66] and [Brenier 87], while the the gradient flow side was initiated by [Otto '99]–[Jordan-Kinderlehrer-Otto '98].
- ▶ Many mathematicians have studied connections between OT and evolution PDEs.

	$\dot{X}\in -\partial E(X)$	$\ddot{X}\in -\partial E(X)$
$\mathcal{E}_{ ext{inc}}$		incompressible Euler equation
$\mathcal{E}_{\mathrm{cong}} + \mathcal{E}_{\mathrm{pot}}$	crowd motion	pressureless Euler equation
$\mathcal{E}_{\rm ent} + \mathcal{E}_{\rm pot}$	linear Fokker-Planck equation	isentropic Euler equation

- ► The Euler side was started by [Arnold '66] and [Brenier 87], while the the gradient flow side was initiated by [Otto '99]–[Jordan-Kinderlehrer-Otto '98].
- ▶ Many mathematicians have studied connections between OT and evolution PDEs.
- ► The energy E is typically non-convex, with values in ℝ ∪ {+∞}: in this introduction we will remain at a very formal level.

▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0.

- We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\frac{d}{dt}E(X_t) = \int (f'(\rho_t) + V)\dot{\rho}_t \mathrm{d}x$$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\frac{d}{dt}E(X_t) = \int (f'(\rho_t) + V)\dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx$$

- We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\begin{aligned} \frac{d}{dt}E(X_t) &= \int (f'(\rho_t) + V)\dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle d\rho_t = \end{aligned}$$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- ▶ What is the gradient of *E* ? Consider a curve X_t satisfying $\dot{X}_t = v_t(X_t)$ and its image density $\rho_t := X_{t\#}\rho_0$, which satisfies $\dot{\rho}_t + \operatorname{div}(\rho_t v_t) = 0$. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- ▶ What is the gradient of *E* ? Consider a curve X_t satisfying $\dot{X}_t = v_t(X_t)$ and its image density $\rho_t := X_{t\#}\rho_0$, which satisfies $\dot{\rho}_t + \operatorname{div}(\rho_t v_t) = 0$. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

Identifying terms, we find $\nabla E(X) = \nabla (f'(\rho) + V) \circ X$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

Identifying terms, we find $\nabla E(X) = \nabla (f'(\rho) + V) \circ X$

• The equation $\dot{X}_t = -\nabla E(X_t)$ thus leads to

$$\begin{cases} \dot{X}_t = v_t(X_t) \\ \rho_t = X_{t \#} \rho_0 \\ v_t = -(\nabla f'(\rho_t) + \nabla V) \end{cases}$$

(Lagrangian)

- We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

Identifying terms, we find $\nabla E(X) = \nabla (f'(\rho) + V) \circ X$

► The equation $X_t = -\nabla E(X_t)$ thus leads to $\begin{cases} \dot{X}_t = v_t(X_t) \\ \rho_t = X_{t\#}\rho_0 \\ v_t = -(\nabla f'(\rho_t) + \nabla V) \end{cases}$ (Lagrangian) $\dot{\rho}_t = \operatorname{div}[\rho_t(\nabla f'(\rho_t) + \nabla V))$ (Eulerian)

- We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

Identifying terms, we find $\nabla E(X) = \nabla (f'(\rho) + V) \circ X$

► The equation $X_t = -\nabla E(X_t)$ thus leads to $\begin{cases} \dot{X}_t = v_t(X_t) \\ \rho_t = X_{t\#}\rho_0 \\ v_t = -(\nabla f'(\rho_t) + \nabla V) \end{cases}$ (Lagrangian) $\dot{\rho}_t = \operatorname{div}[\rho_t(\nabla f'(\rho_t) + \nabla V))$ (Eulerian) Example: $f(r) = r \log r \longrightarrow \dot{\rho}_t = \Delta \rho_t + \operatorname{div}(\rho_t \nabla V)$

- ▶ We consider $\mathcal{E}(\rho) = \int f(\rho) + \rho V$ and $E(X) = \mathcal{E}(X \# \rho_0)$ with $X \in L^2(\rho_0, \mathbb{R}^d)$
- What is the gradient of E ? Consider a curve X_t satisfying X_t = v_t(X_t) and its image density ρ_t := X_{t#}ρ₀, which satisfies ρ_t + div(ρ_tv_t) = 0. Then,

$$\begin{split} \frac{d}{dt} E(X_t) &= \int (f'(\rho_t) + V) \dot{\rho}_t dx = -\int (f'(\rho_t) + V) \operatorname{div}(\rho_t v_t) dx \\ &= \int \langle \nabla (f'(\rho) + V) | v_t \rangle \, \mathrm{d}\rho_t = \int \left\langle \nabla (f'(\rho) + V) \circ X_t | \dot{X}_t \right\rangle \mathrm{d}\rho_0 \end{split}$$

Identifying terms, we find $\nabla E(X) = \nabla (f'(\rho) + V) \circ X$

► The equation
$$X_t = -\nabla E(X_t)$$
 thus leads to

$$\begin{cases} \dot{X}_t = v_t(X_t) \\ \rho_t = X_{t\#}\rho_0 \\ v_t = -(\nabla f'(\rho_t) + \nabla V) \end{cases}$$
(Lagrangian)
 $\dot{\rho}_t = \operatorname{div}[\rho_t(\nabla f'(\rho_t) + \nabla V))$
(Eulerian)

Example: $f(r) = r \log r \longrightarrow \dot{\rho}_t = \Delta \rho_t + \operatorname{div}(\rho_t \nabla V)$

Regular lagrangian trajectory associated to heat flow (\neq Brownian motion!)

• Minimizing movement scheme: for $\tau > 0$, define a time-discretization by

$$X_{\tau}^{k+1} \in \arg\min_{X} \frac{1}{2\tau} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{\mathbf{0}})}^{2} + E(X)$$

• Minimizing movement scheme: for $\tau > 0$, define a time-discretization by

$$X_{\tau}^{k+1} \in \arg\min_{X} \frac{1}{2\tau} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} + E(X)$$

▶ The minimum can be rewritten as :

$$\min_{\rho} \frac{1}{2\tau} \left(\min_{X \text{ s.t. } X_{\#\rho_0} = \rho} \left\| X_{\tau}^k - X \right\|_{\mathrm{L}^2(\rho_0)}^2 \right) + \mathcal{E}(\rho)$$

• Minimizing movement scheme: for $\tau > 0$, define a time-discretization by

$$X_{\tau}^{k+1} \in \arg\min_{X} \frac{1}{2\tau} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{\mathbf{0}})}^{2} + E(X)$$

▶ The minimum can be rewritten as :

$$\min_{\rho} \frac{1}{2\tau} \left(\min_{X \text{ s.t. } X_{\#\rho_{0}} = \rho} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} \right) + \mathcal{E}(\rho)$$

Setting $\rho_{\tau}^{k} = X_{\tau \#}^{k} \rho_{0}$, the inner minimum is a quadratic optimal transport cost (a consequence of Brenier's polar factorization theorem):

$$\min_{X \text{ s.t. } X_{\#\rho_{0}} = \rho} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} = \min_{X \text{ s.t. } X_{\#\rho_{0}} = \rho} \left\| \mathrm{Id} - X \circ (X_{\tau}^{k})^{-1} \right\|_{\mathrm{L}^{2}(\rho_{\tau}^{k})}^{2}$$

• Minimizing movement scheme: for $\tau > 0$, define a time-discretization by

$$X_{\tau}^{k+1} \in \arg\min_{X} \frac{1}{2\tau} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{\mathbf{0}})}^{2} + E(X)$$

▶ The minimum can be rewritten as :

$$\min_{\rho} \frac{1}{2\tau} \left(\min_{X \text{ s.t. } X_{\#\rho_{0}} = \rho} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} \right) + \mathcal{E}(\rho)$$

Setting $\rho_{\tau}^{k} = X_{\tau \#}^{k} \rho_{0}$, the inner minimum is a quadratic optimal transport cost (a consequence of Brenier's polar factorization theorem):

$$\min_{X \text{ s.t. } X_{\#\rho_0} = \rho} \left\| X_{\tau}^k - X \right\|_{L^2(\rho_0)}^2 = \min_{X \text{ s.t. } X_{\#\rho_0} = \rho} \left\| \text{Id} - X \circ (X_{\tau}^k)^{-1} \right\|_{L^2(\rho_{\tau}^k)}^2$$
$$= \left[\min_{T \text{ s.t. } T_{\#\rho_{\tau}^k} = \rho} \left\| \text{Id} - T \right\|_{L^2(\rho^k)}^2 =: W_2^2(\rho_{\tau}^k, \rho) \right]$$

• Minimizing movement scheme: for $\tau > 0$, define a time-discretization by

$$X_{\tau}^{k+1} \in \arg\min_{X} \frac{1}{2\tau} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{\mathbf{0}})}^{2} + E(X)$$

► The minimum can be rewritten as :

$$\min_{\rho} \frac{1}{2\tau} \left(\min_{X \text{ s.t. } X_{\#\rho_{0}} = \rho} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} \right) + \mathcal{E}(\rho)$$

Setting $\rho_{\tau}^{k} = X_{\tau \#}^{k} \rho_{0}$, the inner minimum is a quadratic optimal transport cost (a consequence of Brenier's polar factorization theorem):

$$\min_{X \text{ s.t. } X_{\#\rho_{0}}=\rho} \left\| X_{\tau}^{k} - X \right\|_{\mathrm{L}^{2}(\rho_{0})}^{2} = \min_{X \text{ s.t. } X_{\#\rho_{0}}=\rho} \left\| \mathrm{Id} - X \circ (X_{\tau}^{k})^{-1} \right\|_{\mathrm{L}^{2}(\rho_{\tau}^{k})}^{2}$$
$$= \min_{T \text{ s.t. } T_{\#}\rho_{\tau}^{k}=\rho} \left\| \mathrm{Id} - T \right\|_{\mathrm{L}^{2}(\rho^{k})}^{2} =: \mathrm{W}_{2}^{2}(\rho_{\tau}^{k}, \rho)$$

• We recover the JKO scheme: $\rho_{\tau}^{k+1} \in \arg\min_{\rho} \frac{1}{2\tau} W_2^2(\rho_{\tau}^k, \rho) + \mathcal{E}(X).$

1 Introduction: the JKO scheme

2 Continuous optimal transport

3 Semidiscrete optimal transport

4 An illustration: moving meshes

Let P_p(ℝ^d) be the set of probability measures with finite pth moment.
 Wasserstein distance between μ, ν ∈ P_p(ℝ^d):

$$W_{p}(\mu,\nu) = \left(\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^{p} d\gamma(x,y)\right)^{1/p},$$

where $\Gamma(\mu, \nu)$ is the set of *couplings* between μ, ν .

Let P_p(ℝ^d) be the set of probability measures with finite pth moment.
 Wasserstein distance between μ, ν ∈ P_p(ℝ^d):

$$W_{p}(\mu,\nu) = \left(\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^{p} d\gamma(x,y)\right)^{1/p},$$

where $\Gamma(\mu, \nu)$ is the set of *couplings* between μ, ν .

► Kantorovich-Rubinstein formula: $W_1(\mu, \nu) = \sup_{\text{Lip}(\phi) \leq 1} \int \phi d\mu - \int \phi d\nu.$

Let P_p(ℝ^d) be the set of probability measures with finite pth moment.
 Wasserstein distance between μ, ν ∈ P_p(ℝ^d):

$$W_{p}(\mu,\nu) = \left(\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^{p} d\gamma(x,y)\right)^{1/p},$$

where $\Gamma(\mu, \nu)$ is the set of *couplings* between μ, ν .

• Kantorovich-Rubinstein formula: $W_1(\mu,\nu) = \sup_{\text{Lip}(\phi) \leq 1} \int \phi d\mu - \int \phi d\nu.$

In particular, on $\mathcal{P}(X)$, with X compact, W_p metrizes the **weak*** convergence

Let P_p(ℝ^d) be the set of probability measures with finite pth moment.
 Wasserstein distance between μ, ν ∈ P_p(ℝ^d):

$$W_{p}(\mu,\nu) = \left(\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^{p} d\gamma(x,y)\right)^{1/p},$$

where $\Gamma(\mu, \nu)$ is the set of *couplings* between μ, ν .

► Kantorovich-Rubinstein formula: $W_1(\mu, \nu) = \sup_{\text{Lip}(\phi) \leq 1} \int \phi d\mu - \int \phi d\nu.$

In particular, on $\mathcal{P}(X)$, with X compact, W_p metrizes the weak convergence

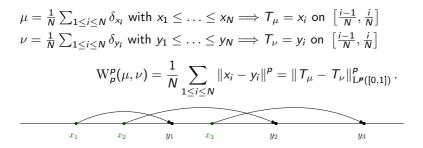
 Optimal transport and Wasserstein distances W_p have found applications in geometry, functional inequalities, probabilities, PDEs, statistical learning.

Given μ ∈ P(ℝ), there exists a unique nondecreasing T_μ ∈ L¹([0, 1]) satisfying T_{μ#}λ = μ, with λ = Lebesgue measure on [0, 1].

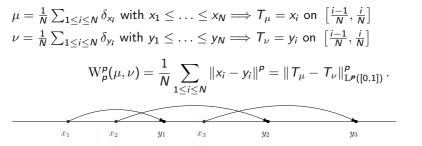
- Given μ ∈ P(ℝ), there exists a unique nondecreasing T_μ ∈ L¹([0, 1]) satisfying T_{μ#}λ = μ, with λ = Lebesgue measure on [0, 1].
- \blacktriangleright T_{μ} is the inverse cumulative distribution function, also called quantile function.

$$\mu = \frac{1}{N} \sum_{1 \le i \le N} \delta_{x_i}$$
 with $x_1 \le \ldots \le x_N \Longrightarrow T_{\mu} = x_i$ on $\left[\frac{i-1}{N}, \frac{i}{N}\right]$

- Given μ ∈ P(ℝ), there exists a unique nondecreasing T_μ ∈ L¹([0, 1]) satisfying T_{μ#}λ = μ, with λ = Lebesgue measure on [0, 1].
- T_{μ} is the inverse cumulative distribution function, also called quantile function.



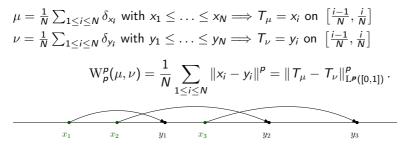
- Given μ ∈ P(ℝ), there exists a unique nondecreasing T_μ ∈ L¹([0, 1]) satisfying T_{μ#}λ = μ, with λ = Lebesgue measure on [0, 1].
- T_{μ} is the inverse cumulative distribution function, also called quantile function.



► The above formula remains true for any probability measures $\mu, \nu \in \mathcal{P}(\mathbb{R})$, i.e. **Theorem:** $\mu \mapsto T_{\mu}$ is an isometry: $W_{p}^{p}(\mu, \nu) = \|T_{\mu} - T_{\nu}\|_{L^{2}(\lambda)}$.

1D Wasserstein space and quantiles

- Given μ ∈ P(ℝ), there exists a unique nondecreasing T_μ ∈ L¹([0, 1]) satisfying T_{μ#}λ = μ, with λ = Lebesgue measure on [0, 1].
- T_{μ} is the inverse cumulative distribution function, also called quantile function.



The above formula remains true for any probability measures μ, ν ∈ P(ℝ), i.e.
Theorem: μ ↦ T_μ is an isometry: W^p_ρ(μ, ν) = ||T_μ − T_ν||_{L²(λ)}.

▶ When μ is a density and $\nu = \sum_{i=1}^{N} \alpha_i \delta_{y_i}$, the optimal transport plan induces a partition (a mesh?) of spt(μ) into intervals $(V_i)_{1 \le i \le N}$ with $\mu(V_i) = \alpha_i$.

Proposition: Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, and let $\gamma \in \Gamma_{opt}(\mu_0, \mu_1)$. Then, the *curve*

$$\mu_t = \prod_{t \#} \gamma$$
, with $\prod_t (x, y) = (1 - t)x + ty$

is a minimizing geodesic between μ_0 and μ_1 .

Proposition: Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, and let $\gamma \in \Gamma_{opt}(\mu_0, \mu_1)$. Then, the *curve*

$$\mu_t = \Pi_{t\#}\gamma$$
, with $\Pi_t(x, y) = (1 - t)x + ty$

is a minimizing geodesic between μ_0 and μ_1 .

• If $\mu_0 = \frac{1}{N} \sum_i \delta_{x_i}$, $\mu_1 = \frac{1}{N} \sum_i \delta_{y_i}$ and $\sigma \in \mathfrak{S}_N$ is an optimal bijection, then

$$\mu_t = \frac{1}{N} \sum_i \delta_{(1-t)x_i + ty_{\sigma(i)}}$$

Proposition: Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, and let $\gamma \in \Gamma_{opt}(\mu_0, \mu_1)$. Then, the *curve*

$$\mu_t = \prod_{t \#} \gamma$$
, with $\prod_t (x, y) = (1 - t)x + ty$

is a minimizing geodesic between μ_0 and μ_1 .

• If $\mu_0 = \frac{1}{N} \sum_i \delta_{x_i}$, $\mu_1 = \frac{1}{N} \sum_i \delta_{y_i}$ and $\sigma \in \mathfrak{S}_N$ is an optimal bijection, then

$$\mu_t = \frac{1}{N} \sum_i \delta_{(1-t)x_i + ty_{\sigma(i)}}$$

Proposition: Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, and let $\gamma \in \Gamma_{opt}(\mu_0, \mu_1)$. Then, the *curve*

$$\mu_t = \Pi_{t\#}\gamma$$
, with $\Pi_t(x, y) = (1 - t)x + ty$

is a minimizing geodesic between μ_0 and μ_1 .

• If $\mu_0 = \frac{1}{N} \sum_i \delta_{x_i}$, $\mu_1 = \frac{1}{N} \sum_i \delta_{y_i}$ and $\sigma \in \mathfrak{S}_N$ is an optimal bijection, then

$$\mu_t = \frac{1}{N} \sum_i \delta_{(1-t)x_i + ty_{\sigma(i)}}$$

All minimizing geodesics are of this form.

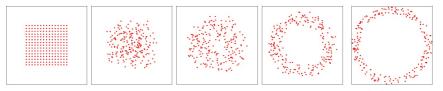
Proposition: Let $\mu_0, \mu_1 \in \mathcal{P}_2(\mathbb{R}^d)$, and let $\gamma \in \Gamma_{opt}(\mu_0, \mu_1)$. Then, the *curve*

$$\mu_t = \Pi_{t\#}\gamma$$
, with $\Pi_t(x, y) = (1 - t)x + ty$

is a minimizing geodesic between μ_0 and μ_1 .

• If $\mu_0 = \frac{1}{N} \sum_i \delta_{x_i}$, $\mu_1 = \frac{1}{N} \sum_i \delta_{y_i}$ and $\sigma \in \mathfrak{S}_N$ is an optimal bijection, then

$$\mu_t = \frac{1}{N} \sum_i \delta_{(1-t)x_i + ty_{\sigma(i)}}$$

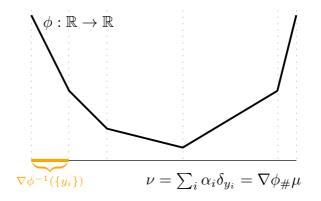


All minimizing geodesics are of this form.

► There may exist **uncountably many geodesics**, e.g. if $spt(\mu_0) \subseteq \mathbb{R} \times \{0\}$ and $spt(\mu_0) \subseteq \{0\} \times \mathbb{R}$ on \mathbb{R}^2 , any $\gamma \in \Gamma(\mu_0, \mu_1)$ is optimal!

Theorem (Brenier) Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ with $\mu \ll \text{Leb}$. Then

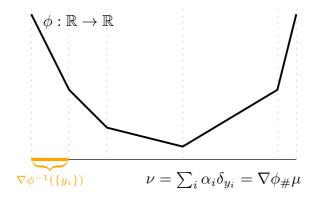
(i) there exists a unique map $T = \nabla \phi$, with ϕ convex, transporting μ to ν ,



Theorem (Brenier) Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ with $\mu \ll \text{Leb.}$ Then

(i) there exists a unique map $T = \nabla \phi$, with ϕ convex, transporting μ to ν ,

(ii) the unique OT plan between μ and ν is $\gamma_T = (id, T)_{\#}\mu$

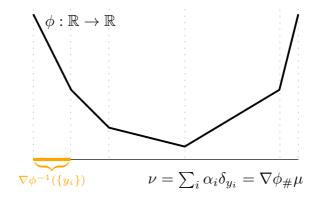


Theorem (Brenier) Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ with $\mu \ll \text{Leb.}$ Then

(i) there exists a unique map $T = \nabla \phi$, with ϕ convex, transporting μ to ν ,

(ii) the unique OT plan between μ and ν is $\gamma_T = (id, T)_{\#}\mu$

(iii) the unique geodesic between μ and ν is $\mu_t = ((1 - t) \operatorname{id} + tT)_{\#} \mu$ (McCann)

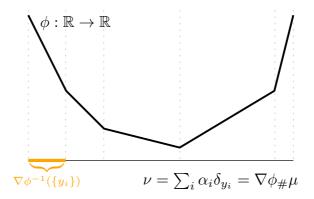


Theorem (Brenier) Let $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$ with $\mu \ll \text{Leb}$. Then

(i) there exists a unique map $T = \nabla \phi$, with ϕ convex, transporting μ to ν ,

(ii) the unique OT plan between μ and ν is $\gamma_T = (id, T)_{\#}\mu$

(iii) the unique geodesic between μ and ν is $\mu_t = ((1 - t) \operatorname{id} + tT)_{\#} \mu$ (McCann)



Proof relies on the dual problem to optimal transport, due to Kantorovich.

▶ Quadratic optimal transport is equivalent to the maximal correlation problem:

$$\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^2 \,\mathrm{d}\gamma(x,y) = M_2(\mu) + M_2(\nu) - 2 \max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x|y \rangle \,\mathrm{d}\gamma(x,y).$$

▶ Quadratic optimal transport is equivalent to the maximal correlation problem:

$$\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^2 \,\mathrm{d}\gamma(x,y) = M_2(\mu) + M_2(\nu) - 2 \max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x|y \rangle \,\mathrm{d}\gamma(x,y).$$

▶ Kantorovich duality: If $spt(\mu) \subseteq X$, $spt(\nu) \subseteq Y$ compact

$$\max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x | y \rangle \, \mathrm{d}\gamma(x,y) = \min_{\substack{\phi \in \mathcal{C}^{\mathbf{0}}(X), \psi \in \mathcal{C}^{\mathbf{0}}(Y) \\ \phi(x) + \psi(y) \ge \langle x | y \rangle}} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu.$$

Nb: the inequality min \geq max follows from the constraint $\psi \oplus \psi \geq \langle \cdot | \cdot \rangle$.

▶ Quadratic optimal transport is equivalent to the maximal correlation problem:

$$\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^2 \,\mathrm{d}\gamma(x,y) = M_2(\mu) + M_2(\nu) - 2 \max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x|y \rangle \,\mathrm{d}\gamma(x,y).$$

▶ Kantorovich duality: If $spt(\mu) \subseteq X$, $spt(\nu) \subseteq Y$ compact

$$\max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x | y \rangle \, \mathrm{d}\gamma(x,y) = \min_{\substack{\phi \in \mathcal{C}^{0}(X), \psi \in \mathcal{C}^{0}(Y) \\ \phi(x) + \psi(y) \ge \langle x | y \rangle}} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu.$$

Nb: the inequality min \geq max follows from the constraint $\psi \oplus \psi \geq \langle \cdot | \cdot \rangle$. Many (most?) numerical methods are based on the dual problem.

▶ Quadratic optimal transport is equivalent to the maximal correlation problem:

$$\min_{\gamma \in \Gamma(\mu,\nu)} \int \|x-y\|^2 \,\mathrm{d}\gamma(x,y) = M_2(\mu) + M_2(\nu) - 2 \max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x|y \rangle \,\mathrm{d}\gamma(x,y).$$

▶ Kantorovich duality: If $spt(\mu) \subseteq X$, $spt(\nu) \subseteq Y$ compact

$$\max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x | y \rangle \, \mathrm{d}\gamma(x,y) = \min_{\substack{\phi \in \mathcal{C}^{0}(X), \psi \in \mathcal{C}^{0}(Y) \\ \phi(x) + \psi(y) \ge \langle x | y \rangle}} \int \phi \, \mathrm{d}\mu + \int \psi \, \mathrm{d}\nu.$$

Nb: the inequality min \geq max follows from the constraint $\psi \oplus \psi \geq \langle \cdot | \cdot \rangle$. Many (most?) numerical methods are based on the dual problem.

Def: We will call **Kantorovich functional** $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* denotes the convex conjugate of ψ , i.e. $\psi^*(x) = \max_{y \in Y} \langle x | y \rangle - \psi(y)$

► Maximum correlation problem ↔ unconstrained convex minimization problem:

$$\max_{\gamma \in \Gamma(\mu,\nu)} \int \langle x | y \rangle \, \mathrm{d}\gamma(x,y) = \min_{\psi \in \mathcal{C}^{0}(Y)} \mathcal{K}_{\mu}(\psi) + \int \psi \mathrm{d}\nu \, .$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu.$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu.$

Proof: Let ψ_t = (1 − t)ψ₀ + tψ₁ and let v = ψ₁ − ψ₀. Differentiating the Fenchel-Young equality ψ^{*}_t + ψ_t(∇ψ^{*}_t) = ⟨id |∇ψ^{*}_t⟩ gives d/dt ψ^{*}_t = −v(∇ψ^{*}_t),

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu.$

▶ **Proof:** Let $\psi_t = (1 - t)\psi_0 + t\psi_1$ and let $v = \psi_1 - \psi_0$. Differentiating the Fenchel-Young equality $\psi_t^* + \psi_t(\nabla \psi_t^*) = \langle \operatorname{id} | \nabla \psi_t^* \rangle$ gives $\frac{\mathrm{d}}{\mathrm{d}t} \psi_t^* = -v(\nabla \psi_t^*)$,and

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}_{\mu}(\psi_{t}) = \int \frac{\mathrm{d}}{\mathrm{d}t}\psi_{t}^{*}\mathrm{d}\mu = -\int \mathsf{v}(\nabla\psi_{t}^{*})\mathrm{d}\mu = -\int \mathsf{v}\mathrm{d}[\nabla\psi_{t\#}^{*}\mu].$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu$. In particular, ψ minimizes $\mathcal{K}_{\mu}(\cdot) + \langle \cdot | \nu \rangle \iff \nabla \psi_{\#}^{*} \mu = \nu \iff \phi := \psi^{*}$ is the Brenier potential between μ and ν .

▶ **Proof:** Let $\psi_t = (1 - t)\psi_0 + t\psi_1$ and let $v = \psi_1 - \psi_0$. Differentiating the Fenchel-Young equality $\psi_t^* + \psi_t(\nabla \psi_t^*) = \langle \operatorname{id} | \nabla \psi_t^* \rangle$ gives $\frac{\mathrm{d}}{\mathrm{d}t}\psi_t^* = -v(\nabla \psi_t^*)$,and

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}_{\mu}(\psi_{t}) = \int \frac{\mathrm{d}}{\mathrm{d}t}\psi_{t}^{*}\mathrm{d}\mu = -\int \mathsf{v}(\nabla\psi_{t}^{*})\mathrm{d}\mu = -\int \mathsf{v}\mathrm{d}[\nabla\psi_{t\#}^{*}\mu].$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu$. In particular, ψ minimizes $\mathcal{K}_{\mu}(\cdot) + \langle \cdot | \nu \rangle \iff \nabla \psi_{\#}^{*} \mu = \nu \iff \phi := \psi^{*}$ is the Brenier potential between μ and ν .

▶ **Proof:** Let $\psi_t = (1 - t)\psi_0 + t\psi_1$ and let $v = \psi_1 - \psi_0$. Differentiating the Fenchel-Young equality $\psi_t^* + \psi_t(\nabla \psi_t^*) = \langle \operatorname{id} | \nabla \psi_t^* \rangle$ gives $\frac{\mathrm{d}}{\mathrm{d}t}\psi_t^* = -v(\nabla \psi_t^*)$,and

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}_{\mu}(\psi_{t}) = \int \frac{\mathrm{d}}{\mathrm{d}t}\psi_{t}^{*}\mathrm{d}\mu = -\int \mathbf{v}(\nabla\psi_{t}^{*})\mathrm{d}\mu = -\int \mathbf{v}\mathrm{d}[\nabla\psi_{t\#}^{*}\mu].$$

▶ When μ, ν are densities and $\nabla \psi^*$ is a diffeomorphism between their support, the pushforward condition ($\nabla \psi^*_{\#} \mu = \nu$) becomes the **Monge-Ampère equation**

 $u(\nabla\psi^*) \det(\mathrm{D}^2\psi^*) = \mu.$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Proposition: $\nabla \mathcal{K}_{\mu}(\psi) = -\nabla \psi_{\#}^{*} \mu$. In particular, ψ minimizes $\mathcal{K}_{\mu}(\cdot) + \langle \cdot | \nu \rangle \iff \nabla \psi_{\#}^{*} \mu = \nu \iff \phi := \psi^{*}$ is the Brenier potential between μ and ν .

▶ **Proof:** Let $\psi_t = (1 - t)\psi_0 + t\psi_1$ and let $v = \psi_1 - \psi_0$. Differentiating the Fenchel-Young equality $\psi_t^* + \psi_t(\nabla \psi_t^*) = \langle \operatorname{id} | \nabla \psi_t^* \rangle$ gives $\frac{\mathrm{d}}{\mathrm{d}t}\psi_t^* = -v(\nabla \psi_t^*)$,and

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}_{\mu}(\psi_{t}) = \int \frac{\mathrm{d}}{\mathrm{d}t}\psi_{t}^{*}\mathrm{d}\mu = -\int \mathbf{v}(\nabla\psi_{t}^{*})\mathrm{d}\mu = -\int \mathbf{v}\mathrm{d}[\nabla\psi_{t\#}^{*}\mu].$$

▶ When μ, ν are densities and $\nabla \psi^*$ is a diffeomorphism between their support, the pushforward condition ($\nabla \psi^*_{\#} \mu = \nu$) becomes the **Monge-Ampère equation**

 $u(\nabla\psi^*) \det(\mathrm{D}^2\psi^*) = \mu.$

▶ The Monge-Ampère operator is linearized (in $\phi = \psi^*!$) into :

$$\det(D^2(\phi+\nu))\simeq \det(D^2\phi)(1+\operatorname{Tr}(D^2\phi^{-1}D^2\nu))$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

• Let $\psi_t = (1 - t)\psi_0 + t\psi_1$, with ψ_0, ψ_1 strongly convex and C^2 , and let $v = \psi_1 - \psi_0$. Then, $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}_{\mu}(\psi_t) = -\int v(\nabla \psi_t^*) \mathrm{d}\mu.$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► Let $\psi_t = (1 - t)\psi_0 + t\psi_1$, with ψ_0, ψ_1 strongly convex and C^2 , and let $v = \psi_1 - \psi_0$. Then, $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}_{\mu}(\psi_t) = -\int v(\nabla \psi_t^*) \mathrm{d}\mu.$

Taking the time-derivative of $\nabla \psi_t^* \circ \nabla \psi_t = \mathrm{id},$ we see that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\mathcal{K}_{\mu}(\psi_t) = \int \left\langle \nabla v(\nabla \psi_t^*) | D^2 \psi_t^* \cdot \nabla v(\nabla \psi_t^*) \right\rangle \mathrm{d}\mu.$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► Let $\psi_t = (1 - t)\psi_0 + t\psi_1$, with ψ_0, ψ_1 strongly convex and C^2 , and let $v = \psi_1 - \psi_0$. Then, $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}_{\mu}(\psi_t) = -\int v(\nabla \psi_t^*) \mathrm{d}\mu.$

Taking the time-derivative of $\nabla \psi_t^* \circ \nabla \psi_t = \mathrm{id},$ we see that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \mathcal{K}_{\mu}(\psi_t) = \int \left\langle \nabla \mathbf{v} (\nabla \psi_t^*) | D^2 \psi_t^* \cdot \nabla \mathbf{v} (\nabla \psi_t^*) \right\rangle \mathrm{d}\mu$$

i.e.
$$\langle D^2 \mathcal{K}_{\mu}(\psi) \mathbf{v} | \mathbf{v} \rangle = \int \langle \nabla \mathbf{v} (\nabla \psi^*) | D^2 \psi^* \cdot \nabla \mathbf{v} (\nabla \psi^*) \rangle d\mu$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

• Let $\psi_t = (1-t)\psi_0 + t\psi_1$, with ψ_0, ψ_1 strongly convex and C^2 , and let $v = \psi_1 - \psi_0$. Then, $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{K}_{\mu}(\psi_t) = -\int v(\nabla\psi_t^*)\mathrm{d}\mu.$

Taking the time-derivative of $\nabla \psi_t^* \circ \nabla \psi_t = \mathrm{id},$ we see that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\mathcal{K}_{\mu}(\psi_t) = \int \left\langle \nabla v(\nabla \psi_t^*) | D^2 \psi_t^* \cdot \nabla v(\nabla \psi_t^*) \right\rangle \mathrm{d}\mu.$$

i.e.
$$\langle D^2 \mathcal{K}_{\mu}(\psi) \mathbf{v} | \mathbf{v} \rangle = \int \langle \nabla \mathbf{v} (\nabla \psi^*) | D^2 \psi^* \cdot \nabla \mathbf{v} (\nabla \psi^*) \rangle d\mu$$

▶ Setting $\phi = \psi^*$ and $\tilde{v} = v(\nabla \phi)$, we get

$$\left\langle D^{2}\mathcal{K}_{\mu}(\psi)\mathbf{v}|\mathbf{v}
ight
angle =\int\left\langle \mathrm{D}^{2}\phi^{-1}\cdot
abla\widetilde{\mathbf{v}}|
abla\widetilde{\mathbf{v}}
ight
angle \mathrm{d}\mu$$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

• Let $\psi_t = (1-t)\psi_0 + t\psi_1$, with ψ_0, ψ_1 strongly convex and C^2 , and let $v = \psi_1 - \psi_0$. Then, $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{K}_{\mu}(\psi_t) = -\int v(\nabla \psi_t^*) \mathrm{d}\mu.$

Taking the time-derivative of $\nabla \psi_t^* \circ \nabla \psi_t = \mathrm{id},$ we see that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\mathcal{K}_{\mu}(\psi_t) = \int \left\langle \nabla \mathbf{v}(\nabla \psi_t^*) | D^2 \psi_t^* \cdot \nabla \mathbf{v}(\nabla \psi_t^*) \right\rangle \mathrm{d}\mu.$$

i.e.
$$\langle D^2 \mathcal{K}_{\mu}(\psi) \mathbf{v} | \mathbf{v} \rangle = \int \langle \nabla \mathbf{v} (\nabla \psi^*) | D^2 \psi^* \cdot \nabla \mathbf{v} (\nabla \psi^*) \rangle d\mu$$

▶ Setting $\phi = \psi^*$ and $\tilde{v} = v(\nabla \phi)$, we get

$$\left\langle D^{2}\mathcal{K}_{\mu}(\psi)\mathbf{v}|\mathbf{v}
ight
angle =\int\left\langle \mathrm{D}^{2}\phi^{-1}\cdot
abla\widetilde{\mathbf{v}}|
abla\widetilde{\mathbf{v}}
ight
angle \mathrm{d}\mu$$

► For $\mu \equiv 1$, a Newton method for minimizing $\mathcal{K}(\cdot) + \langle \nu | \cdot \rangle$ at ψ will involve the linear operator $\tilde{\mathbf{v}} \mapsto \operatorname{div}((D^2\psi^*)^{-1}\nabla \tilde{\mathbf{v}})$

1 Introduction: the JKO scheme

- 2 Continuous optimal transport
- Semidiscrete optimal transport
- 4 An illustration: moving meshes

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

• If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$.

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$. Then, $\psi^* = \max_i \langle \cdot | y_i \rangle - \psi_i$ is affine on each **power (or Laguerre) cell**

 $V_i(\Psi) = \{ x \in \mathbb{R}^d \mid \forall j, \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j \}.$

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$. Then, $\psi^* = \max_i \langle \cdot | y_i \rangle - \psi_i$ is affine on each **power (or Laguerre) cell**

 $V_i(\Psi) = \{ x \in \mathbb{R}^d \mid \forall j, \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j \}.$

▶ In general, y_i does **NOT** belong to its Laguerre cell $V_i(\Psi)$.

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$. Then, $\psi^* = \max_i \langle \cdot | y_i \rangle - \psi_i$ is affine on each **power (or Laguerre) cell**

$$V_i(\Psi) = \{ x \in \mathbb{R}^d \mid \forall j, \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j \}.$$

► The dual mesh associated to this tesselation is the regular triangulation of the points {y_i}_{1≤i≤N}. Two points y_i and y_j are connected iff the interface

$$\Gamma_{ij}(\Psi) = V_i(\Psi) \cap V_j(\Psi)$$

is non-empty.

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

• If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$. Then, $\psi^* = \max_i \langle \cdot | y_i \rangle - \psi_i$ is affine on each **power (or Laguerre) cell**

$$V_i(\Psi) = \{ x \in \mathbb{R}^d \mid \forall j, \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j \}.$$

► The dual mesh associated to this tesselation is the regular triangulation of the points {y_i}_{1≤i≤N}. Two points y_i and y_j are connected iff the interface

$$\Gamma_{ij}(\Psi) = V_i(\Psi) \cap V_j(\Psi)$$

is non-empty. In addition, $\Gamma_{ij}(\Psi)$ is orthogonal to $y_j - y_i$.

Kantorovich functional: $\mathcal{K}_{\mu}(\psi) = \int \psi^* d\mu$, where ψ^* is the convex conjugate of ψ

► If $\nu = \sum_{i} \alpha_i \delta_{y_i}$, we parametrize ψ by the vector $\Psi = (\psi_i)_{1 \le i \le N}$ with $\psi_i = \psi(y_i)$. Then, $\psi^* = \max_i \langle \cdot | y_i \rangle - \psi_i$ is affine on each **power (or Laguerre) cell**

$$V_i(\Psi) = \{ x \in \mathbb{R}^d \mid \forall j, \langle x | y_i \rangle - \psi_i \ge \langle x | y_j \rangle - \psi_j \}.$$

► The dual mesh associated to this tesselation is the regular triangulation of the points {y_i}_{1≤i≤N}. Two points y_i and y_j are connected iff the interface

$$\Gamma_{ij}(\Psi) = V_i(\Psi) \cap V_j(\Psi)$$

is non-empty. In addition, $\Gamma_{ij}(\Psi)$ is orthogonal to $y_j - y_i$.

Theorem Finding an *optimal transport* between a probability density μ on \mathbb{R}^d and $\nu = \sum_i \alpha_i \delta_{y_i}$ amounts to maximizing $\Psi \in \mathbb{R}^N \mapsto K_{\mu}(\Psi) + \sum_i \alpha_i \Psi_i$, where

$$\mathrm{K}_{\mu}(\Psi) = \sum_{i} \int_{V_{i}(\Psi)} \langle x | y_{i} \rangle - \psi_{i} \mathrm{d}\mu.$$

Moreover, Ψ is \mathcal{C}^1 and $\partial_{y_i} \mathcal{K}_{\mu}(\Psi) = -\mu(V_i(\Psi))$. [Aurenhammer, Hoffman, Aronov]

 $\nabla K(\Psi)$ is consistent with continuous case: $\nabla \mathcal{K}(\psi) = -\nabla \psi_{\#}^* \mu = \sum_i \mu(V_i(\Psi)) \delta_{y_i}$.

Optimal transport and mass-constrained power diagrams

Theorem Finding an *optimal transport* between a probability density μ on \mathbb{R}^d and $\nu = \sum_i \alpha_i \delta_{y_i}$ amounts to maximizing $\Psi \in \mathbb{R}^N \mapsto K_{\mu}(\Psi) + \sum_i \alpha_i \Psi_i$, where

$$\mathrm{K}_{\mu}(\Psi) = \sum_{i} \int_{V_{i}(\Psi)} \langle x | y_{i}
angle - \psi_{i} \mathrm{d} \mu.$$

Moreover, Ψ is \mathcal{C}^1 and $\partial_{y_i} \mathcal{K}_{\mu}(\Psi) = -\mu(V_i(\Psi))$. [Aurenhammer, Hoffman, Aronov]

Optimal transport and mass-constrained power diagrams

Theorem Finding an *optimal transport* between a probability density μ on \mathbb{R}^d and $\nu = \sum_i \alpha_i \delta_{y_i}$ amounts to maximizing $\Psi \in \mathbb{R}^N \mapsto K_{\mu}(\Psi) + \sum_i \alpha_i \Psi_i$, where

$$\mathrm{K}_{\mu}(\Psi) = \sum_{i} \int_{V_{i}(\Psi)} \langle x | y_{i}
angle - \psi_{i} \mathrm{d} \mu.$$

Moreover, Ψ is \mathcal{C}^1 and $\partial_{y_i} \mathcal{K}_{\mu}(\Psi) = -\mu(V_i(\Psi))$. [Aurenhammer, Hoffman, Aronov]

▶ Denote
$$G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}$$
. Then

 $\begin{array}{l} \Psi \text{ solves OT } \iff \mathcal{G}(\Psi) = \alpha \\ \iff \psi = \Psi^{**} \text{ is an Alexandrov solution to } \mu(\nabla \psi) \det(\mathrm{D}^2 \psi) = \nu \end{array}$

demo

Optimal transport and mass-constrained power diagrams

Theorem Finding an *optimal transport* between a probability density μ on \mathbb{R}^d and $\nu = \sum_i \alpha_i \delta_{y_i}$ amounts to maximizing $\Psi \in \mathbb{R}^N \mapsto K_{\mu}(\Psi) + \sum_i \alpha_i \Psi_i$, where

$$\mathrm{K}_{\mu}(\Psi) = \sum_{i} \int_{V_{i}(\Psi)} \langle x | y_{i} \rangle - \psi_{i} \mathrm{d} \mu.$$

Moreover, Ψ is \mathcal{C}^1 and $\partial_{y_i} \mathcal{K}_{\mu}(\Psi) = -\mu(V_i(\Psi))$. [Aurenhammer, Hoffman, Aronov]

▶ Denote
$$G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}$$
. Then

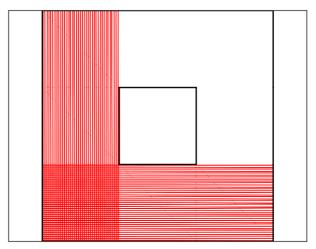
$$\begin{split} \Psi \text{ solves OT } & \Longleftrightarrow \mathcal{G}(\Psi) = \alpha \\ & \Longleftrightarrow \psi = \Psi^{**} \text{ is an Alexandrov solution to } \mu(\nabla \psi) \det(D^2 \psi) = \nu \end{split}$$

demo

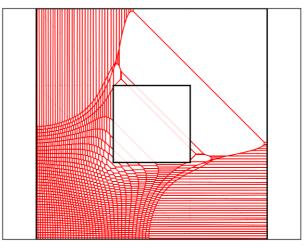
• Computing $DG(\Psi)$ is as costly as computing $G \rightsquigarrow$ Newton's method

$$\Psi^{k+1} = \Psi^k - \mathrm{D}G(\Psi^k)^{-1}(G(\Psi^k) - \nu).$$

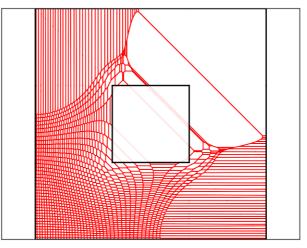
Difficulty: $DG(\Psi^k)$ is in general not invertible \rightsquigarrow damping.



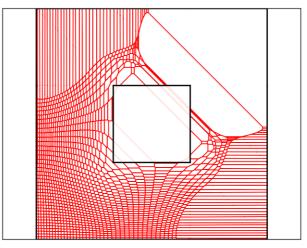
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



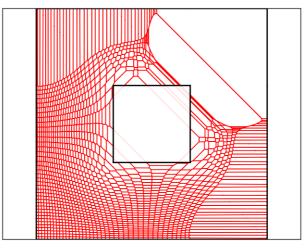
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



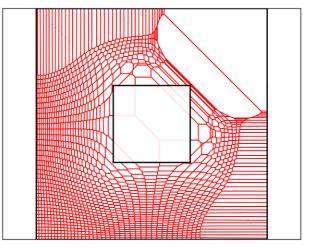
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



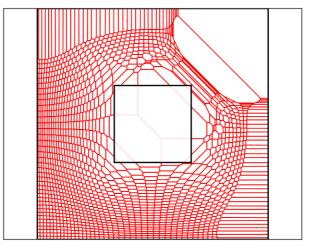
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



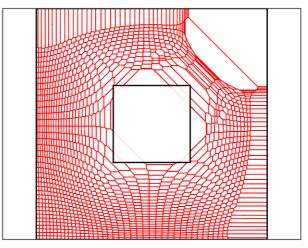
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



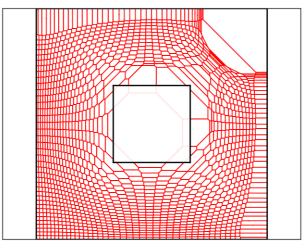
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



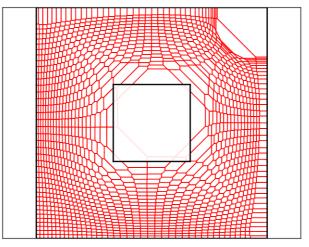
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



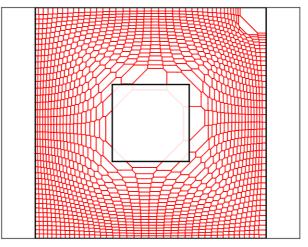
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



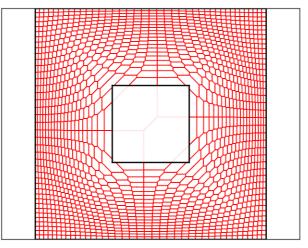
Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.



Source: Piecewise linear density on $X = [0,3]^2$ / **Target:** Uniform grid in $[0,1]^2$.

Newton's method for semi-discrete OT is able to handle huge problems in 2D/3D, up to $N \sim 10^8$ in 3D. See e.g. Geogram (Bruno Lévy) or SDOT (Hugo Leclerc).

Denote $G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}$.

Prop.: Assume $\mu \in C^0(X)$, X convex and $\Psi \in \mathbb{R}^N$ is such that $\forall i, G_i(\Psi) > 0$. Then,

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\Psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) d\mathcal{H}^{d-1}(x) \quad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_j \psi_i}(\Psi) \right]$$
$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\Psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\Psi) \qquad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_i^2}(\Psi) \right]$$

Denote $G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}$.

Prop.: Assume $\mu \in C^0(X)$, X convex and $\Psi \in \mathbb{R}^N$ is such that $\forall i, G_i(\Psi) > 0$. Then,

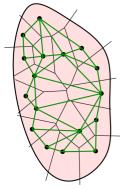
$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\Psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\Psi)} \rho(x) \mathrm{d}\mathcal{H}^{d-1}(x) \quad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_j \psi_i}(\Psi) \right]$$
$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\Psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\Psi) \qquad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_i^2}(\Psi) \right]$$

We recover convexity of K (D²K(Ψ) ≥ 0), and we see that constant vectors ℝ(1,...,1) belong to Ker(D²K).

Denote $G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}.$

Prop.: Assume $\mu \in C^0(X)$, X convex and $\Psi \in \mathbb{R}^N$ is such that $\forall i, G_i(\Psi) > 0$. Then,

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\Psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) d\mathcal{H}^{d-1}(x) \quad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_j \psi_i}(\Psi) \right]$$
$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\Psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\Psi) \qquad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_i^2}(\Psi) \right]$$

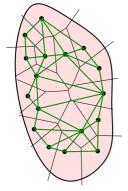


- ▶ We recover convexity of \mathcal{K} ($D^2\mathcal{K}(\Psi) \ge 0$), and we see that constant vectors $\mathbb{R}(1, ..., 1)$ belong to $\operatorname{Ker}(D^2\mathcal{K})$.
- The matrix DG is the Laplacian of a weighted graph.

Denote $G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}.$

Prop.: Assume $\mu \in C^0(X)$, X convex and $\Psi \in \mathbb{R}^N$ is such that $\forall i, G_i(\Psi) > 0$. Then,

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\Psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) \mathrm{d}\mathcal{H}^{d-1}(x) \quad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_j \psi_i}(\Psi) \right]$$
$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\Psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\Psi) \qquad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_i^2}(\Psi) \right]$$



▶ We recover convexity of \mathcal{K} ($D^2\mathcal{K}(\Psi) \ge 0$), and we see that constant vectors $\mathbb{R}(1, ..., 1)$ belong to $\operatorname{Ker}(D^2\mathcal{K})$.

• The matrix DG is the Laplacian of a weighted graph.

If ρ ≡ 1 on a bounded convex set X, the operator
 D²K(Ψ) satisfies a Poincaré inequality. With μ = G(Ψ),

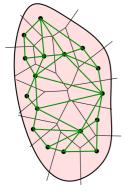
 $\operatorname{Var}_{\mu}(v) \leq C(X) \left\langle \mathrm{D}^{2} \mathcal{K}(\Psi) v | v \right\rangle.$

(Estimation follows from [Eymard, Gallouët, Herbin '00])

Denote $G(\Psi) = -\nabla \mathcal{K}(\Psi) = (\mu(V_i(\Psi)))_{1 \le i \le N}.$

Prop.: Assume $\mu \in C^0(X)$, X convex and $\Psi \in \mathbb{R}^N$ is such that $\forall i, G_i(\Psi) > 0$. Then,

$$\forall i \neq j, \quad \frac{\partial G_i}{\partial \psi_j}(\Psi) = \frac{1}{\|y_i - y_j\|} \int_{\Gamma_{ij}(\psi)} \rho(x) d\mathcal{H}^{d-1}(x) \quad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_j \psi_i}(\Psi) \right]$$
$$\forall i, \quad \frac{\partial G_i}{\partial \psi_i}(\Psi) = -\sum_{j \neq i} \frac{\partial G_i}{\partial \psi_j}(\Psi) \qquad \left[= -\frac{\partial^2 \mathcal{K}}{\partial \psi_i^2}(\Psi) \right]$$



▶ We recover convexity of \mathcal{K} ($D^2\mathcal{K}(\Psi) \ge 0$), and we see that constant vectors $\mathbb{R}(1, ..., 1)$ belong to $\operatorname{Ker}(D^2\mathcal{K})$.

• The matrix DG is the Laplacian of a weighted graph.

If ρ ≡ 1 on a bounded convex set X, the operator
 D²K(Ψ) satisfies a Poincaré inequality. With μ = G(Ψ),

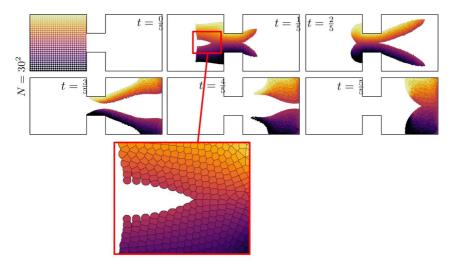
 $\operatorname{Var}_{\mu}(v) \leq \mathcal{C}(X) \left\langle \mathrm{D}^{2} \mathcal{K}(\Psi) v | v \right\rangle.$

(Estimation follows from [Eymard, Gallouët, Herbin '00]) Finite-volume discretization of $\tilde{v} \mapsto \operatorname{div}((D^2\psi^*)^{-1}\nabla \tilde{v})$?

1 Introduction: the JKO scheme

- 2 Continuous optimal transport
- Semidiscrete optimal transport
- 4 An illustration: moving meshes

Crowd motion



► Macroscopic crowd motion model [Maury, Roudneff-Chupin, Santambrogio]

- ► Particle discretization relies on a Moreau-Yosida regularization of the Lagrangian energy *E*_{cong} (~→ partial optimal transport) [M., Santambrogio, Stra]
- ▶ By OT, a moving mesh is automatically associated to the moving particle cloud!

Summary/questions

- ▶ OT can be used to interpret/reformulate some PDEs from fluid mechanics.
- This leads to new Eulerian numerical schemes (which will be the main object of this workshop), but also to Lagrangian (particle) discretization of evolution PDE.

https://github.com/sd-ot

https://github.com/BrunoLevy/geogram

Can OT be useful to construct (moving) meshes for finite volumes ?