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Lagrangian Formulation of (Some) PDEs

» We follow the evolution of a population of particles living in RY, described by its
initial distribution pg € P(€2) and by its displacement
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Lagrangian Formulation of (Some) PDEs

» We follow the evolution of a population of particles living in RY, described by its
initial distribution pg € P(€2) and by its displacement

X : [0, T] — L?(po, RY).

» p: = distribution of particles = X4po € Po(RY).

v

The displacement follows ‘X € —9E(X)or X € —8E(X).‘

» |Main assumption: The energy E only depends on the distribution of particles.

i.e. E(X)=&E(X#po) with £: Pr(RY) — RU {+00}.

» Example of energies:
logp if p € P3(Q), 0 if p = Lebgq,
5ent(p) = fp p P .2 ( ) ginc(p) = P .
400 otherwise. 400 otherwise.

0 if p < Lebg,
+o0o  otherwise.

gcong(p) = { gpot(p) = / Vdp
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Lagrangian-Eulerian dictionary
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Eent + Epot | linear Fokker-Planck equation isentropic Euler equation
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X € —9E(X) X € —9E(X)
Eine incompressible Euler equation
Econg + Epot crowd motion pressureless Euler equation
Eent + Epot | linear Fokker-Planck equation isentropic Euler equation
» The Euler side was started by and , while the the gradient

flow side was initiated by -

» Many mathematicians have studied connections between OT and evolution PDEs.

» The energy E is typically non-convex, with values in R U {4+0c0}: in this
introduction we will remain at a very formal level.
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Fokker-Planck Case

» We consider £(p) = [ f(p) + pV and E(X) = E(X#po) with X € L2(pg,RY)

» What is the gradient of £ ? Consider a curve X; satisfying X, = ve(Xt) and its
image density p; := Xgpo, which satisfies p¢ + div(psve) = 0. Then,

d

GEC) = [(7(0) + Vijede == [ (F/(po) + V)div(prve)ax

= [0+ VI dpe = [ (V70 + V) Xebke) dpo

Identifying terms, we find ’VE(X) =V(f(p)+ V)o X‘

» The equation X; = —VE(X;) thus leads to
Xt = Vt(Xt)

pt = Xegpo
Ve = —(Vfl(pt) + VV)

pe = divlp(VF (pe) + VV))
Example: f(r) = rlogr — p: = Apy + div(p:VV)

(Lagrangian)

(Eulerian)

» Regular lagrangian trajectory associated to heat flow (# Brownian motion!)
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From Lagrangian dynamic to the JKO scheme

» Minimizing movement scheme: for 7 > 0, define a time-discretization by

.1 2
X< ¢ arg min = | XK — X|| 2 T E(X)
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» Minimizing movement scheme: for 7 > 0, define a time-discretization by

.1 2
X< ¢ arg min = | Xk — X|| 2 T E(X)

» The minimum can be rewritten as :

.1 . P 2
mpm 27 (X s.t.m)l(z,,o:p ||XT B XHLZ(PO)) +&(p)

Setting pk = X%, po, the inner minimum is a quadratic optimal transport cost
(a consequence of Brenier's polar factorization theorem):

. k 2
UL VAN [l

min [1d = X o ¢

po) - X s.t. X#PD:

. 2
= min 1= T|Fage = WA, p)
T st. Typ<=p

1
» We recover the JKO scheme: | p“*1 € arg min Q—WE(pﬁ, p) + E(X).
p 2T
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Optimal transport

» Let P,(RY) be the set of probability measures with finite pth moment.
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Optimal transport

» Let P,(RY) be the set of probability measures with finite pth moment.

Wasserstein distance between p, v € P,(RY):

W(1,v) = ( min [ ||x—y||"dv(x7y))1/p,

ver(p,v)

where T'(u, v) is the set of couplings between p, v

» Kantorovich-Rubinstein formula: |Wy(u,v) = sup /qbdu /qbdu
Lip(¢

In particular, on P(X), with X compact, W, metrizes the weak* convergence

» Optimal transport and Wasserstein distances W, have found applications in
geometry, functional inequalities, probabilities, PDEs, statistical learning.
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» Given u € P(R), there exists a unique nondecreasing T, € L([0,1]) satisfying
TuuA = p, with A = Lebesgue measure on [0, 1].

» T, is the inverse cumulative distribution function, also called quantile function.

]
]

1
Wo(p,v) = N Sk —yilP =T, — TullE o1y

=

1 . i—1
/J’:NZ]_S;SN(SX'.WIthXIS...SXN:> N,:X,'Of'l I:’T7

2|~

V:%ZKISN(SY: with y; <...<yy= T, =y;on [%,

1<i<N
T T Y1 T3 Y2 Y3

» The above formula remains true for any probability measures u, v € P(R), i.e.

Theorem: (i +— T, is an isometry: Wh(u,v) = || T, — TV||L2(>\).

» When p is a density and v = vazl «;dy,, the optimal transport plan induces a
partition (a mesh?) of spt(u) into intervals (V;)i1<i<n with pu(V;) = a;.
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Wasserstein geodesics

Proposition: Let 1o, 111 € P2(R?), and let v € Topi (10, 1) Then, the curve
pre = Megey, with Tle(x, y) = (1 —t)x + ty

is a minimizing geodesic between pg and 1.

10 / 22



Wasserstein geodesics

Proposition: Let 1o, 111 € P2(R?), and let v € Topi (10, 1) Then, the curve
pre = Megey, with Tle(x, y) = (1 —t)x + ty
is a minimizing geodesic between pg and 1.

> If o= %> 0x, k1 == >0y and o € Gy is an optimal bijection, then

1
e = N Z 5(1—t)x,-+tya(,-)

10 / 22



Wasserstein geodesics

Proposition: Let 1o, 111 € P2(R?), and let v € Topi (10, 1) Then, the curve
pre = Megey, with Tle(x, y) = (1 —t)x + ty
is a minimizing geodesic between pg and 1.

> If o= %> 0x, k1 == >0y and o € Gy is an optimal bijection, then

1
e = N Z 6(1—t)x,-+tya(,-)

10 / 22



Wasserstein geodesics

Proposition: Let 1o, 111 € P2(R?), and let v € Topi (10, 1) Then, the curve
pre = Megey, with Tle(x, y) = (1 —t)x + ty
is a minimizing geodesic between pg and 1.

> If o= %> 0x, k1 == >0y and o € Gy is an optimal bijection, then

1
e = N Z 5(1—t)x,-+tya(,-)

» All minimizing geodesics are of this form.

10 / 22



Wasserstein geodesics

Proposition: Let 1o, 111 € P2(R?), and let v € Topi (10, 1) Then, the curve
pre = Megey, with Tle(x, y) = (1 —t)x + ty
is a minimizing geodesic between pg and 1.

> If o= %> 0x, k1 == >0y and o € Gy is an optimal bijection, then

1
e = N Z 5(1—t)x,-+tya(,-)

» All minimizing geodesics are of this form.

» There may exist uncountably many geodesics, e.g. if spt(ug) C R x {0} and
spt(po) € {0} x R on R2, any ~ € (g, p11) is optimal!
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Characterization of quadratic optimal transport

Theorem (Brenier) Let y, v € P»(RY) with 1 < Leb. Then

(i) there exists a unique map T = V¢, with ¢ convex, transporting u to v,

p:R—-R

V=72 aiby, =Voupu



Characterization of quadratic optimal transport

Theorem (Brenier) Let y, v € P»(RY) with 1 < Leb. Then
(i) there exists a unique map T = V¢, with ¢ convex, transporting u to v,

(i) the unique OT plan between p and v is y7 = (id, T)xp

p:R—-R

V=72 aiby, =Voupu



Characterization of quadratic optimal transport

Theorem (Brenier) Let y, v € P»(RY) with 1 < Leb. Then
(i) there exists a unique map T = V¢, with ¢ convex, transporting u to v,
(i) the unique OT plan between p and v is y7 = (id, T)xp
(iii) the unique geodesic between v and v is py = ((1 — t)id +¢T)xu (McCann)

p:R—-R

V=72 aiby, =Voupu



Characterization of quadratic optimal transport

Theorem (Brenier) Let y, v € P»(RY) with 1 < Leb. Then
(i) there exists a unique map T = V¢, with ¢ convex, transporting u to v,
(i) the unique OT plan between p and v is y7 = (id, T)xp
(iii) the unique geodesic between v and v is py = ((1 — t)id +¢T)xu (McCann)

p:R—-R

V=72 aiby, =Voupu

Proof relies on the dual problem to optimal transport, due to Kantorovich.

11/ 22



Kantorovich duality, quadratic case

» Quadratic optimal transport is equivalent to the maximal correlation problem:

min / lIx — szdfy(x,y) = Ma(p) + Ma(v) —2 max /(x|y) dy(x,y).
YEM (1,v) YET (1,v)
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in [yl daey) = Mal) + Ma(v) —2_max [ (xly) o),

» Kantorovich duality: If spt(x) C X,spt(v) C Y compact

mex [y datey) =, omin - fodut [o
YEr(p,v) peC (X wec°(y
oS (x

Nb: the inequality min > max follows from the constraint ¢ @ > (-|-).
» Many (most?) numerical methods are based on the dual problem.

Def: We will call Kantorovich functional K,(¢)) = [ ¢*du, where 1)* denotes the
convex conjugate of ¥, i.e. ¥*(x) = maxyey (x|y) — ¢¥(y)

» Maximum correlation problem <+— unconstrained convex minimization problem:

mox [ d(xn) = min Kuw)+ [ v

~er(p,v) $eC(Y)
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Kantorovich functional: first derivative
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Vi =v <= ¢ :=¢" is the Brenier potential between p and v.

» Proof: Let ¢y = (1 — t)iho + te1 and let v = 1)1 — ). Differentiating the
Fenchel-Young equality ¢} + (V7)) = (id |Viy) gives Sof = —v(Vi;),and

d d
S = [ otau=- [vvuian = - [vavuin

» When pu, v are densities and V* is a diffeomorphism between their support, the
pushforward condition (V4,1 = 1) becomes the Monge-Ampére equation

[v(Vy*) det(D?p*) = pu.|
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Kantorovich functional: C,(¢)) = [ ¢*du, where ¢* is the convex conjugate of ¢

Proposition: ‘VICMW) = —Vw;;u.‘ In particular, ¢ minimizes IC,(:) + (:|v) <=
Vi =v <= ¢ :=¢" is the Brenier potential between p and v.

» Proof: Let ¢y = (1 — t)iho + te1 and let v = 1)1 — ). Differentiating the
Fenchel-Young equality ¢} + (V7)) = (id |Viy) gives Sof = —v(Vi;),and

d d
S = [ otau=- [vvuian = - [vavuin

» When pu, v are densities and V* is a diffeomorphism between their support, the
pushforward condition (V4,1 = 1) becomes the Monge-Ampére equation

[v(Vy*) det(D?p*) = pu.|

» The Monge-Ampére operator is linearized (in ¢ = ¢*!) into :
det(D?(¢ + v)) ~ det(D?¢)(1 + Tr(D?¢~*D?v))
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> Let 1 = (1 — t)thg + tipy, with 1,101 strongly convex and C?, and let
vV = ’L/Jl — ’l[)o. Then,
d *
) = [ uwuan
Taking the time-derivative of V4] o Vi, = id, we see that

d2 * 2 % *
SERuw) = [ (TUTEIDA - VU (veD) du

ie. (DK (v)v|v) = / (Vv(Vy*)|D*y* - Vv(Vy*)) du
» Setting ¢ = ¢* and V = v(V¢), we get

(D*K(¢)v|v) = /<D2¢*1 -VUIVY) du

» For =1, a Newton method for minimizing K(-) + (v|-) at ¢ will involve the
linear operator ‘ ¥ i div((D**)"1VD)
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Outline

© Semidiscrete optimal transport
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Kantorovich functional and computational geometry

Kantorovich functional: C,,(¢)) = [ ¢*du, where ¢* is the convex conjugate of ¢
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Kantorovich functional: C,,(¢)) = [ ¢*du, where ¢* is the convex conjugate of ¢

> Ifrv=>", @;6y,;, we parametrize 9 by the vector ¥ = (¥i)1<i<n with ¥ = ¥(y;).
Then, ¥* = max; (-|y;) — ©; is affine on each power (or Laguerre) cell

Vi(W) = {x € RY |V}, (xlyi) — v > (xly;) — w5}
» In general, y; does NOT belong to its Laguerre cell V;(W).
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Kantorovich functional: C,,(¢)) = [ ¢*du, where ¢* is the convex conjugate of ¢

» If v =73 a;id,, we parametrize ) by the vector V = (¢;)1<i<n with 1; = 9 (y;).
Then, ¥* = max; {-|y;) — ¥; is affine on each power (or Laguerre) cell

Vi(W) = {x € RY | V), (xlys) — i > {(x]y;) — 5}

» The dual mesh associated to this tesselation is the regular triangulation of the
points {y;}1<i<n. Two points y; and y; are connected iff the interface

Fi(V) = Vi(V) N V;(V)
is non-empty. In addition, [';;(W) is orthogonal to y; — ;.

Theorem Finding an optimal transport between a probability density 1 on RY and
v =3, a;d, amounts to maximizing ¥ € RN — K, (V) + Y, a;V;, where

Ku(¥)= Y /V o )~

Moreover, W is C* and 9,,K,, (V) = —pu(Vi(V)).

‘ VK(V) is consistent with continuous case: V() = =Viu =37, u(Vi(V))dy,. ‘
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Optimal transport and mass-constrained power diagrams

Theorem Finding an optimal transport between a probability density 1 on RY and
v =3, a;d, amounts to maximizing ¥ € RN — K, (V) + Y, a;V;, where

Ku(V) = Z/V (xlyi) — idp.

Moreover, W is C* and 0,,K,, (V) = —pu(Vi(V)).
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Theorem Finding an optimal transport between a probability density 1 on RY and
v =3, a;d, amounts to maximizing ¥ € RN — K, (V) + Y, a;V;, where

K, (V) = Z/V (xlyi) = ¢idp.
Moreover, W is C* and 0,,K,, (V) = —pu(Vi(V)).

» Denote G(V) = —VLE(V) = (u(Vi(V)))1<i<n. Then

V¥ solves OT <= G(V) =«
<= 1) = U** is an Alexandrov solution to x(V)det(D?) = v

» Computing DG(V) is as costly as computing G ~~ Newton's method

Wk = wk DG H(G(VF) — )|

Difficulty: DG(W*) is in general not invertible ~ damping.
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Numerical example: Newton iterations

Source: Piecewise linear density on X = [0,3]? / Target: Uniform grid in [0, 1]%.
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Numerical example: Newton iterations
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Numerical example: Newton iterations

[1 I|l||=I||I::‘|| ":I'."

T i o e o e e
I e I

Source: Piecewise linear density on X = [0,3]? / Target: Uniform grid in [0, 1]%.
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Numerical example: Newton iterations

T

=1

i = ——— 1
1 e == =1 | i o

Newton's method for semi-discrete OT is able to handle huge problems in 2D /3D, up
to N ~ 108 in 3D. See e.g. Geogram (Bruno Lévy) or SDOT (Hugo Leclerc).
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Kantorovich's functional: second derivative
Denote G(V) = —VK(V) = (u(Vi(¥)))1i<i<n.
Prop.: Assume 1 € C°(X), X convex and W € RV is such that Vi, G;(¥) > 0. Then,

0G; 1 92K
Vi), — (W)= —"— dud-1! { \u}
i#i W)= /rﬁ(w)p(x) (6 |=~550-(¥)
.G, 9G; K
Vi, 8@&;(“})__;8%(\”) {m?(w)}
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» We recover convexity of K (D?K(W) > 0), and we see
that constant vectors R(1,...,1) belong to Ker(D?K).

» The matrix DG is the Laplacian of a weighted graph.

» If p =1 on a bounded convex set X, the operator
D2KC(W) satisfies a Poincaré inequality. With p = G(V),

[Var, (v) < C(X) (D*K(W)v|v) |

(Estimation follows from )
» Finite-volume discretization of 7 — div((D?y*)~1V¥) ?
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Outline

© Anillustration: moving meshes
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Crowd motion

~
Il
Lol

t= 3

» Macroscopic crowd motion model [Maury, Roudneff-Chupin, Santambrogio|

» Particle discretization relies on a Moreau-Yosida regularization of the Lagrangian
energy Econg (~ partial optimal transport) [V, Santambrogio, Stral

» By OT, a moving mesh is automatically associated to the moving particle cloud!
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Summary/questions

» OT can be used to interpret/reformulate some PDEs from fluid mechanics.

» This leads to new Eulerian numerical schemes (which will be the main object of
this workshop), but also to Lagrangian (particle) discretization of evolution PDE.

| https://github.com/sd-ot | | https://github. com/BrunoLevy/geogram|

» Can OT be useful to construct (moving) meshes for finite volumes 7

22 /22


https://github.com/sd-ot
https://github.com/BrunoLevy/geogram

	Introduction: the JKO scheme
	Continuous optimal transport
	Semidiscrete optimal transport
	An illustration: moving meshes

