Homogenisation of transport problems on graphs

Lorenzo Portinale, University of Bonn

FVOT workshop

Université Paris-Saclay, November 20, 2024

イロト イ押ト イヨト イヨト

- (1) A general class of dynamical transport problems in \mathbb{R}^d .
- (2) The discrete optimal transport problem on graphs.
- (3) Gradient flows via Energy Dissipation Inequality.
- (4) Discrete-to-continuum limits of transport problems.

メロトメ 御 トメ 差 トメ 差 トー 差

$(1/4)$ Dynamical Transport Problems in \mathbb{R}^d

KID KARA KE KIEK LE YORO

Dynamical transport problems in $\mathcal{M}_{+}(\mathbb{R}^{d})$.

For a given measurable, lsc function $f:\R^+\times\R^d\to\R\cup\{+\infty\}$, we are interested in

$$
C_f(\mu_0, \mu_1) := \inf_{(\mu_t, \xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} f(\mu_t, \xi_t) \, dx \, dt \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0}_{\text{continuity equation}}, \; \mu_{t=i} = \mu_i \right\}
$$

where $\mu_0,\,\mu_1\in\mathcal{M}_+(\mathbb{R}^d)$ are given initial and final measures, $\xi_t:=\mu_t\mathsf{v}_t$ is the flux.

Figure: An evolution $(\mu_t)_t \subset \mathcal{M}_+(\mathbb{R}^d)$ from μ_0 to μ_1 (edited from [\[Villani, 2009\]](#page-0-1)).

KORK@RKSERKER E

Examples of transport problems (1).

$$
C_f(\mu_0, \mu_1) := \inf_{(\mu_t, \xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} f(\mu_t, \xi_t) \, dx \, dt \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i}_{(\mu_t, \xi_t)_t \in \text{CE}(\mu_0, \mu_1)} \right\}
$$

 $\delta \circ f(\mu, \xi) = |\xi|^2/\mu$ corresponds to the (2) -Wasserstein distance \mathbb{W}_2 :

$$
\mathbb{W}_{2}(\mu_{0}, \mu_{1})^{2} = \inf_{(\mu_{t}, \xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_{t}, \xi_{t})_{t} \in \mathsf{CE}(\mu_{0}, \mu_{1}) \right\}
$$

whose dynamical interpretation is due to [\[Benamou and Brenier, 2000\]](#page-0-1).

 $A(D) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow \cdots \overline{D}$

Examples of transport problems (1).

$$
C_f(\mu_0, \mu_1) := \inf_{(\mu_t, \xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} f(\mu_t, \xi_t) \, dx \, dt \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i}_{(\mu_t, \xi_t)_t \in \text{CE}(\mu_0, \mu_1)} \right\}
$$

 $\delta \circ f(\mu, \xi) = |\xi|^2/\mu$ corresponds to the (2) -Wasserstein distance \mathbb{W}_2 :

$$
\mathbb{W}_{2}(\mu_{0}, \mu_{1})^{2} = \inf_{(\mu_{t}, \xi_{t})_{t}} \left\{ \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|\xi_{t}|^{2}}{\mu_{t}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_{t}, \xi_{t})_{t} \in \mathsf{CE}(\mu_{0}, \mu_{1}) \right\}
$$

whose dynamical interpretation is due to [\[Benamou and Brenier, 2000\]](#page-0-1).

 \circ More general: $f(\mu,\xi)=|\xi|^p/m(\mu)^{p-1}$ for $m:\mathbb{R}^+\to\mathbb{R}^+$ concave mobility:

$$
\mathbb{W}_{p,m}(\mu_0,\mu_1)^p := \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\xi_t|^p}{m(\mu_t)^{p-1}} \, \mathrm{d}x \, \mathrm{d}t \; : \; (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1) \right\}
$$

are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .

メロメメ 倒す メミメメミメン 言い

Examples of transport problems (2).

$$
C_f(\mu_0, \mu_1) := \inf_{(\mu_t, \xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} f(\mu_t, \xi_t) \, dx \, dt \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0, \; \mu_{t=i} = \mu_i}_{(\mu_t, \xi_t)_t \in \text{CE}(\mu_0, \mu_1)} \right\}
$$

 \circ $f(\mu, \xi) = f(\xi)$ are flow-based problems (Beckmann problems). When f is convex:

$$
\int_0^1 \int_{\mathbb{R}^d} f(\xi_t) \, \mathrm{d}x \, \mathrm{d}t \stackrel{\text{Jensen}}{\geq} \int_{\mathbb{R}^d} f\left(\underbrace{\int_0^1 \xi_t \, \mathrm{d}t}_{=: \bar{\xi}}\right) \mathrm{d}x = \int_{\mathbb{R}^d} f(\bar{\xi}) \, \mathrm{d}x,
$$

In this case, one has the equivalent static formulation:

$$
C_f(\mu_0,\mu_1)=\inf_{\bar{\xi}}\left\{\int_{\mathbb{R}^d}f(\bar{\xi})\,\mathrm{d} x\;:\;\nabla\cdot\bar{\xi}=\mu_0-\mu_1\right\}.
$$

This includes \mathbb{W}_1 $(f(\bar{\xi})=|\bar{\xi}|)$ and negative Sobolev distance H^{-1} $(f(\bar{\xi})=|\bar{\xi}|^2).$

Motivations.

 (1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.

$$
\partial_t \mu_t - \nabla \cdot (\mu_t \nabla(\mathsf{DE}(\mu_t))) = 0, \quad \mathsf{E} : \mathcal{M}_+(\mathbb{R}^d) \to [0, +\infty].
$$

[\[Jordan, Kinderlehrer, and Otto, 1998\]](#page-0-1): heat flow as gradient flow of the entropy

$$
\partial_t \mu_t = \Delta \mu_t, \quad \mathsf{E}(\mu) = \int_{\mathbb{R}^d} \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}x} \right) \mathrm{d}\mu.
$$

(3) Surprising connections with the Riemannian geometry (Lott–Villani–Sturm theory). (4) [\[Maas, 2011, Mielke, 2011\]](#page-0-1) : generalisation of these ideas to the **discrete setting**.

Discrete-to-continuum problem: the study of the convergence of (rescaled) discrete transport problems (and evolutions) towards a continuous one.

K ロ > K @ > K 경 > K 경 > 시 경

(2/4) Discrete Optimal Transport

Optimal transport on discrete spaces.

The dynamical formulation of (2) -Wasserstein distance \mathbb{W}_{2} on $\mathscr{P}_{2}(\mathbb{R}^{d})$:

$$
\mathbb{W}_2(\mu_0,\mu_1)^2 = \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\xi_t|^2}{\mu_t} \, \mathrm{d}x \, \mathrm{d}t \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0}_{\text{continuity equation}}, \; \mu_{t=i} = \mu_i. \right\}
$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is X finite set of nodes, $\mathcal E$ set of edges, and ω a weight function on $\mathcal E$. We fix a reference measure $\pi \in \mathcal P(X)$.

メロメメ 御 メメ きょく きょう

Optimal transport on discrete spaces.

The dynamical formulation of (2) -Wasserstein distance \mathbb{W}_{2} on $\mathscr{P}_{2}(\mathbb{R}^{d})$:

$$
\mathbb{W}_2(\mu_0,\mu_1)^2 = \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\xi_t|^2}{\mu_t} \, \mathrm{d}x \, \mathrm{d}t \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0}_{\text{continuity equation}}, \; \mu_{t=i} = \mu_i. \right\}
$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is X finite set of nodes, $\mathcal E$ set of edges, and ω a weight function on \mathcal{E} . We fix a reference measure $\pi \in \mathcal{P}(X)$.

Definition [\[Maas, 2011\] \[Mielke, 2011\]](#page-0-1) : for $m_0, m_1 \in \mathcal{P}(\mathcal{X})$:

$$
\mathcal{W}^{\theta}(m_0,m_1)^2:=\inf_{(m_t,j_t)}\left\{\int_0^1\frac{1}{2}\sum_{(x,y)\in\mathcal{E}}\frac{1}{\omega(x,y)}\frac{|j_t(x,y)|^2}{\theta\left(\frac{m_t(x)}{\pi(x)},\frac{m_t(y)}{\pi(y)}\right)}\,\mathrm{d}t\right\},
$$

where (m_t, j_t) is solution to the **discrete continuity equation** for $x \in \mathcal{X}$:

$$
\partial_t m_t(x) + \sum_{y \sim x} j_t(x, y) = 0, \quad m_{t=i} = m_i,
$$

where $j_t(x, y) = -j_t(y, x)$ (skew-symmetric).

Optimal transport on discrete spaces.

The dynamical formulation of (2) -Wasserstein distance \mathbb{W}_{2} on $\mathscr{P}_{2}(\mathbb{R}^{d})$:

$$
\mathbb{W}_2(\mu_0,\mu_1)^2 = \inf_{(\mu_t,\xi_t)_t} \left\{ \int_0^1 \int_{\mathbb{R}^d} \frac{|\xi_t|^2}{\mu_t} \, \mathrm{d}x \, \mathrm{d}t \; : \; \underbrace{\partial_t \mu_t + \nabla \cdot \xi_t = 0}_{\text{continuity equation}}, \; \mu_{t=i} = \mu_i. \right\}
$$

Discrete setting: $(\mathcal{X}, \mathcal{E}, \omega)$ a weighted graph, that is X finite set of nodes, $\mathcal E$ set of edges, and ω a weight function on \mathcal{E} . We fix a reference measure $\pi \in \mathcal{P}(X)$.

Definition [\[Maas, 2011\] \[Mielke, 2011\]](#page-0-1) : for $m_0, m_1 \in \mathcal{P}(\mathcal{X})$:

$$
\mathcal{W}(m_0,m_1)^2 := \inf_{(m_t,j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x,y) \in \mathcal{E}} \frac{1}{\omega(x,y)} \frac{|j_t(x,y)|^2}{\theta_{\log} \left(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)} \right)} \, \mathrm{d}t \right\},\,
$$

where (m_t, j_t) is solution to the **discrete continuity equation** for $x \in \mathcal{X}$:

$$
\partial_t m_t(x) + \sum_{y \sim x} j_t(x, y) = 0, \quad m_{t=i} = m_i,
$$

where $j_t(x, y) = -j_t(y, x)$ (skew-symmetric).

Why the logarithmic average? Maas (2011), Mielke (2011)

$$
\mathcal{W}(m_0, m_1)^2 := \inf_{(m_t, j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \frac{1}{\omega(x, y)} \frac{|j_t(x, y)|^2}{\theta_{\log}(r_t(x), r_t(y))} \, \mathrm{d}t \right\}.
$$

$$
\theta_{\log}(r, s) = \frac{r - s}{\log r - \log s}, \quad r_t(x) := \frac{m_t(x)}{\pi(x)} \text{ (density)}.
$$

Consider the discrete entropy functional $\mathcal{E} : (\mathscr{P}(\mathcal{X}), \mathcal{W}) \to \mathbb{R}^+$

$$
\mathcal{E}(m) := \sum_{x \in \mathcal{X}} m(x) \log \left(\frac{m(x)}{\pi(x)} \right) = \sum_{x \in \mathcal{X}} r(x) \log r(x) \pi(x).
$$

Why the logarithmic average? Maas (2011), Mielke (2011)

$$
\mathcal{W}(m_0, m_1)^2 := \inf_{(m_t, j_t)} \left\{ \int_0^1 \frac{1}{2} \sum_{(x, y) \in \mathcal{E}} \frac{1}{\omega(x, y)} \frac{|j_t(x, y)|^2}{\theta_{\log}(r_t(x), r_t(y))} \, \mathrm{d}t \right\}.
$$

$$
\theta_{\log}(r, s) = \frac{r - s}{\log r - \log s}, \quad r_t(x) := \frac{m_t(x)}{\pi(x)} \text{ (density)}.
$$

Consider the discrete entropy functional $\mathcal{E} : (\mathscr{P}(\mathcal{X}), \mathcal{W}) \to \mathbb{R}^+$

$$
\mathcal{E}(m) := \sum_{x \in \mathcal{X}} m(x) \log \left(\frac{m(x)}{\pi(x)} \right) = \sum_{x \in \mathcal{X}} r(x) \log r(x) \pi(x).
$$

The gradient flow of $\mathcal E$ in $(\mathscr P(\mathcal X), \mathcal W)$ is the graph heat flow

$$
\dot{r}_t = \Delta_{\mathcal{X}} r_t, \quad \text{where} \quad \Delta_{\mathcal{X}} r = \sum_{y \sim x} \frac{\omega(x, y)}{\pi(x)} \big(r(y) - r(x) \big) \quad \text{(discrete Laplacian)}.
$$

(3/4) Gradient flows and Energy Dissipation Inequality (EDI)

Given a smooth function $E: \mathbb{R}^d \to \mathbb{R}$, its gradient flow is described by

$$
\begin{cases}\n\dot{x}_t = -\nabla E(x_t), \\
x(0) = x_0 \in \mathbb{R}^d.\n\end{cases}
$$
\n(GF)

メロメメ 御 メメ きょくきょうき

Given a smooth function $E: \mathbb{R}^d \to \mathbb{R}$, its gradient flow is described by

$$
\begin{cases}\n\dot{x}_t = -\nabla E(x_t), \\
x(0) = x_0 \in \mathbb{R}^d.\n\end{cases}
$$
\n(GF)

Energy dissipation: given any curve $x = x(t)$, we compute

$$
\frac{\mathrm{d}}{\mathrm{d}t}E(x_t) = \langle \dot{x}_t, \nabla E(x_t) \rangle \geq -\frac{1}{2}|\dot{x}_t|^2 - \frac{1}{2}|\nabla E(x_t)|^2.
$$

 $A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \cup B$

Given a smooth function $E: \mathbb{R}^d \to \mathbb{R}$, its gradient flow is described by

$$
\begin{cases}\n\dot{x}_t = -\nabla E(x_t), \\
x(0) = x_0 \in \mathbb{R}^d.\n\end{cases}
$$
\n(GF)

Energy dissipation: given any curve $x = x(t)$, we compute

$$
\frac{\mathrm{d}}{\mathrm{d}t}E(x_t) = \langle \dot{x}_t, \nabla E(x_t) \rangle \geq -\frac{1}{2}|\dot{x}_t|^2 - \frac{1}{2}|\nabla E(x_t)|^2.
$$

Curves of maximal slope: x_t solves the ODE in [\(GF\)](#page-15-0) if and only if for $t > 0$

$$
\frac{\mathrm{d}}{\mathrm{d}t}E(x_t) \leq -\frac{1}{2}|\dot{x}_t|^2 - \frac{1}{2}|\nabla E(x_t)|^2.
$$

イロト 不優 トイミト イミト 一番

Given a smooth function $E: \mathbb{R}^d \to \mathbb{R}$, its gradient flow is described by

$$
\begin{cases}\n\dot{x}_t = -\nabla E(x_t), \\
x(0) = x_0 \in \mathbb{R}^d.\n\end{cases}
$$
\n(GF)

Energy dissipation: given any curve $x = x(t)$, we compute

$$
\frac{\mathrm{d}}{\mathrm{d}t}E(x_t) = \langle \dot{x}_t, \nabla E(x_t) \rangle \geq -\frac{1}{2}|\dot{x}_t|^2 - \frac{1}{2}|\nabla E(x_t)|^2.
$$

Curves of maximal slope: x_t solves the ODE in [\(GF\)](#page-15-0) if and only if for $t > 0$

$$
\frac{\mathrm{d}}{\mathrm{d}t}E(x_t)\leq -\frac{1}{2}|\dot{x}_t|^2-\frac{1}{2}|\nabla E(x_t)|^2.
$$

Energy Dissipation Inequality (EDI) : solving [\(GF\)](#page-15-0) is equivalent find x_t such that

$$
E(x_T) + \frac{1}{2} \int_0^T |\dot{x}_t|^2 + |\nabla E(x_t)|^2 dt \leq E(x_0).
$$

イロト 不優 トイミト イミト 一番

Gradient flows: Wasserstein space

Energy Dissipation Inequality (EDI) formulation of $\partial_t \mu_t - \nabla \cdot (\mu_t \nabla(\mathrm{DE}(\mu_t))) = 0$

$$
E(\mu_T) + \frac{1}{2} \int_0^T |\dot{\mu}_t|_{\mathbb{W}_2}^2 + |\partial_{\mathbb{W}_2} E(\mu_t)|^2 dt \leq E(\mu_0)
$$

Let $E: (\mathscr{P}_2(\mathbb{R}^d), \mathbb{W}_2) \to \mathbb{R}^+$ be a given function (for simplicity, convex).

$$
|\dot{\mu}_t|_{\mathbb{W}_2} := \lim_{h \to 0} \frac{\mathbb{W}_2(\mu_{t+h}, \mu_t)}{h}
$$
 (metric derivative)

$$
|\partial_{\mathbb{W}_2} E(\mu)| := \limsup_{\nu \to \mu} \frac{(E(\nu) - E(\mu))_-}{\mathbb{W}_2(\mu, \nu)}
$$
 (metric slope)

K ロ > K 個 > K 경 > K 경 > X 경

Gradient flows: Wasserstein space

Energy Dissipation Inequality (EDI) formulation of $\partial_t \mu_t - \nabla \cdot (\mu_t \nabla(\mathsf{DE}(\mu_t))) = 0$

$$
E(\mu_T) + \frac{1}{2} \int_0^T |\dot{\mu}_t|_{\mathbb{W}_2}^2 + |\partial_{\mathbb{W}_2} E(\mu_t)|^2 dt \leq E(\mu_0)
$$

Let $E: (\mathscr{P}_2(\mathbb{R}^d), \mathbb{W}_2) \to \mathbb{R}^+$ be a given function (for simplicity, convex).

$$
|\dot{\mu}_t|_{\mathbb{W}_2} := \lim_{h \to 0} \frac{\mathbb{W}_2(\mu_{t+h}, \mu_t)}{h}
$$
 (metric derivative)

$$
|\partial_{\mathbb{W}_2} E(\mu)| := \limsup_{\nu \to \mu} \frac{(E(\nu) - E(\mu))_-}{\mathbb{W}_2(\mu, \nu)}
$$
 (metric slope)

Example: Ent $(\rho \, dx) = \int \rho \log \rho \, dx$ corresponds to the heat equation $\partial_t \mu_t = \Delta \mu_t$.

$$
|\partial_{\mathbb{W}_2} \mathsf{Ent}(\rho \, \mathrm{d} x)|^2 = \int_{\mathbb{R}^d} |\nabla \log \rho|^2 \, \mathrm{d} \rho \, . \tag{\textsf{Fisher info}}
$$

Similar in the discrete case, using the discrete entropy $\mathcal E$ and distance $\mathcal W$.

(4/4) Discrete-to-Continuum Limits of Transport Problems and Gradient Flows

- Gladbach, Kopfer, Maas, and P. Homogenisation of one-dimensional discrete optimal transport. J. Math. Pures Appl. (9), 139:204–234, 2020.
- FORKERT, MAAS, P. Evolutionary Γ-convergence of entropic grad. flow structures for Fokker-Planck eq.s in multiple dimensions. SIAM Journal on Mathematical Analysis, 2022.
- **GLADBACH, KOPFER, MAAS, AND P., Homogenisation of dynamical optimal transport on** periodic graphs, Calc. Var. PDE, 62(5), Paper No. 143, 75, 2023.
- P. AND F. QUATTROCCHI, *Discrete-to-continuum limits of optimal transport with linear* growth on periodic graphs, to appear in EJAM.
- GLADBACH, MAAS, AND P., Stochastic homogenisation of nonlinear minimum-cost flow problems, in preparation. メロトメ 御 トメ 差 トメ 差 トー QQ

Discrete-to-continuum limits of transport problems: some literature.

(1) First convergence result [\[Gigli and Maas, 2013\]](#page-0-1): transport metrics associated to the cubic mesh on the torus \mathbb{T}^d converge to \mathbb{W}_2 in the limit of vanishing mesh size.

https://en.wikipedia.org/wiki/Torus

 \leftarrow \Box

- (2) Geometric graphs on point clouds [García Trillos, 2020]: almost sure convergence of the discrete metrics to W_2 , but diverging degree.
- (3) Finite volume partitions $\mathcal T$ in $\mathbb R^d$ [Gladbach, Kopfer, and Maas, 2020]: convergence of W_T to W_2 as size(T) \rightarrow 0 is essentially equivalent to an isotropy condition.

Discrete-to-continuum limits of transport problems: some literature.

(4) Periodic homogenisation of transport problems [Gladbach, Kopfer, Maas, and P., 2020 & 2023]: a complete characterisation of the limit costs in a periodic setting.

- (5) Convergence of the gradient flows I: convergence of finite-volume discretisation of diffusions [\[Disser and Liero, 2015\]](#page-0-1), [\[Forkert, Maas, and P., 2020\]](#page-0-1) (quadratic) ; [\[Hraivoronska and Tse, 2023\]](#page-0-1), [\[Hraivoronska, Schlichting, and Tse, 2023\]](#page-0-1) (cosh); [Cancès, Matthes, Nabet, and Rott, 2022] (nonlinear, p-Wasserstein).
- (6) Convergence of the gradient flows II: generalised gradient-flow structures associated to jump processes and nonlocal interaction equations [\[Esposito,](#page-0-1) Patacchini, Schlichting, and Slepčev, 2021], [\[Esposito, Patacchini, and Schlichting,](#page-0-1) [2023b\]](#page-0-1), [\[Esposito, Heinze, and Schlichting, 2023a\]](#page-0-1). K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

A typical discretisation: finite-volume partitions of euclidean domains

Standard finite-volume setup (e.g. [Eymard, Gallouët, and Herbin, 2000]) : $\Omega \subset \mathbb{R}^d$ open, bounded and convex, $\mathcal{T} = \{K, x_K\}$ regular partition of Ω .

This uniquely define a discrete distance that we denote by W_T , given by

$$
\mathcal{W}_{\mathcal{T}}(m_0,m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{T}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{F}}(x,y)} \frac{|j_t(x,y)|^2}{\theta_{\log}(\frac{m_t(x)}{\pi(x)},\frac{m_t(y)}{\pi(y)})} dt \ : \ (m_t,j_t)_t \in \mathsf{CE}_{\mathcal{T}}(m_0,m_1) \right\}
$$

K ロ > K 個 > K 경 > K 경 > X 경

A typical discretisation: finite-volume partitions of euclidean domains

Standard finite-volume setup (e.g. [Eymard, Gallouët, and Herbin, 2000]) : $\Omega \subset \mathbb{R}^d$ open, bounded and convex, $\mathcal{T} = \{K, x_K\}$ regular partition of Ω .

This uniquely define a discrete distance that we denote by W_T , given by

$$
\mathcal{W}_{\mathcal{T}}(m_0,m_1)^2:=\frac{1}{2}\inf\left\{\int_0^1\sum_{x\in\mathcal{T}}\sum_{y\sim x}\frac{1}{\omega_{\mathfrak{F}}(x,y)}\frac{|j_t(x,y)|^2}{\theta_{\log}\left(\frac{m_t(x)}{\pi(x)},\frac{m_t(y)}{\pi(y)}\right)}\,\mathrm{d} t\;:\;(m_t,j_t)_t\in\mathsf{CE}_{\mathcal{T}}(m_0,m_1)\right\}
$$

The discrete heat flow converges to the continuous one as size $[\mathcal{T}] \rightarrow 0$.

But: W_T does NOT always converge to W_2 (isotropy needed)!

Discrete-to-continuum: transport on periodic graphs.

造

メロトメ 御 トメ 重 トメ 重 トー

Discrete-to-continuum: transport on periodic graphs.

Setting: \mathbb{Z}^d -periodic, symmetric, connected, and locally finite graph $(\mathcal{X}, \mathcal{E})$ in \mathbb{R}^d .

イロト 不優 トメ 差 トメ 差 トー 差

Discrete-to-continuum: transport on periodic graphs.

Given a convex, local function $f:\mathcal{M}_+(\mathcal{X})\times\mathbb{R}^\mathcal{E}\to\mathbb{R}\cup\{+\infty\}$, we consider

$$
C_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) dt \ : \ \partial_t m_t(x) + \sum_{y \sim x} j_t(x, y) = 0, \ j_t \ \text{skew-sym.} \right\}
$$

among $j_t\in\mathbb{R}^\mathcal{E}_{\text{per}}$ and $m_t\in\mathcal{M}^{\text{per}}_+(\mathcal{X})$, satisfying b.c. $m_{t=0}=m_0,$ $m_{t=1}=m_1.$

Transport on periodic graphs: some examples.

$$
C_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) dt \ : \ (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

◦ The edge-based case corresponds to the choice

$$
f(m,j)=\frac{1}{2}\sum_{x\in\mathcal{X}\cap[0,1]^d}\sum_{y\sim x}f_{xy}(m(x),m(y),j(x,y)).
$$

The m-Wasserstein-like distances are obtained using quadratic functions

$$
f_{xy}(m,n,j)=\frac{1}{\omega(x,y)}\frac{|j|^2}{\mathfrak{m}\circ\theta\big(\frac{m}{\pi(x)},\frac{n}{\pi(y)}\big)},\quad m,n\in\mathbb{R}^+,~j\in\mathbb{R}.
$$

重

メロメメ 御 メメ きょく きょう

Transport on periodic graphs: some examples.

$$
C_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) dt \ : \ (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

◦ The edge-based case corresponds to the choice

$$
f(m,j)=\frac{1}{2}\sum_{x\in\mathcal{X}\cap[0,1]^d}\sum_{y\sim x}f_{xy}(m(x),m(y),j(x,y)).
$$

The m-Wasserstein-like distances are obtained using quadratic functions

$$
f_{xy}(m,n,j)=\frac{1}{\omega(x,y)}\frac{|j|^2}{\mathfrak{m}\circ\theta\big(\frac{m}{\pi(x)},\frac{n}{\pi(y)}\big)},\quad m,n\in\mathbb{R}^+, j\in\mathbb{R}.
$$

 \circ The flow-based case corresponds to the choice $f(m, j) = F(j)$ and

$$
C_f(m_0,m_1)=\inf\left\{F(j)\;:\;\sum_{y\sim x}j(x,y)=m_0-m_1\right\}.
$$

イロト 不優 トイミト イミト 一番

$$
C_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) \, \mathrm{d}t \; : \; (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

イロト 不優 トメ 差 トメ 差 トー 差

$$
C_f(m_0, m_1) := \inf \left\{ \int_0^1 f(m_t, j_t) \, \mathrm{d}t \; : \; (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

Figure: One the right, the rescaled graph $\mathcal{X}_{\varepsilon} = \varepsilon \mathcal{X}$, $\mathcal{E}_{\varepsilon} = \varepsilon \mathcal{E}$, for $\frac{1}{\varepsilon} \in \mathbb{N}$.

$$
C_f^{\varepsilon}(m_0, m_1) := \inf \left\{ \int_0^1 \sum_{z \in \mathbb{T}_{\varepsilon}^d} \varepsilon^d f\left(\frac{m_t(\cdot - z)}{\varepsilon^d}, \frac{j_t(\cdot - z)}{\varepsilon^{d-1}}\right) dt \ : \ (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_0, m_1) \right\}
$$

Figure: One the right, the rescaled graph $\mathcal{X}_{\varepsilon} = \varepsilon \mathcal{X}$, $\mathcal{E}_{\varepsilon} = \varepsilon \mathcal{E}$, for $\frac{1}{\varepsilon} \in \mathbb{N}$.

 $A(D) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow \cdots \overline{D}$

$$
C_f^{\varepsilon}(m_0, m_1) := \inf \left\{ \int_0^1 \sum_{z \in \mathbb{T}_{\varepsilon}^d} \varepsilon^d f\left(\frac{m_t(\cdot - z)}{\varepsilon^d}, \frac{j_t(\cdot - z)}{\varepsilon^{d-1}}\right) dt \ : \ (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}_{\varepsilon}}(m_0, m_1) \right\}
$$

Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2023)

Assume f is convex, lower semicontinuous, with superlinear growth $^{(*)}$ in j. Then $\mathcal{C}^{\varepsilon}_{f}$ $\overline{\Gamma}$ -converges in the weak * -topology as $\varepsilon \to 0$ to a continuous problem

$$
C_{\text{hom}}(\mu_0,\mu_1)=\inf\Bigg\{\int_0^1\int_{\mathbb{T}^d}f_{\text{hom}}\Big(\frac{\mathrm{d}\mu_t}{\mathrm{d}x},\frac{\mathrm{d}\xi_t}{\mathrm{d}x}\Big)\,\mathrm{d}x\,\mathrm{d}t\ :\ \partial_t\mu_t+\nabla\cdot\xi_t=0,\ \mu_{t=i}=\mu_i\Bigg\},
$$

where f_{hom} is given by a cell problem depending on f and the initial graph $(\mathcal{X}, \mathcal{E})$.

 \circ The $d = 1$, quadratic case: [Gladbach, Kopfer, Maas, and P., JMPA (2020)], with very different techniques (interpolation).

メロメメ 御 メメ きょくきょう

$$
\mathcal{W}_{\theta}(m_0, m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{F}}(x, y)} \frac{|j_t(x, y)|^2}{\theta(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)})} dt \; : \; (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

where we choose:
$$
\omega_{\mathfrak{F}}(x, y) := \frac{\mathcal{H}^{d-1}(\partial K_x \cap \partial K_y)}{|y - x|}, \quad \pi(x) := \mathcal{L}^d(K_x)
$$
.

Figure: Periodic finite-volume partition of \mathbb{T}^d .

重

メロトメ 倒 トメ ミトメ ミトー

$$
\mathcal{W}_{\theta}(m_0, m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{F}}(x, y)} \frac{|j_t(x, y)|^2}{\theta(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)})} dt \; : \; (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

where we choose:
$$
\omega_{\mathfrak{F}}(x, y) := \frac{\mathcal{H}^{d-1}(\partial K_x \cap \partial K_y)}{|y - x|}, \quad \pi(x) := \mathcal{L}^d(K_x)
$$
.

In this setting, the **isotropy condition** reads as, $n_{xy} := (y - x)/|y - x|$,

$$
\frac{1}{2}\sum_{y\sim x}d_{xy}\mathscr{H}^{d-1}(\partial K_x\cap \partial K_y)n_{xy}\otimes n_{xy} = |K_x|id, \quad \forall x \in \mathcal{X}.
$$
\n
$$
\underbrace{d_{xy}\mathscr{H}^{d-1}(\partial K_x\cap \partial K_y)(n_{xy}\cdot v)^2}_{\mathcal{K}_x}
$$
\n
$$
\underbrace{d_{xy}\mathscr{H}^{d-1}(\partial K_x\cap \partial K_y)(n_{xy}\cdot v)^2}_{\mathcal{K}_y}.
$$
\n
$$
\underbrace{G_{xy}:=\{w=\partial K_x\cap \partial K_y+\mathbb{R}v\;:\;w\cdot v\in \text{conv}(x\cdot v,y\cdot v)\}}.
$$

Lorenzo Portinale (HCM Bonn) [Paris, November 20th, 2024](#page-0-0) 18/22

 298

$$
\mathcal{W}_{\theta}(m_0, m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{F}}(x, y)} \frac{|j_t(x, y)|^2}{\theta(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)})} dt \ : (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

One-dimensional: W_{θ} converges as $\varepsilon \to 0$ to $W_{\text{hom}} = f_{\text{hom}}(1,1)W_2$, where

$$
f_{\text{hom}}(\mu,\xi)=\frac{|\xi|^2}{\mu}f_{\text{hom}}(1,1),\quad f_{\text{hom}}(1,1)=\inf\left\{\sum_{k=0}^{M-1}\frac{|x_{k+1}-x_k|}{\theta\left(\frac{m_k}{\pi_k},\frac{m_{k+1}}{\pi_{k+1}}\right)}\;:\;\|m\|=1\right\}\leq 1.
$$

K ロ > K @ > K 경 > K 경 > 시 경

$$
\mathcal{W}_{\theta}(m_0, m_1)^2 := \frac{1}{2} \inf \left\{ \int_0^1 \sum_{x \in \mathcal{X}} \sum_{y \sim x} \frac{1}{\omega_{\mathfrak{F}}(x, y)} \frac{|j_t(x, y)|^2}{\theta(\frac{m_t(x)}{\pi(x)}, \frac{m_t(y)}{\pi(y)})} dt \ : (m_t, j_t)_t \in \mathsf{CE}_{\mathcal{X}}(m_0, m_1) \right\}
$$

One-dimensional: W_{θ} converges as $\varepsilon \to 0$ to $W_{\text{hom}} = f_{\text{hom}}(1,1)W_2$, where

$$
f_{\text{hom}}(\mu,\xi)=\frac{|\xi|^2}{\mu}f_{\text{hom}}(1,1),\quad f_{\text{hom}}(1,1)=\inf\left\{\sum_{k=0}^{M-1}\frac{|x_{k+1}-x_k|}{\theta\left(\frac{m_k}{\pi_k},\frac{m_{k+1}}{\pi_{k+1}}\right)}\;:\;\|m\|=1\right\}\leq 1.
$$

Multidimensional: W_{θ} converges as $\varepsilon \to 0$ to \mathbb{W}_{hom} , where

$$
\mathbb{W}_{\text{hom}}^2(\mu_0, \mu_1) = \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\text{hom}}(\mu_t, \xi_t) \, dx \, dt \; : \; (\mu_t, \xi_t)_t \in \mathsf{CE}(\mu_0, \mu_1) \right\}
$$

and $f_{\text{hom}}(\mu,\xi) = \frac{\|\xi\|_{\text{hom}}^2}{\mu} \leq \frac{|\xi|^2}{\mu}$ $\frac{1}{\mu}$ with $\mathbb{W}_{\hom} = \mathbb{W}_2$ if and only if the mesh is isotropic.

メロメメ 御き メミドメミドン ミ

Discrete flow problems in a random setting.

We study flow-based problems with random energy density on a random graph:

(1) a stationary random graph : $\omega \in (\Omega, \mathcal{F}, \mathbb{P}) \mapsto (\mathcal{X}_{\omega}, \mathcal{E}_{\omega})$ (vertices, edges) so that

$$
\forall z \in \mathbb{Z}_d , \quad \mathsf{Law}(\mathcal{X}_\omega + z, \mathcal{E} + z) = \mathsf{Law}(\mathcal{X}_\omega, \mathcal{E}_\omega) \qquad \text{(periodic in law)}.
$$

 (2) a stationary energy: $\omega\in (\Omega,\mathcal{F},\mathbb{P})\mapsto \mathcal{F}_\omega=\mathcal{F}_\omega(J,A),$ $A\subset\mathbb{R}^d$, and study

$$
C_{\omega,A}(m_0,m_1) = \inf \{ F_{\omega}(J,A) : \text{Div} J = m_0 - m_1 \}, \quad m_0, m_1 \in \mathcal{P}(\mathcal{X}_{\omega}).
$$

Typical example are \mathbb{W}_1 is random environment, i.e.

$$
\mathsf{F}_\omega(\mathit{J},A) := \sum_{(x,y) \in \mathcal{E}_\omega} \omega_{xy} \| \mathit{J}(x,y) \| \mathscr{H}^1([x,y] \cap A), \qquad \omega_{xy} \text{ iid conductances.}
$$

€ □ >

Stochastic homogenisation of linear growth problems.

Rescaling: for $\varepsilon > 0$, set $\mathcal{X}_{\omega,\varepsilon} := \varepsilon \mathcal{X}_{\omega}, \, \mathcal{E}_{\omega,\varepsilon} := \varepsilon \mathcal{E}_{\omega}$ and define

$$
\mathsf{F}_{\omega,\varepsilon}(\mathsf{J},\mathsf{A}) := \varepsilon^d \mathsf{F}_{\omega} \left(\frac{\mathsf{J}(\varepsilon \cdot, \varepsilon \cdot)}{\varepsilon^{d-1}}, \frac{1}{\varepsilon} \mathsf{A} \right) .
$$

 $A(D) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow \cdots \overline{D}$

Stochastic homogenisation of linear growth problems.

Rescaling: for $\varepsilon > 0$, set $\mathcal{X}_{\omega,\varepsilon} := \varepsilon \mathcal{X}_{\omega}, \ \mathcal{E}_{\omega,\varepsilon} := \varepsilon \mathcal{E}_{\omega}$ and define

$$
\mathsf{F}_{\omega,\varepsilon}(\mathsf{J},\mathsf{A}) := \varepsilon^d \mathsf{F}_{\omega}\left(\frac{\mathsf{J}(\varepsilon,\varepsilon\cdot)}{\varepsilon^{d-1}},\frac{1}{\varepsilon}\mathsf{A}\right) .
$$

Theorem (Gladbach, Maas, P. $(2024+)$)

Let $m_{i,\varepsilon}\in \mathscr{P}(\mathcal{X}_\varepsilon)$ so that $m_{i,\varepsilon}\to \mu_i\in \mathscr{P}(\mathbb{R}^d)$. Assume that

 $\forall \mathcal{A} \subset \mathbb{R}^d, \quad \digamma_\omega(\cdot, A)$ is Lipschitz and with linear growth.

Then, P-almost surely, $C_{\omega,\varepsilon,A}$ **Γ-converge** as $\varepsilon \to 0$ (weak topology) to $\mathbb{C}_{\omega,A,\text{hom}}$, where

$$
\mathbb{F}_{\omega,\text{hom}}(\xi,A) = \int_A f_{\omega,\text{hom}}\left(\frac{\mathrm{d}\xi}{\mathrm{d}x}\right) \mathrm{d}\mathscr{L}^d + \int_A f_{\omega,\text{hom}}^{\infty}\left(\frac{\mathrm{d}\xi}{\mathrm{d}|\xi|}\right) \mathrm{d}|\xi|^s.
$$

where $f_{\omega,\text{hom}}: \mathbb{R}^d \to \mathbb{R}$ is some homogenised energy density (cell formula).

Main tool: the blow-up method à la Fonseca-Müller.

メロトメ 御 メメ きょくぼう 一番

Multi-cell formula in the stochastic setting: computing $f_{\omega, \text{hom}}$.

 $f_{\omega,\text{hom}}\colon$ limit of cell problems on on large cubes. For $\xi\in\mathbb{R}^n\otimes\mathbb{R}^d$ and $A\subset\mathbb{R}^d$,

$$
f_{\omega}(\xi, A) = \inf \{ F_{\omega}(J, A) : J \in \text{Rep}(\xi, A) \},
$$

where the set of representatives of ξ on A is given by

$$
\mathsf{Rep}(\xi,A) := \left\{ J \in \mathbb{R}^{\mathcal{E}_\omega}_a \ : \ \mathsf{Div} J = 0 \quad \text{and} \quad "J = \xi" \ \text{on} \ \partial A \right\} \, .
$$

The **homogenised energy density** is computed as

$$
f_{\omega,\text{hom}}(\xi) := \lim_{N \to \infty} \frac{f_{\omega}(\xi, NQ)}{|NQ|} \,. \tag{1}
$$

メロトメ 御 トメ 差 トメ 差 トー 差

Existence by subadditive ergodic theorem [Akcoglu-Krengel '81; Dal-Maso Modica '86]:

$$
f_{\omega}(\xi,A) \leq \sum_{i\in\mathbb{N}} f_{\omega}(\xi,A_i), \quad A = \bigcup_{i\in\mathbb{N}} , \quad \{A_i\}_{i\in\mathbb{N}} \text{ disjoint}, \quad \xi \in \mathbb{R}^n \otimes \mathbb{R}^d.
$$

- Discrete-to-continuum limits of (generalised) gradient flows.
- Stochastic homogenisation for time dependent transport problems.
- Beyond the periodic case and optimal transport on manifolds.

重

イロト イ団 トイミト イミト

- Discrete-to-continuum limits of (generalised) gradient flows.
- Stochastic homogenisation for time dependent transport problems.
- Beyond the periodic case and optimal transport on manifolds.

Thank you!

э

Ω

メロメメ 倒 メメ きょくきょう

- Discrete-to-continuum limits of (generalised) gradient flows.
- Stochastic homogenisation for time dependent transport problems.
- Beyond the periodic case and optimal transport on manifolds.

Thank you!

э

Ω

メロメメ 倒 メメ きょくきょう

- Discrete-to-continuum limits of (generalised) gradient flows.
- Stochastic homogenisation for time dependent transport problems.
- Beyond the periodic case and optimal transport on manifolds.

Thank you!

э

Ω

メロメメ 倒 メメ きょくきょう

The role of isotropy in the periodic setting

Theorem (multidimensional): W_{θ} converges as $\varepsilon \to 0$ to W_{hom} , where

$$
\mathbb{W}_{\text{hom}}^2(\mu_0,\mu_1)=\left\{\int_0^1\int_{\mathbb{T}^d}f_{\text{hom}}(\mu_t,\xi_t)\,\mathrm{d} x\,\mathrm{d} t\ :\ (\mu_t,\xi_t)_t\in\mathsf{CE}(\mu_0,\mu_1)\right\},\quad\text{where}
$$

 \circ W_{hom} = W₂ if and only if the mesh is isotropic: in the periodic setting, it reads

The cell problem: a formula for the limit f_{hom} .

For
$$
m \in \mathcal{M}_+^{\text{per}}(\mathcal{X})
$$
 and \mathbb{Z}^d -periodic $j \in \mathbb{R}_a^{\mathcal{E}}$, define:
\n
$$
||m|| := \sum_{x \in \mathcal{X} \cap [0,1)^d} m(x) \in \mathbb{R}^+,
$$
\n
$$
\text{Eff}(j) := \frac{1}{2} \sum_{x \in \mathcal{X} \cap [0,1)^d} \sum_{y \sim x} j(x,y)(y-x) \in \mathbb{R}^d,
$$
\n
$$
\text{div } j(x) := \sum_{y \sim x} j(x,y).
$$

メロメメ 御 メメ きょく きょう

Cell problem: for any $\rho \in \mathbb{R}^+$, $\xi \in \mathbb{R}^d$, the limit cost is given by

$$
f_{\text{hom}}(\rho,\xi) := \inf_{m,j} \left\{ f(m,j) : ||m|| = \rho, \text{ Eff}(j) = \xi, \text{ div } j = 0 \right\}
$$

where the inf is taken over $m\in\mathcal{M}_+^{\sf per}(\mathcal{X})$ and \mathbb{Z}^d -periodic, skew-sym. $j\in\mathbb{R}^\mathcal{E}$.

重

An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:

An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:

An example of a competitor for the cell problem

Example: $\rho = 5$, and $\xi = (2,3) \in \mathbb{R}^2$. We can obtain a representative of ρ , ξ as follows:

About the proof: the blow-up method.

Liminf: on a bounded domain $U \subset \mathbb{R}^d$, for $J_\varepsilon \to \xi$, Div $J_\varepsilon = m_\varepsilon \to \mu$, we must show

$$
\liminf_{\varepsilon \to 0} F_{\omega,\varepsilon}(J_{\varepsilon},\overline{U}) \geq \mathbb{F}_{\omega,\hom}(\xi,\overline{U}) = \int_{\overline{U}} f_{\omega,\hom}\left(\frac{\mathrm{d}\xi}{\mathrm{d}x}\right) \mathrm{d}\mathscr{L}^d + \int_{\overline{U}} f_{\omega,\hom}^{\infty}\left(\frac{\mathrm{d}\xi}{\mathrm{d}|\xi|}\right) \mathrm{d}|\xi|^{s}.
$$

Blow-up technique á la Fonseca-Müller:

$$
\nu_{\varepsilon}:=\mathsf F_{\omega,\varepsilon}(\mathsf J_{\varepsilon},\cdot)\to\nu\in\mathcal M_+(\overline U)\quad\Longrightarrow\quad\nu(\overline U)=\lim_{\varepsilon\to 0}\nu_{\varepsilon}(\overline U)=\liminf_{\varepsilon\to 0}\mathsf F_{\omega,\varepsilon}(\mathsf J_{\varepsilon},\overline U)\,.
$$

We write the Radon–Nikodym decomposition of ν and ξ

$$
\xi = \frac{\mathrm{d}\xi}{\mathrm{d}x}\mathscr{L}^d + \xi^s \qquad \text{and} \qquad \nu = \frac{\mathrm{d}\nu}{\mathrm{d}x}\mathscr{L}^d + \frac{\mathrm{d}\nu}{\mathrm{d}|\xi|}|\xi|^s + \nu^{ss}.
$$

The liminf inequality $\nu(\overline{U}) \geq F_{\omega, \text{hom}}(\xi, \overline{U})$ would follow if

$$
f_{\omega, \text{hom}}\left(\frac{\mathrm{d}\xi}{\mathrm{d}x}\right) \leq \frac{\mathrm{d}\nu}{\mathrm{d}x} \qquad \mathscr{L}^d - \text{a.e.},
$$
\n(AC)

$$
f_{\omega,\text{hom}}^{\infty}\left(\frac{\mathrm{d}\xi}{\mathrm{d}|\xi|}\right) \leq \frac{\mathrm{d}\nu}{\mathrm{d}|\xi|} \qquad |\xi|^{s} - \text{a.e.} \qquad (S)
$$

メロメメ 倒 メメ きょくきょう

造

The role of isotropy in the periodic setting

Theorem (multidimensional): W_{θ} converges as $\varepsilon \to 0$ to \mathbb{W}_{hom} , where

$$
\mathbb{W}^2_{\mathsf{hom}}(\mu_0,\mu_1) = \left\{ \int_0^1 \int_{\mathbb{T}^d} f_{\mathsf{hom}}(\mu_t,\xi_t) \,\mathrm{d} x \,\mathrm{d} t \; : \; (\mu_t,\xi_t)_t \in \mathsf{CE}(\mu_0,\mu_1) \right\}, \quad \text{where}
$$

 \circ $f_{\mathsf{hom}}(\mu,\xi) = \frac{\Vert \xi \Vert_{\mathsf{hom}}^2}{\mu} \leq \frac{\vert \xi \vert^2}{\mu}$ $\frac{s_{\perp}}{\mu}$, where $\|\cdot\|_{\textsf{hom}}$ is a norm (possibly not Riemannian!)

Figure: Strongly oscillating measures on the graph scale can be cheaper.

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$