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Université Paris-Saclay, November 20, 2024

Lorenzo Portinale (HCM Bonn) Paris, November 20th, 2024 0 / 22



Summary

(1) A general class of dynamical transport problems in Rd .

(2) The discrete optimal transport problem on graphs.

(3) Gradient flows via Energy Dissipation Inequality.

(4) Discrete-to-continuum limits of transport problems.
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(1/4) Dynamical Transport Problems in Rd
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Dynamical transport problems in M+(Rd).

For a given measurable, lsc function f : R+ × Rd → R ∪ {+∞}, we are interested in

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸
continuity equation

, µt=i = µi


where µ0, µ1 ∈ M+(Rd) are given initial and final measures, ξt := µtvt is the flux.

Figure: An evolution (µt)t ⊂ M+(Rd ) from µ0 to µ1 (edited from [Villani, 2009]).
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Examples of transport problems (1).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = |ξ|2/µ corresponds to the (2)-Wasserstein distance W2 :

W2(µ0, µ1)
2 = inf

(µt ,ξt )t

{� 1

0

�
Rd

|ξt |2

µt
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
whose dynamical interpretation is due to [Benamou and Brenier, 2000].

◦ More general: f (µ, ξ) = |ξ|p/m(µ)p−1 for m : R+ → R+ concave mobility:

Wp,m(µ0, µ1)
p := inf

(µt ,ξt )t

{� 1

0

�
Rd

|ξt |p

m(µt)p−1
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .
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Examples of transport problems (2).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = f (ξ) are flow-based problems (Beckmann problems). When f is convex:

� 1

0

�
Rd

f (ξt)dx dt
Jensen

≥
�
Rd

f

( � 1

0

ξt dt︸ ︷︷ ︸
=:ξ̄

)
dx =

�
Rd

f (ξ̄)dx ,

In this case, one has the equivalent static formulation:

Cf (µ0, µ1) = inf
ξ̄

{�
Rd

f (ξ̄)dx : ∇ · ξ̄ = µ0 − µ1

}
.

This includes W1 (f (ξ̄) = |ξ̄|) and negative Sobolev distance H−1 (f (ξ̄) = |ξ̄|2).
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Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, . . .

(2) Application to PDEs: theory of metric gradient flows.

∂tµt −∇ · (µt∇(DE(µt))) = 0, E : M+(Rd) → [0,+∞].

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

∂tµt = ∆µt , E(µ) =

�
Rd

log
( dµ

dx

)
dµ.

(3) Surprising connections with the Riemannian geometry (Lott–Villani–Sturm theory).

(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Discrete-to-continuum problem: the study of the convergence of (rescaled) discrete

transport problems (and evolutions) towards a continuous one.
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(2/4) Discrete Optimal Transport
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Optimal transport on discrete spaces.

The dynamical formulation of (2)-Wasserstein distance W2 on P2(Rd):

W2(µ0, µ1)
2 = inf

(µt ,ξt )t


� 1

0

�
Rd

|ξt |2

µt
dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸

continuity equation

, µt=i = µi .


Discrete setting: (X , E , ω) a weighted graph, that is X finite set of nodes, E set of

edges, and ω a weight function on E . We fix a reference measure π ∈ P(X ).
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Optimal transport on discrete spaces.
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� 1

0

�
Rd

|ξt |2

µt
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Discrete setting: (X , E , ω) a weighted graph, that is X finite set of nodes, E set of

edges, and ω a weight function on E . We fix a reference measure π ∈ P(X ).

Definition [Maas, 2011] [Mielke, 2011] : for m0,m1 ∈ P(X ):

Wθ(m0,m1)
2 := inf

(mt ,jt )


� 1

0

1

2

∑
(x,y)∈E

1

ω(x , y)

|jt(x , y)|2

θ
(

mt (x)
π(x)

, mt (y)
π(y)

) dt

 ,

where (mt , jt) is solution to the discrete continuity equation for x ∈ X :

∂tmt(x) +
∑
y∼x

jt(x , y) = 0, mt=i = mi ,

where jt(x , y) = −jt(y , x) (skew-symmetric).
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Why the logarithmic average? Maas (2011), Mielke (2011)

W(m0,m1)
2 := inf

(mt ,jt )


� 1

0

1

2

∑
(x,y)∈E

1

ω(x , y)

|jt(x , y)|2

θlog
(
rt(x), rt(y)

) dt

 .

θlog(r , s) =
r − s

log r − log s
, rt(x) :=

mt(x)

π(x)
(density).

Consider the discrete entropy functional E : (P(X ),W) → R+

E(m) :=
∑
x∈X

m(x) log

(
m(x)

π(x)

)
=

∑
x∈X

r(x) log r(x)π(x).

The gradient flow of E in (P(X ),W) is the graph heat flow

ṙt = ∆X rt , where ∆X r =
∑
y∼x

ω(x , y)

π(x)

(
r(y)− r(x)

)
(discrete Laplacian).
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(3/4) Gradient flows and Energy Dissipation

Inequality (EDI)
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Gradient flows: finite dimensional setting

Given a smooth function E : Rd → R, its gradient flow is described byẋt = −∇E(xt),

x(0) = x0 ∈ Rd .
(GF)

Energy dissipation: given any curve x = x(t), we compute

d

dt
E(xt) = ⟨ẋt ,∇E(xt)⟩ ≥ −1

2
|ẋt |2 −

1

2
|∇E(xt)|2 .

Curves of maximal slope: xt solves the ODE in (GF) if and only if for t > 0

d

dt
E(xt) ≤ −1

2
|ẋt |2 −

1

2
|∇E(xt)|2 .

Energy Dissipation Inequality (EDI) : solving (GF) is equivalent find xt such that

E(xT ) +
1

2

� T

0

|ẋt |2 + |∇E(xt)|2 dt ≤ E(x0) .
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Gradient flows: Wasserstein space

Energy Dissipation Inequality (EDI) formulation of ∂tµt −∇ · (µt∇(DE(µt))) = 0

E(µT ) +
1

2

� T

0

|µ̇t |2W2
+ |∂W2E(µt)|2 dt ≤ E(µ0)

Let E : (P2(Rd),W2) → R+ be a given function (for simplicity, convex).

|µ̇t |W2 := lim
h→0

W2(µt+h, µt)

h
(metric derivative)

|∂W2E(µ)| := lim sup
ν→µ

(E(ν)− E(µ))−
W2(µ, ν)

(metric slope)

Example: Ent(ρ dx) =
�
ρ log ρ dx corresponds to the heat equation ∂tµt = ∆µt .

|∂W2Ent(ρ dx)|
2 =

�
Rd

|∇ log ρ|2 dρ . (Fisher info)

Similar in the discrete case, using the discrete entropy E and distance W.
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(4/4) Discrete-to-Continuum Limits of Transport Problems and Gradient Flows

Discrete distances
WN on P(XN)

conv. distances

XN −→ Rd

continuous distances
W2 on P2(Rd)

Continuous GF

Discrete heat flow
ṙt = ∆X rt

Discrete GF

conv. PDEs Continuous heat flow
ρ̇t = ∆ρt

Gladbach, Kopfer, Maas, and P. Homogenisation of one-dimensional discrete optimal

transport. J. Math. Pures Appl. (9), 139:204–234, 2020.

Forkert, Maas, P. Evolutionary Γ-convergence of entropic grad. flow structures for

Fokker-Planck eq.s in multiple dimensions. SIAM Journal on Mathematical Analysis, 2022.

Gladbach, Kopfer, Maas, and P., Homogenisation of dynamical optimal transport on

periodic graphs, Calc. Var. PDE, 62(5), Paper No. 143, 75, 2023.

P. and F. Quattrocchi, Discrete-to-continuum limits of optimal transport with linear

growth on periodic graphs, to appear in EJAM.

Gladbach, Maas, and P. , Stochastic homogenisation of nonlinear minimum-cost flow

problems, in preparation.
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Discrete-to-continuum limits of transport problems: some literature.

(1) First convergence result [Gigli and Maas, 2013]: transport metrics associated to

the cubic mesh on the torus Td converge to W2 in the limit of vanishing mesh size.

(2) Geometric graphs on point clouds [Garćıa Trillos, 2020]: almost sure convergence

of the discrete metrics to W2, but diverging degree.

(3) Finite volume partitions T in Rd [Gladbach, Kopfer, and Maas, 2020]: convergence

of WT to W2 as size(T ) → 0 is essentially equivalent to an isotropy condition.
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Discrete-to-continuum limits of transport problems: some literature.

(4) Periodic homogenisation of transport problems [Gladbach, Kopfer, Maas, and P.,

2020 & 2023]: a complete characterisation of the limit costs in a periodic setting.

(5) Convergence of the gradient flows I: convergence of finite-volume discretisation of

diffusions [Disser and Liero, 2015], [Forkert, Maas, and P., 2020] (quadratic) ;

[Hraivoronska and Tse, 2023], [Hraivoronska, Schlichting, and Tse, 2023] (cosh);

[Cancès, Matthes, Nabet, and Rott, 2022] (nonlinear, p-Wasserstein).

(6) Convergence of the gradient flows II: generalised gradient-flow structures

associated to jump processes and nonlocal interaction equations [Esposito,

Patacchini, Schlichting, and Slepčev, 2021], [Esposito, Patacchini, and Schlichting,

2023b], [Esposito, Heinze, and Schlichting, 2023a].
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A typical discretisation: finite-volume partitions of euclidean domains

Standard finite-volume setup (e.g. [Eymard, Gallouët, and Herbin, 2000]) : Ω ⊂ Rd open,

bounded and convex, T = {K , xK} regular partition of Ω.

◦ Reference measure: π(xK ) = L d(K).

◦ Weights: ωF(xK , xL) =
H d−1 (∂K ∩ ∂L)

|xK − xL|
.

◦ Average: θlog(u, v) =
u − v

log u − log v
.

This uniquely define a discrete distance that we denote by WT , given by

WT (m0,m1)
2 :=

1

2
inf

{ � 1

0

∑
x∈T

∑
y∼x

1

ωF(x , y)

|jt(x , y)|2

θlog
(mt (x)

π(x)
,
mt (y)
π(y)

) dt : (mt , jt)t ∈ CET (m0,m1)

}

The discrete heat flow converges to the continuous one as size[T ] → 0.

But: WT does NOT always converge to W2 (isotropy needed)!
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Discrete-to-continuum: transport on periodic graphs.

Setting: Zd -periodic, symmetric, connected, and locally finite graph (X , E) in Rd .
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Discrete-to-continuum: transport on periodic graphs.

Setting: Zd -periodic, symmetric, connected, and locally finite graph (X , E) in Rd .
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Discrete-to-continuum: transport on periodic graphs.

Given a convex, local function f : M+(X )× RE → R ∪ {+∞}, we consider

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt) dt : ∂tmt(x) +
∑
y∼x

jt(x , y) = 0, jt skew-sym.

}

among jt ∈ RE
per and mt ∈ Mper

+ (X ), satisfying b.c. mt=0 = m0, mt=1 = m1.
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Transport on periodic graphs: some examples.

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : (mt , jt)t ∈ CEX (m0,m1)

}

◦ The edge-based case corresponds to the choice

f (m, j) =
1

2

∑
x∈X∩[0,1)d

∑
y∼x

fxy (m(x),m(y), j(x , y)).

The m-Wasserstein-like distances are obtained using quadratic functions

fxy (m, n, j) =
1

ω(x , y)

|j |2

m ◦ θ
(

m
π(x)

, n
π(y)

) , m, n ∈ R+, j ∈ R.

◦ The flow-based case corresponds to the choice f (m, j) = F (j) and

Cf (m0,m1) = inf

{
F (j) :

∑
y∼x

j(x , y) = m0 −m1

}
.
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Transport on periodic graphs: the convergence result.

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : (mt , jt)t ∈ CEX (m0,m1)

}

Lorenzo Portinale (HCM Bonn) Paris, November 20th, 2024 16 / 22



Transport on periodic graphs: the convergence result.
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εd f

(
mt(· − z)

εd
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jt(· − z)
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Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2023)

Assume f is convex, lower semicontinuous, with superlinear growth(∗) in j . Then Cε
f

Γ-converges in the weak∗-topology as ε → 0 to a continuous problem

Chom(µ0, µ1) = inf

{ � 1

0

�
Td

fhom
( dµt

dx
,
dξt
dx

)
dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi

}
,

where fhom is given by a cell problem depending on f and the initial graph (X , E).

◦ The d = 1, quadratic case: [Gladbach, Kopfer, Maas, and P., JMPA (2020)], with

very different techniques (interpolation).
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Application: periodic finite-volume partitions.

Wθ(m0,m1)
2 :=

1

2
inf

{ � 1

0

∑
x∈X

∑
y∼x

1

ωF(x , y)

|jt(x , y)|2

θ
(mt (x)

π(x)
,
mt (y)
π(y)

) dt : (mt , jt)t ∈ CEX (m0,m1)

}

where we choose: ωF(x , y) :=
H d−1(∂Kx ∩ ∂Ky )

|y − x | , π(x) := L d(Kx) .

Figure: Periodic finite-volume partition of Td .
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θ
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}

where we choose: ωF(x , y) :=
H d−1(∂Kx ∩ ∂Ky )

|y − x | , π(x) := L d(Kx) .

In this setting, the isotropy condition reads as, nxy := (y − x)/|y − x |,

1

2

∑
y∼x

dxyH
d−1(∂Kx ∩ ∂Ky )nxy ⊗ nxy = |Kx |id, ∀x ∈ X .
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Wθ(m0,m1)
2 :=

1

2
inf

{ � 1
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x∈X
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1

ωF(x , y)

|jt(x , y)|2

θ
(mt (x)

π(x)
,
mt (y)
π(y)

) dt : (mt , jt)t ∈ CEX (m0,m1)

}

One-dimensional: Wθ converges as ε → 0 to Whom = fhom(1, 1)W2, where

fhom(µ, ξ) =
|ξ|2

µ
fhom(1, 1), fhom(1, 1) = inf


M−1∑
k=0

|xk+1 − xk |
θ
(

mk
πk

,
mk+1

πk+1

) : ∥m∥ = 1

 ≤ 1.

Multidimensional: Wθ converges as ε → 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}

and fhom(µ, ξ) =
∥ξ∥2hom

µ
≤ |ξ|2

µ
with Whom = W2 if and only if the mesh is isotropic.
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Discrete flow problems in a random setting.

We study flow-based problems with random energy density on a random graph:

(1) a stationary random graph : ω ∈ (Ω,F ,P) 7→ (Xω, Eω) (vertices, edges) so that

∀z ∈ Zd , Law(Xω + z , E + z) = Law(Xω, Eω) (periodic in law) .

(2) a stationary energy: ω ∈ (Ω,F ,P) 7→ Fω = Fω(J,A), A ⊂ Rd , and study

Cω,A(m0,m1) = inf {Fω(J,A) : DivJ = m0 −m1} , m0,m1 ∈ P(Xω) .

Typical example are W1 is random environment, i.e.

Fω(J,A) :=
∑

(x,y)∈Eω

ωxy∥J(x , y)∥H 1([x , y ] ∩ A) , ωxy iid conductances .
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Stochastic homogenisation of linear growth problems.

Rescaling: for ε > 0, set Xω,ε := εXω, Eω,ε := εEω and define

Fω,ε(J,A) := εdFω

(
J(ε·, ε·)
εd−1

,
1

ε
A

)
.

Theorem (Gladbach, Maas, P. (2024+))

Let mi,ε ∈ P(Xε) so that mi,ε → µi ∈ P(Rd). Assume that

∀A ⊂ Rd , Fω(·,A) is Lipschitz and with linear growth.

Then, P-almost surely, Cω,ε,A Γ-converge as ε → 0 (weak topology) to Cω,A,hom, where

Fω,hom(ξ,A) =

�
A

fω,hom

( dξ

dx

)
dL d +

�
A

f ∞ω,hom

( dξ

d|ξ|

)
d|ξ|s .

where fω,hom : Rd → R is some homogenised energy density (cell formula).

Main tool: the blow-up method à la Fonseca–Müller.
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Multi-cell formula in the stochastic setting: computing fω,hom.

fω,hom: limit of cell problems on on large cubes. For ξ ∈ Rn ⊗ Rd and A ⊂ Rd ,

fω(ξ,A) = inf {Fω(J,A) : J ∈ Rep(ξ,A)} ,

where the set of representatives of ξ on A is given by

Rep(ξ,A) :=
{
J ∈ REω

a : DivJ = 0 and ”J = ξ” on ∂A
}

.

The homogenised energy density is computed as

fω,hom(ξ) := lim
N→∞

fω(ξ,NQ)

|NQ| . (1)

Existence by subadditive ergodic theorem [Akcoglu-Krengel ’81; Dal-Maso Modica ’86]:

fω(ξ,A) ≤
∑
i∈N

fω(ξ,Ai ) , A =
⋃
i∈N

, {Ai}i∈N disjoint , ξ ∈ Rn ⊗ Rd .
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Possible future directions

◦ Discrete-to-continuum limits of (generalised) gradient flows.

◦ Stochastic homogenisation for time dependent transport problems.

◦ Beyond the periodic case and optimal transport on manifolds.

Thank you!
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε → 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ Whom = W2 if and only if the mesh is isotropic: in the periodic setting, it reads

1

2

∑
y∼x

dxyH
d−1(∂Kx ∩ ∂Ky )nxy ⊗ nxy = |Kx |id, ∀x ∈ X .
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The cell problem: a formula for the limit fhom.

For m ∈ Mper
+ (X ) and Zd -periodic j ∈ RE

a , define:

∥m∥ :=
∑

x∈X∩[0,1)d

m(x) ∈ R+,

Eff(j) :=
1

2

∑
x∈X∩[0,1)d

∑
y∼x

j(x , y)(y − x) ∈ Rd ,

div j(x) :=
∑
y∼x

j(x , y) .

Cell problem: for any ρ ∈ R+, ξ ∈ Rd , the limit cost is given by

fhom(ρ, ξ) := inf
m,j

{
f (m, j) : ∥m∥ = ρ, Eff(j) = ξ, div j = 0

}
where the inf is taken over m ∈ Mper

+ (X ) and Zd -periodic, skew-sym. j ∈ RE .
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An example of a competitor for the cell problem

Example: ρ = 5, and ξ = (2, 3) ∈ R2. We can obtain a representative of ρ, ξ as follows:

Mass, effective flux, and discrete divergence:

∥m∥ :=
∑

x∈X∩[0,1)d

m(x) ∈ R+,

Eff(j) :=
1

2

∑
x∈X∩[0,1)d

∑
y∼x

j(x , y)(y − x) ∈ Rd ,

div j(x) :=
∑
y∼x

j(x , y) .

Cell problem: fhom(ρ, ξ) := inf
m,j

{
f (m, j) : ∥m∥ = 5, Eff(j) = (2, 3), div j = 0

}
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About the proof: the blow-up method.

Liminf: on a bounded domain U ⊂ Rd , for Jε → ξ, DivJε = mε → µ, we must show

lim inf
ε→0

Fω,ε(Jε,U) ≥ Fω,hom(ξ,U) =

�
U
fω,hom

( dξ

dx

)
dL d +

�
U
f ∞ω,hom

( dξ

d|ξ|

)
d|ξ|s .

Blow-up technique á la Fonseca–Müller:

νε := Fω,ε(Jε, ·) → ν ∈ M+(U) =⇒ ν(U) = lim
ε→0

νε(U) = lim inf
ε→0

Fω,ε(Jε,U) .

We write the Radon–Nikodym decomposition of ν and ξ

ξ =
dξ

dx
L d + ξs and ν =

dν

dx
L d +

dν

d|ξ| |ξ|
s + νss .

The liminf inequality ν(U) ≥ Fω,hom(ξ,U) would follow if

fω,hom

( dξ

dx

)
≤ dν

dx
L d − a.e. , (AC)

f ∞ω,hom

( dξ

d|ξ|

)
≤ dν

d|ξ| |ξ|s − a.e. . (S)
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε → 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ fhom(µ, ξ) =
∥ξ∥2hom

µ
≤ |ξ|2

µ
, where ∥ · ∥hom is a norm (possibly not Riemannian!)

Figure: Strongly oscillating measures on the graph scale can be cheaper.
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