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Outline of the talk

@ Basics on convection-diffusion equations



Fokker-Planck equation (with anisotropy)

ou+divI =0, J=A(-Vu—uV®), in Qx(0,T)
+ Dirichlet on T'” and no-flux on TV, 9Q = TP TV

u(-,0) =ug >0

Examples

@ Semiconductor models, corrosion models

= A=TorA={lp <:|ib i1b> (with magnetic field)

w= coupling with a Poisson equation for ®

@ Porous media flow
w A bounded, symmetric and uniformly elliptic

- =gz
Assumptions : @ € C1(Q,R), / ug > 0.
Q



Structural properties

ou+divI =0, J=A(-Vu—uVD),
u(-,0) = up > 0 + boundary conditions

@ Existence and uniqueness of the solution
o Nonnegativity of u, mass conservation if I'? = ()

@ Existence of a thermal equilibrium :
— @ _
Uso = pe (= J =0)

w if TP =),

p= Q , so that /uoo:/uo
/e—cp Q Q
Q

m if TP £ () and uP = pe~®" on T'P.




Reformulation of the convection-diffusion fluxes

= pei

Ou+divI=0 J=-Vu—uVD,
J-n=0onT" and u=u” onTP.

Equivalence
J=—Vu—-uVoe

—u
= ¥V —
uOO

u
= —uVlog e
= —uV(logu + @)

Towards nonlinear convection diffusion fluxes (4 /a Onsager)

J=—n(uw)V(p(u) + 2,P)

1 : mobility, i : chemical potential, 2, : charge



Long time behaviour of the Fokker-Planck equation

Ou+divJ=0, J=-Vu—uVo,
u® = pe—d)
Jn=0onT" and uw=u" onTP.
Dissipation of some relative W-entropies
U C2-convex function, ¥(1) = /(1) =0
Bt) = [ veu(.%) ‘
Q u
L
I(t) = / UV () .V dt ’
Q u u with T > 0.
/uV\II( ) Vlog—
Q

Exponential decay of the relative W-entropies

For some specific choice of ¥ and thanks to functional inequalities,

JveR, E(t) <E(0)e ™.



Outline of the talk

© Two-Point Flux Approximation of linear convection-diffusion



TPFA finite volume schemes

Ou+div =0

Generic form of the finite volume schemes

o (forward Euler) scheme in time
un+1

At
@ integration of the balance law over control volumes
n+1

ug —ug 1
m(K) =+ ; Frl=0VKeT
ocEEK

Fro = / J-ng, Voecfk.

First examples of numerical fluxes (TPFA)

UK — U
o J=-Vu Fg,= m(a)% = 1,(ug —ur)
g
UK +ur,
o J=vu Fro = m(a)vKﬁT, VKo N j{ V- Ng,
(o



B-numerical fluxes / B-schemes

fK,U%/J'nKp'
with J = —Vu — uVo.

™ o upwind flux : Byy(z) = 1 + max(—z,0)
N o centered flux : Be.(z) =1 — g

@ SG flux : Bgg(z) = ep%
XD T —

Q C.-H., Droniou, 2011



o S i(z,y) =Ty o So_1=uay(logz —logy)/(x —y)
0 So1=(r+y)/2 o S_o_1=2xy/(z+vy)

U HEDA, KANTNER, STEFAN, 2021
U Brezzi, MARINI, PIETRA, 1989



S-numerical fluxes / exp. fitting schemes

oc=K|L
AX],
Fa= [3
Uu > ng o
with J = —u®V—, u*® =¢"".
uOO
UK ur,
o o
Fro = ToS(UE, uT )(—oo = —Oo>,
U  up

Properties of the S-functions

S(x,y) = 2S(1, %) e
T -
S(z.y) =yS(1, ) SR, uy) _



S-numerical fluxes / exp. fitting schemes KL
AL
-FK,O' ~ /J : nK,O' =
Uu ng o
with J = —u®*V—, u>® =¢°.
uOO
Uk ug
Fico = 1ot uf) (o — =),
Ug Up

S-flux vs B-flux

Ba,>
. . B © By
The S-flux rewrites as a B-flux with 1o o
B — Bo,—1
SO -




B-scheme vs S-scheme?
o S-flux = B-flux, with B(x) = S(1,e™%),
but B(z) — B(—z) = —x iff S = Sp_1 and B = Bgg.
B-flux = S-flux?
if S(u,ui’) =uRB(®L — Pk) = uPB(Pr — L)
iff B = Bsg, and therefore S = 5y _1.

Preservation of the thermal equilibrium ?

always true for the S-flux.

Preservation of the positivity ?

yes, for both schemes (monotonicity of the fluxes).

Exponential decay towards thermal equilibrium ?

discrete counterpart of the entropy-dissipation estimate ?



Reformulation of the SG B-fluxes
J=—-uV Iogi.O = —uV(logu + ®)
u

With the Bernoulli function B(z) = z/(e* — 1)
fK,a’ = TU<B(<I>L - (I)K)UK - B(—CI)L + (I)K)UL)

0=r1, (B(loguK —logur)ux — B(loguy — loguK)uL)

This implies

Fiw =1, (B(yg);:f(x)“K N B(—x; - 5(—y)uL> (z— )

with x = logug — loguyr, y = ¢ — P,
so that x — y = logug + ®x — (loguy, + ®1)

Q Cancks, C.-H., FUHRMANN, GAUDEUL, 2021



Reformulation of the SG B-fluxes

J=—-uV Iogui.o = —uV(logu + ®)
With the Bernoulli function B(x) = z/(e® — 1)
Fro = TU(B(<1>L — ®x)ugx — B(—Dp, + @K)uL)
0=r1, (B(loguK —logur)ux — B(loguy — loguK)uL)
This implies
FKko = TeTKL <loguK + ®x — (logur + <I>L)>

with 7, convex combination of ug and uy,

(depending also on @, and ®;)

Q Cancks, C.-H., FUHRMANN, GAUDEUL, 2021



More generally : nonlinear numerical fluxes

J=-Vu—-uV®=—uV(logu+ D)

Fro & / —uV(logu+ @) - ng
ag

FK,O‘ = TUT‘(U,K,’LLL) (loguK + P — loguL — (I)L)

with 7(ug,ur) a given mean value between ugx and uy,

Q Cancks, C.-H., HERDA, KRELL, 2020



Beyond the TPFA schemes

Drawbacks of the TPFA schemes
@ Admissibility of the mesh (orthogonality property)

o A=1

Main objectives from now on
@ Design of schemes that are applicable

e on almost-general meshes,
o for anisotropic equations,

@ while preserving :

e positivity, conservation of mass,
e thermal equilibrium and long-time behaviour,

@ and with the possibility of extension to high order schemes.

- Hybrid finite volume schemes.

Q EYMARD, GALLOUET, HERBIN, 2010
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Mesh and unknowns

Mesh D= (M,E,P)
@ M : set of the control volumes (K)

o & : set of the faces (o)

@ P : set of the cell centers (xx)Kem

Set of discrete unknowns Vp

up = {(ur)Kem, (Uo)oee} and upg i 2 — R
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HFV scheme for a diffusion equation

—div (AVu) = f  + boundary conditions

Foundations of the HFV scheme
o A discrete gradient operator Vp on Vp :
# Vpup is piecewise constant on the pyramidal submesh,
* on Pk ., Vpup depends only on vy = (vi, (Vo )ocsy )

and is made of a consistent part and a stabilisation part.

o Some discrete bilinear forms a4, and (a%) ke :

a%(@DvyD) = (AVpup, Vpup)a = Z a?{(@K&K)'
KeM

= definition of the scheme via a variational formulation.



HFV scheme for a diffusion equation
Local discrete bilinear forms and numerical fluxes

a%(”K?”K) (vg — Uo)aeSK Ak (uk — Ua)aeeK

with Ag = (A2 Vg e, € Siey

FKUu'D ZAUU UK_UO-)

o'efk

The HFV scheme

ZFKUUD /f

o€EEK

Ff (up) + FP (up) =0 Vo = K|L,

(U, =0 Voe&l, W’=0), Fi,(up)=0 VYoe&l,.

-> a linear system of equations on (uy)ses
(after elimination of the cell unknowns)



Linear HFV schemes for an advection-diffusion equation

The Hybrid Mixed Method J=-AVu+wu
Q BEIRAO DA VEGA, DRONIOU, MANZINI, 2011

o Keep the same diffusive fluxes F[f}p(gp),

o Define some convective fluxes F  (up) ~ /uw ‘NK o,
o

@ Write the balance law and the conservativity of the fluxes.

The exponential fitting scheme J=-A(Vu+uVe)

@ Rewrite J = wAVp with p = U w=e®

wl
@ Write the HFV scheme for this anisotropic diffusion equation,
with a specific averaging of wA on the pyramids Pk ;.

@ Solve the linear system either in the p or in the u variable.



Properties of the linear schemes

HMM Exponential fitting
Well-posedness needs coercivity or v
smallness of the
mesh 4
Preservation of the b 4 v
thermal equilibrium
Positivity b 4 b 4
Mass conservation 4 4
Asymptotic stability (4 v

lulty — w2 @)




Introduction of a nonlinear HFV scheme
div(J)=f, J=—-uAV(logu+ ®)

Principles of the nonlinear HFV scheme

@ Define the nonlinear numerical fluxes :

g?{,o(ﬂpa @p) =i (up)F, II},J(IOg up + @p)

. 1 1
with 75 (up) = 5 | ux + &k Z Ug
cefk

@ Write balance law and conservativity of the fluxes.

U C.-H., HERDA, LEMAIRE, MOATTI, 2023
Q MoaTtTi 2023 (PhD thesis)



About the nonlinear scheme
Bu+divI=0, J=—uAV(ogu+®)=—uAVlog ~,
w

u(-,0) = up > 0 + homogeneous Neumann boundary conditions,

M = / ug > 0
Q
The scheme under its compact form
1 _
E(U% —u vm)a + Tp(uh, wh,vp) =0 Vup € Vi,
wp = log == LD
Wp
Tp(ufy, wp,vp) = ¥ ric(ug)ak (W, vg).
KeM

First a priori estimate : conservation of mass
Choose v = 1p in order to obtain

UM / 1foralln>1



About the nonlinear scheme

Second a priori estimate : entropy-dissipation estimate

o Discrete relative entropy :
u'fl

E" = / u?&lll(%) with ¥(s) = slogs — s+ 1.
Q Uy

@ Discrete dissipation :
D" = Tp(up, wp, wp).
@ With the test function vy = w?, in the scheme, we get

En+1 —_En™

Dn—i—l <0
Al + =

if the scheme has a positive solution.



Main results

Existence of a positive discrete solution to the nonlinear
scheme.

Exponential decay of the discrete entropy in time :

E" < (14 0A)7'E",¥n >0

Exponential decay of the L'-distance to the equilibrium

[up — uiill L) < C(1 + DAE) 2.




Numerical results

Long-time behaviour (on a fine Kershaw mesh)

‘+ Nonlinear —#—HMM —e— ExpF —— ExpF (harmonic) —+—e¢~¢ ‘
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Numerical results

Accuracy of stationary solutions (advection-dominated test case)

‘+Non|inear+ HMM —e— ExpF —— ExpF (harmonic) ‘
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Concluding remarks

About the non linear hybrid scheme
@ Well posedness, positivity and preservation of the equilibrium

@ Exponential decay towards the equilibrium
@ A first step towards Hybrid High Order schemes
U LEMAIRE, MOATTI, 2024

@ Possible extension to nonlinear convection-diffusion equations

TPFA schemes and nonlinear convection-diffusion fluxes

J=—n(u)V(u(u) + 2,P)
Q Cancis, C.H., FUHRMANN, GAUDEUL, 2021
Q CANCES, VENEL, 2023
Q CANcCEs, HERDA, MASSIMINI, 2023
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