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Lagrangian Formulation of (Some) PDEs

I We follow the evolution of a population of particles living in Rd , described by its
initial distribution ρ0 ∈ P(Ω) and by its displacement

X : [0,T ]→ L2(ρ0,Rd).

I ρt = distribution of particles = Xt#ρ0 ∈ P2(Rd).

I The displacement follows Ẋ ∈ −∂E (X ) or Ẍ ∈ −∂E (X ).

I Main assumption: The energy E only depends on the distribution of particles.

i.e. E (X ) = E(X#ρ0) with E : P2(Rd)→ R ∪ {+∞}.

I Example of energies:

Eent(ρ) =

{∫
ρ log ρ if ρ ∈ Pac

2 (Ω),

+∞ otherwise.
Einc(ρ) =

{
0 if ρ = LebΩ,

+∞ otherwise.

Econg(ρ) =

{
0 if ρ ≤ LebΩ,

+∞ otherwise.
Epot(ρ) =

∫
V dρ.
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Lagrangian-Eulerian dictionary

Ẋ ∈ −∂E (X ) Ẍ ∈ −∂E (X )

Einc incompressible Euler equation

Econg + Epot crowd motion pressureless Euler equation

Eent + Epot linear Fokker-Planck equation isentropic Euler equation

I The Euler side was started by [Arnold ’66] and [Brenier 87], while the the gradient
flow side was initiated by [Otto ’99]–[Jordan-Kinderlehrer-Otto ’98].

I Many mathematicians have studied connections between OT and evolution PDEs.
I The energy E is typically non-convex, with values in R ∪ {+∞}: in this

introduction we will remain at a very formal level.

4 / 22



Lagrangian-Eulerian dictionary
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Fokker-Planck Case

I We consider E(ρ) =
∫

f (ρ) + ρV and E (X ) = E(X#ρ0) with X ∈ L2(ρ0,Rd)

I What is the gradient of E ? Consider a curve Xt satisfying Ẋt = vt(Xt) and its
image density ρt := Xt#ρ0, which satisfies ρ̇t + div(ρtvt) = 0. Then,

d
dt

E (Xt) =

∫
(f ′(ρt) + V )ρ̇tdx = −

∫
(f ′(ρt) + V )div(ρtvt)dx

=

∫
〈∇(f ′(ρ) + V )|vt〉 dρt =

∫ 〈
∇(f ′(ρ) + V ) ◦ Xt |Ẋt

〉
dρ0

Identifying terms, we find ∇E (X ) = ∇(f ′(ρ) + V ) ◦ X

I The equation Ẋt = −∇E (Xt) thus leads to
Ẋt = vt(Xt)

ρt = Xt#ρ0

vt = −(∇f ′(ρt) +∇V )

(Lagrangian)

ρ̇t = div[ρt(∇f ′(ρt) +∇V )) (Eulerian)

Example: f (r) = r log r −→ ρ̇t = ∆ρt + div(ρt∇V )

I Regular lagrangian trajectory associated to heat flow ( 6= Brownian motion!)
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image density ρt := Xt#ρ0, which satisfies ρ̇t + div(ρtvt) = 0. Then,

d
dt

E (Xt) =

∫
(f ′(ρt) + V )ρ̇tdx = −

∫
(f ′(ρt) + V )div(ρtvt)dx

=

∫
〈∇(f ′(ρ) + V )|vt〉 dρt =

∫ 〈
∇(f ′(ρ) + V ) ◦ Xt |Ẋt
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From Lagrangian dynamic to the JKO scheme

I Minimizing movement scheme: for τ > 0, define a time-discretization by

X k+1
τ ∈ argmin

X

1
2τ

∥∥X k
τ − X

∥∥2
L2(ρ0)

+ E (X )

I The minimum can be rewritten as :

min
ρ

1
2τ

(
min

X s.t. X#ρ0 =ρ

∥∥X k
τ − X

∥∥2
L2(ρ0)

)
+ E(ρ)

Setting ρk
τ = X k

τ#ρ0, the inner minimum is a quadratic optimal transport cost
(a consequence of Brenier’s polar factorization theorem):

min
X s.t. X#ρ0 =ρ

∥∥X k
τ − X

∥∥2
L2(ρ0)

= min
X s.t. X#ρ0 =ρ

∥∥Id− X ◦ (X k
τ )−1

∥∥2
L2(ρk

τ )

= min
T s.t. T#ρk

τ =ρ
‖Id− T‖2L2(ρk ) =: W2

2(ρk
τ , ρ)

I We recover the JKO scheme: ρk+1
τ ∈ argmin

ρ

1
2τ

W2
2(ρk

τ , ρ) + E(X ).
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Optimal transport

I Let Pp(Rd) be the set of probability measures with finite pth moment.

Wasserstein distance between µ, ν ∈ Pp(Rd):

Wp(µ, ν) =

(
min

γ∈Γ(µ,ν)

∫
‖x − y‖p dγ(x , y)

)1/p

,

where Γ(µ, ν) is the set of couplings between µ, ν.

I Kantorovich-Rubinstein formula: W1(µ, ν) = sup
Lip(φ)≤1

∫
φdµ−

∫
φdν.

In particular, on P(X ), with X compact, Wp metrizes the weak∗ convergence

I Optimal transport and Wasserstein distances Wp have found applications in
geometry, functional inequalities, probabilities, PDEs, statistical learning.
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1D Wasserstein space and quantiles

I Given µ ∈ P(R), there exists a unique nondecreasing Tµ ∈ L1([0, 1]) satisfying
Tµ#λ = µ, with λ = Lebesgue measure on [0, 1].

I Tµ is the inverse cumulative distribution function, also called quantile function.

µ = 1
N

∑
1≤i≤N δxi with x1 ≤ . . . ≤ xN =⇒ Tµ = xi on

[ i−1
N , i

N

]
ν = 1

N

∑
1≤i≤N δyi with y1 ≤ . . . ≤ yN =⇒ Tν = yi on

[ i−1
N , i

N

]
Wp

p(µ, ν) =
1
N

∑
1≤i≤N

‖xi − yi‖p = ‖Tµ − Tν‖pLp([0,1]) .

x1 x2 x3y1 y2 y3

I The above formula remains true for any probability measures µ, ν ∈ P(R), i.e.

Theorem: µ 7→ Tµ is an isometry: Wp
p(µ, ν) = ‖Tµ − Tν‖L2(λ).

I When µ is a density and ν =
∑N

i=1 αiδyi , the optimal transport plan induces a
partition (a mesh?) of spt(µ) into intervals (Vi )1≤i≤N with µ(Vi ) = αi .
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Wasserstein geodesics

Proposition: Let µ0, µ1 ∈ P2(Rd), and let γ ∈ Γopt(µ0, µ1). Then, the curve

µt = Πt#γ, with Πt(x , y) = (1− t)x + ty

is a minimizing geodesic between µ0 and µ1.

I If µ0 = 1
N

∑
i δxi , µ1 = 1

N

∑
i δyi and σ ∈ SN is an optimal bijection, then

µt =
1
N

∑
i

δ(1−t)xi +tyσ(i )

I All minimizing geodesics are of this form.
I There may exist uncountably many geodesics, e.g. if spt(µ0) ⊆ R× {0} and

spt(µ0) ⊆ {0} × R on R2, any γ ∈ Γ(µ0, µ1) is optimal!
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Characterization of quadratic optimal transport

Theorem (Brenier) Let µ, ν ∈ P2(Rd) with µ� Leb. Then
(i) there exists a unique map T = ∇φ, with φ convex, transporting µ to ν,

(ii) the unique OT plan between µ and ν is γT = (id,T )#µ

(iii) the unique geodesic between µ and ν is µt = ((1− t) id+tT )#µ (McCann)

ϕ : R → R

︸ ︷︷ ︸
∇ϕ−1({yi}) ν =

∑
i αiδyi

= ∇ϕ#µ

Proof relies on the dual problem to optimal transport, due to Kantorovich.
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Kantorovich duality, quadratic case

I Quadratic optimal transport is equivalent to the maximal correlation problem:

min
γ∈Γ(µ,ν)

∫
‖x − y‖2 dγ(x , y) = M2(µ) + M2(ν)− 2 max

γ∈Γ(µ,ν)

∫
〈x |y〉 dγ(x , y).

I Kantorovich duality: If spt(µ) ⊆ X , spt(ν) ⊆ Y compact

max
γ∈Γ(µ,ν)

∫
〈x |y〉 dγ(x , y) = min

φ∈C0(X ),ψ∈C0(Y )
φ(x)+ψ(y)≥〈x|y〉

∫
φdµ+

∫
ψdν.

Nb: the inequality min ≥ max follows from the constraint ψ ⊕ ψ ≥ 〈·|·〉.
I Many (most?) numerical methods are based on the dual problem.

Def: We will call Kantorovich functional Kµ(ψ) =
∫
ψ∗dµ, where ψ∗ denotes the

convex conjugate of ψ, i.e. ψ∗(x) = maxy∈Y 〈x |y〉 − ψ(y)

I Maximum correlation problem ←→ unconstrained convex minimization problem:

max
γ∈Γ(µ,ν)

∫
〈x |y〉 dγ(x , y) = min

ψ∈C0(Y )
Kµ(ψ) +

∫
ψdν .
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Kantorovich functional: first derivative
Kantorovich functional: Kµ(ψ) =

∫
ψ∗dµ, where ψ∗ is the convex conjugate of ψ

Proposition: ∇Kµ(ψ) = −∇ψ∗#µ.

In particular, ψ minimizes Kµ(·) + 〈·|ν〉 ⇐⇒
∇ψ∗#µ = ν ⇐⇒ φ := ψ∗ is the Brenier potential between µ and ν.

I Proof: Let ψt = (1− t)ψ0 + tψ1 and let v = ψ1 − ψ0. Differentiating the
Fenchel-Young equality ψ∗t + ψt(∇ψ∗t ) = 〈id |∇ψ∗t 〉 gives d

dtψ
∗
t = −v(∇ψ∗t ),and

d
dt
Kµ(ψt) =

∫
d
dt
ψ∗t dµ = −

∫
v(∇ψ∗t )dµ = −
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Kantorovich functional: second derivative
Kantorovich functional: Kµ(ψ) =

∫
ψ∗dµ, where ψ∗ is the convex conjugate of ψ

I Let ψt = (1− t)ψ0 + tψ1, with ψ0, ψ1 strongly convex and C2, and let
v = ψ1 − ψ0. Then,

d
dt
Kµ(ψt) = −

∫
v(∇ψ∗t )dµ.

Taking the time-derivative of ∇ψ∗t ◦ ∇ψt = id, we see that

d2

dt2Kµ(ψt) =

∫ 〈
∇v(∇ψ∗t )|D2ψ∗t · ∇v(∇ψ∗t )

〉
dµ.

i.e.
〈
D2Kµ(ψ)v |v

〉
=

∫ 〈
∇v(∇ψ∗)|D2ψ∗ · ∇v(∇ψ∗)

〉
dµ

I Setting φ = ψ∗ and ṽ = v(∇φ), we get〈
D2Kµ(ψ)v |v

〉
=

∫ 〈
D2φ−1 · ∇ṽ |∇ṽ

〉
dµ

I For µ ≡ 1, a Newton method for minimizing K(·) + 〈ν|·〉 at ψ will involve the
linear operator ṽ 7→ div((D2ψ∗)−1∇ṽ)
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Kantorovich functional and computational geometry

Kantorovich functional: Kµ(ψ) =
∫
ψ∗dµ, where ψ∗ is the convex conjugate of ψ

I If ν =
∑

i αiδyj , we parametrize ψ by the vector Ψ = (ψi )1≤i≤N with ψi = ψ(yi ).
Then, ψ∗ = maxi 〈·|yi 〉 − ψi is affine on each power (or Laguerre) cell

Vi (Ψ) = {x ∈ Rd | ∀j , 〈x |yi 〉 − ψi ≥ 〈x |yj〉 − ψj}.

I The dual mesh associated to this tesselation is the regular triangulation of the
points {yi}1≤i≤N . Two points yi and yj are connected iff the interface

Γij(Ψ) = Vi (Ψ) ∩ Vj(Ψ)

is non-empty. In addition, Γij(Ψ) is orthogonal to yj − yi .

Theorem Finding an optimal transport between a probability density µ on Rd and
ν =

∑
i αiδyi amounts to maximizing Ψ ∈ RN 7→ Kµ(Ψ) +

∑
i αiΨi , where

Kµ(Ψ) =
∑

i

∫
Vi (Ψ)

〈x |yi 〉 − ψidµ.

Moreover, Ψ is C1 and ∂yiKµ(Ψ) = −µ(Vi (Ψ)). [Aurenhammer, Hoffman, Aronov]

∇K(Ψ) is consistent with continuous case: ∇K(ψ) = −∇ψ∗#µ =
∑

i µ(Vi (Ψ))δyi .
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Optimal transport and mass-constrained power diagrams

Theorem Finding an optimal transport between a probability density µ on Rd and
ν =

∑
i αiδyi amounts to maximizing Ψ ∈ RN 7→ Kµ(Ψ) +

∑
i αiΨi , where

Kµ(Ψ) =
∑

i

∫
Vi (Ψ)

〈x |yi 〉 − ψidµ.

Moreover, Ψ is C1 and ∂yiKµ(Ψ) = −µ(Vi (Ψ)). [Aurenhammer, Hoffman, Aronov]

I Denote G (Ψ) = −∇K(Ψ) = (µ(Vi (Ψ)))1≤i≤N . Then

Ψ solves OT ⇐⇒ G (Ψ) = α

⇐⇒ ψ = Ψ∗∗ is an Alexandrov solution to µ(∇ψ) det(D2ψ) = ν

demo
I Computing DG (Ψ) is as costly as computing G  Newton’s method

Ψk+1 = Ψk −DG (Ψk)−1(G (Ψk)− ν).

Difficulty: DG (Ψk) is in general not invertible  damping.
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I Computing DG (Ψ) is as costly as computing G  Newton’s method

Ψk+1 = Ψk −DG (Ψk)−1(G (Ψk)− ν).

Difficulty: DG (Ψk) is in general not invertible  damping.
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Numerical example: Newton iterations

Source: Piecewise linear density on X = [0, 3]2 / Target: Uniform grid in [0, 1]2.

Newton’s method for semi-discrete OT is able to handle huge problems in 2D/3D, up
to N ∼ 108 in 3D. See e.g. Geogram (Bruno Lévy) or SDOT (Hugo Leclerc).
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Kantorovich’s functional: second derivative
Denote G (Ψ) = −∇K(Ψ) = (µ(Vi (Ψ)))1≤i≤N .

Prop.: Assume µ ∈ C0(X ), X convex and Ψ ∈ RN is such that ∀i ,Gi (Ψ) > 0. Then,

∀i 6= j ,
∂Gi

∂ψj
(Ψ) =

1
‖yi − yj‖

∫
Γij (ψ)

ρ(x)dHd−1(x)

[
= − ∂2K

∂ψjψi
(Ψ)

]
∀i , ∂Gi

∂ψi
(Ψ) = −

∑
j 6=i

∂Gi

∂ψj
(Ψ)

[
= −∂

2K
∂ψ2

i
(Ψ)

]

I We recover convexity of K (D2K(Ψ) ≥ 0), and we see
that constant vectors R(1, . . . , 1) belong to Ker(D2K).

I The matrix DG is the Laplacian of a weighted graph.
I If ρ ≡ 1 on a bounded convex set X , the operator

D2K(Ψ) satisfies a Poincaré inequality. With µ = G (Ψ),

Varµ(v) ≤ C (X )
〈
D2K(Ψ)v |v

〉
.

(Estimation follows from [Eymard, Gallouët, Herbin ’00])
I Finite-volume discretization of ṽ 7→ div((D2ψ∗)−1∇ṽ) ?
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19 / 22



Kantorovich’s functional: second derivative
Denote G (Ψ) = −∇K(Ψ) = (µ(Vi (Ψ)))1≤i≤N .

Prop.: Assume µ ∈ C0(X ), X convex and Ψ ∈ RN is such that ∀i ,Gi (Ψ) > 0. Then,

∀i 6= j ,
∂Gi

∂ψj
(Ψ) =

1
‖yi − yj‖

∫
Γij (ψ)

ρ(x)dHd−1(x)

[
= − ∂2K

∂ψjψi
(Ψ)

]
∀i , ∂Gi

∂ψi
(Ψ) = −

∑
j 6=i

∂Gi

∂ψj
(Ψ)

[
= −∂

2K
∂ψ2

i
(Ψ)

]

I We recover convexity of K (D2K(Ψ) ≥ 0), and we see
that constant vectors R(1, . . . , 1) belong to Ker(D2K).

I The matrix DG is the Laplacian of a weighted graph.
I If ρ ≡ 1 on a bounded convex set X , the operator

D2K(Ψ) satisfies a Poincaré inequality. With µ = G (Ψ),

Varµ(v) ≤ C (X )
〈
D2K(Ψ)v |v

〉
.

(Estimation follows from [Eymard, Gallouët, Herbin ’00])

I Finite-volume discretization of ṽ 7→ div((D2ψ∗)−1∇ṽ) ?
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Outline

1 Introduction: the JKO scheme

2 Continuous optimal transport

3 Semidiscrete optimal transport

4 An illustration: moving meshes
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Crowd motion

I Macroscopic crowd motion model [Maury, Roudneff-Chupin, Santambrogio]
I Particle discretization relies on a Moreau-Yosida regularization of the Lagrangian

energy Econg ( partial optimal transport) [M., Santambrogio, Stra]
I By OT, a moving mesh is automatically associated to the moving particle cloud!
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Summary/questions

I OT can be used to interpret/reformulate some PDEs from fluid mechanics.
I This leads to new Eulerian numerical schemes (which will be the main object of

this workshop), but also to Lagrangian (particle) discretization of evolution PDE.

https://github.com/sd-ot https://github.com/BrunoLevy/geogram

I Can OT be useful to construct (moving) meshes for finite volumes ?
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