Cross-diffusion systems coupled by a moving interface

Clément Cancès, Claire Chainais-Hillairet, Jean Cauvin-Vila, <u>Virginie Ehrlacher</u>, Laurent Monasse

FVOT 2024, Orsay, November 21st 2024

European Research Council Established by the European Commission

• • • • • • • • • • •

2 Monophasic cross-diffusion models

Biphasic cross-diffusion model with moving boundary

イロン イロン イヨン イヨン

Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:

• thin-film vapor deposition (solar cells)

Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:

- thin-film vapor deposition (solar cells)
- corrosion (nuclear waste storing)

Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:

- thin-film vapor deposition (solar cells)
- corrosion (nuclear waste storing)

• concrete carbonation (structure engineering)...

Production process: Physical Vapor Decomposition (PVD)

< □ > < 同 > < 回 > < 回 >

Corona

plasma

Jas-phase reaction

Mass transport

Surface reaction One has to take into account:

- the cross-diffusion phenomena occuring inside the solid phase and inside the gaseous phase between the different chemical species;
- the evolution of the boundary between the two phases.

2 Monophasic cross-diffusion models

Biphasic cross-diffusion model with moving boundary

<ロ> (日) (日) (日) (日) (日)

• $n \in \mathbb{N}^*$: number of chemical species in the mixture

イロン イロン イヨン イヨン

- $n \in \mathbb{N}^*$: number of chemical species in the mixture
- $\Omega \subset \mathbb{R}^d$: (fixed) spatial domain occupied by the mixture

- $n \in \mathbb{N}^*$: number of chemical species in the mixture
- $\Omega \subset \mathbb{R}^d$: (fixed) spatial domain occupied by the mixture
- For all $1 \le i \le n$, let us denote by $u_i(t, x)$ the volumic fraction of the i^{th} species at point $x \in \Omega$ and time t > 0.

- $n \in \mathbb{N}^*$: number of chemical species in the mixture
- $\Omega \subset \mathbb{R}^d$: (fixed) spatial domain occupied by the mixture
- For all $1 \le i \le n$, let us denote by $u_i(t, x)$ the volumic fraction of the i^{th} species at point $x \in \Omega$ and time t > 0.

General form of a diffusion system:

$$\partial_t u_i - \operatorname{div}(J_i) = 0, \quad u_i(t = 0, \cdot) = u_i^0, \quad 1 \leq i \leq n$$

with no-flux boundary conditions on $\partial \Omega$, and $J_i(t, x) \in \mathbb{R}^d$ the flux of the *i*th species at point x and time t > 0. \Rightarrow mass preservation for each chemical species

$$m_i^0 = \int_\Omega u_i^0 > 0$$

イロト イヨト イヨト

- $n \in \mathbb{N}^*$: number of chemical species in the mixture
- $\Omega \subset \mathbb{R}^d$: (fixed) spatial domain occupied by the mixture
- For all $1 \le i \le n$, let us denote by $u_i(t, x)$ the volumic fraction of the i^{th} species at point $x \in \Omega$ and time t > 0.

General form of a diffusion system:

$$\partial_t u_i - \operatorname{div}(J_i) = 0, \quad u_i(t = 0, \cdot) = u_i^0, \quad 1 \leq i \leq n$$

with no-flux boundary conditions on $\partial \Omega$, and $J_i(t, x) \in \mathbb{R}^d$ the flux of the *i*th species at point x and time t > 0. \Rightarrow mass preservation for each chemical species

$$m_i^0 = \int_\Omega u_i^0 > 0$$

Fick's law: $J_i = D_i \nabla u_i$ for some $D_i > 0$. This leads to a system of decoupled diffusion equations.

イロト イヨト イヨト イヨト

- $n \in \mathbb{N}^*$: number of chemical species in the mixture
- $\Omega \subset \mathbb{R}^d$: (fixed) spatial domain occupied by the mixture
- For all $1 \le i \le n$, let us denote by $u_i(t, x)$ the volumic fraction of the i^{th} species at point $x \in \Omega$ and time t > 0.

General form of a diffusion system:

$$\partial_t u_i - \operatorname{div}(J_i) = 0, \quad u_i(t = 0, \cdot) = u_i^0, \quad 1 \leq i \leq n$$

with no-flux boundary conditions on $\partial \Omega$, and $J_i(t, x) \in \mathbb{R}^d$ the flux of the *i*th species at point x and time t > 0. \Rightarrow mass preservation for each chemical species

$$m_i^0 = \int_\Omega u_i^0 > 0$$

Fick's law: $J_i = D_i \nabla u_i$ for some $D_i > 0$. This leads to a system of decoupled diffusion equations. Fick's law is not always valid and in general J_i may depend on $\nabla u_1, \dots, \nabla u_n$ in multicomponent systems.

イロト イロト イヨト イヨト

In general,

$$\forall 1 \leq i \leq n, \quad J_i = \sum_{j=1}^n A_{ij}(u) \nabla u_j, \tag{1}$$

where $A_{ij} : \mathbb{R}^n \to \mathbb{R}$ is a smooth function for all $1 \leq i, j \leq n$.

イロト イヨト イヨト イヨト

In general,

$$\forall 1 \leq i \leq n, \quad J_i = \sum_{j=1}^n A_{ij}(u) \nabla u_j, \tag{1}$$

where $A_{ij} : \mathbb{R}^n \to \mathbb{R}$ is a smooth function for all $1 \leq i, j \leq n$.

Equations (1) can be rewritten in a more condensed form using the notation

$$u = (u_1, \cdots, u_n), \quad J = (J_1, \cdots, J_n)$$

as

 $J = A(u)\nabla u$

where for all $u \in \mathbb{R}^n$, $A(u) = (A_{ij}(u))_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ is called the diffusion matrix of the system.

General form of a cross-diffusion system:

 $\partial_t u - \operatorname{div} (A(u) \nabla u) = 0, \quad u(t = 0, \cdot) = u^0 = (u_1^0, \cdots, u_n^0)$

V. Ehrlacher

ヘロア 人間 アメヨア 人口 ア

Hydrodynamic limits of microscopic and mesoscopic models lead to cross-diffusion systems with non-diagonal diffusion matrices:

- Markov chains on discrete state space: Quastel 1991; Erignoux 2018; ...
- Continuous stochastic differential equations: Chen, Daus, Jüngel 2019; ...
- Kinetic equations: Boudin, Grec, Salvarini, 2015; Boudin, Grec, Pavant, 2017; Bondesant, Briant, 2019; ...

< ロ > < 同 > < 回 > < 回 >

Cross-diffusion systems with entropic structure

 $\partial_t u - \operatorname{div} \left(A(u) \nabla u \right) = 0$

We focus in the talk on a particular type of cross-diffusion systems which satisfy specific properties

• Volumic constraints: $\forall 1 \leq i \leq n$, $u_i(t,x) \geq 0$ and $\sum_{i=1}^n u_i(t,x) = 1$

i.e. $u(t,x) \in \mathcal{A} := \{ u \in \mathbb{R}_+^n : \sum_{i=1}^n u_i = 1 \}.$

Cross-diffusion systems with entropic structure

 $\partial_t u - \operatorname{div} \left(A(u) \nabla u \right) = 0$

We focus in the talk on a particular type of cross-diffusion systems which satisfy specific properties

• Volumic constraints: $\forall 1 \leq i \leq n$, $u_i(t,x) \geq 0$ and $\sum_{i=1}^n u_i(t,x) = 1$

i.e. $u(t,x) \in \mathcal{A} := \{ u \in \mathbb{R}_+^n : \sum_{i=1}^n u_i = 1 \}.$

• Entropic structure

More precisely, we consider here cross-diffusion systems such that there exists an entropy functional which is a Lyapunov function for the system (key ingredient in order to establish the existence of solutions).

In general, such an entropy functional reads as $\mathcal{H}(u) = \int_{\Omega} h(u)$ for some convex function $h : \mathcal{A} \to \mathbb{R}$ such that $D^2 h(u) \mathcal{A}(u)$ is a positive semi-definite matrix

$$\begin{split} \frac{d}{dt}\mathcal{H}(u) &= \frac{d}{dt}\int_{\Omega}h(u) = \int_{\Omega}Dh(u)\cdot\partial_{t}u = -\int_{\Omega}\nabla Dh(u)\cdot A(u)\nabla u \\ &= -\int_{\Omega}\nabla u\cdot D^{2}h(u)A(u)\nabla u \leqslant 0. \end{split}$$

Denoting by $M(u) := A(u)(D^2h(u))^{-1}$ the mobility matrix, then the cross-diffusion system formally reads as

 $\partial_t u - \operatorname{div}(M(u)\nabla Dh(u)) = 0$

and it formally holds that

$$\begin{aligned} \frac{d}{dt}\mathcal{H}(u) &= \frac{d}{dt} \int_{\Omega} h(u) = \int_{\Omega} Dh(u) \cdot \partial_t u = -\int_{\Omega} \nabla Dh(u) \cdot A(u) \nabla u \\ &= -\int_{\Omega} \nabla u \cdot D^2 h(u) A(u) \nabla u \\ &= -\int_{\Omega} \nabla Dh(u) \cdot M(u) \nabla Dh(u) \leqslant 0. \end{aligned}$$

Global existence results obtained using the so-called boundedness by entropy principle, first introduced in [Burger, Di Francesco, Pietschmann, Schlake (2010)], and then further developped in [Jüngel (2015)].

イロト イヨト イヨト イヨト

Example 1: model for the solid phase

Model for solid phase: Cross-diffusion equations formally derived from a stochastic hopping model on a network: for $1 \le i \le n$,

$$\partial_t u_i - \operatorname{div}\left(\sum_{j=1}^n c_{ij}^s \left(u_j \nabla u_i - u_i \nabla u_j\right)\right) = 0$$

for some coefficients $c_{ij}^s = c_{ji}^s > 0$.

$$J_i = \sum_{j=1}^n c_{ij}^s \left(u_j \nabla u_i - u_i \nabla u_j \right) \quad \text{i.e.} \quad J = A_s(u) \nabla u$$

Gradient flow structure: $h(u) = \sum_{i=1}^{n} u_i \log u_i$

Important remarks:

• When $c_{ij}^s = c$ for all $1 \le i \ne j \le n$, the system boils down to a system of decoupled heat equations:

$$\partial_t u_i - c\Delta u_i = 0$$

• $\sum_{i=1}^n J_i = 0$

イロト イヨト イヨト イヨト 二日

- Proposed by Maxwell 1866/Stefan 1871.
- Models the evolution of a gas mixture in non dilute regime
- Duncan-Toor 1962: Comparison between the Stefan-Maxwell model and experimental measurements for a system composed of hydrogen, nitrogen and carbon dioxide.
- Boudin, Grec, Salvarini, 2015: derivation from the Boltzmann equation for simple mixtures.
- Application: Patients with airways obstruction inhale Heliox to speed up diffusion

< ロト < 同ト < ヨト < ヨ)

The Stefan-Maxwell system

The Stefan-Maxwell system reads, together with appropriate initial and no-flux boundary conditions,

$$\partial_t u_i - \operatorname{div} (J_i) = 0,$$

$$\nabla u_i + \sum_{j=1}^n B_{ij}(u) J_j = 0,$$

$$\sum_{i=1}^n J_i = 0$$

where

$$\forall 1 \leq i \neq j \leq n, \quad B_{ij}(u) = -c_{ij}^g u_i, \quad B_{ii}(u) = \sum_{1 \leq j \neq i \leq n} c_{ij}^g u_j$$

with

$$c_{ij}^g=c_{ji}^g>0.$$

Notation: $\langle u, v \rangle := \sum_{i=1}^{n} u_i v_i$ for all $u := (u_i)_{1 \leq i \leq n}, v := (v_i)_{1 \leq i \leq n} \in \mathbb{R}^n$.

Condensed form:

$$\begin{cases} \partial_t u - \operatorname{div} (J) = 0, \\ \nabla u + B(u)J = 0, \\ \langle 1, J \rangle = 0 \end{cases}$$
(2)

ヘロト ヘロト ヘヨト ヘヨト

where $1 = (1, \dots, 1)$.

Giovangigli, 1999; Bothe, 2011; Boudin, Grec, Salvarani, 2012; Jüngel, Steltzer, 2013...

$$\mathcal{A} := \left\{ u := (u_i)_{1 \leq i \leq n} \in \mathbb{R}^n_+, \quad \sum_{i=1}^n u_i = \langle 1, u \rangle = 1 \right\}$$
$$\mathcal{V} := \left\{ v := (v_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \quad \sum_{i=1}^n v_i = \langle 1, v \rangle = 0 \right\}$$

Lemma (Jüngel, Steltzer, 2013)

Let $u \in (\mathbb{R}^*_+)^n \cap \mathcal{A}$. Then, it holds that

Span $B(u) = \mathcal{V}$ and Ker $B(u) = Span\{u\}$.

イロト イヨト イヨト イヨト

Properties of the matrix B(u)

Consequence: Thus, for any $u \in (\mathbb{R}^*_+)^n \cap A$, for any vector $z \in \mathcal{V}$ and any vector $y \in \mathbb{R}^n$ such that $\langle y, u \rangle \neq 0$, there exists a unique solution $x \in \mathbb{R}^n$ solution to

B(u)x = z and $\langle y, x \rangle = 0$.

Assume now that there exists a solution (u, J) to (2) such that $u(t, x) \in (\mathbb{R}^*_+)^n \cap \mathcal{A}$ for almost all t > 0 and $x \in \Omega$. Then, $\nabla u(t, x) \in \mathcal{V}^d$ since

$$\sum_{i=1}^{n} u_i = 1 \text{ a.e. implies that } \sum_{i=1}^{n} \nabla u_i = 0 \text{ a.e.}$$

Besides, $\langle 1, u \rangle = 1 \neq 0$ a.e. Then, a.e., there exists a unique solution $J(t, x) \in \mathbb{R}^{n \times d}$ such that, a.e.

$$\begin{cases} B(u)J + \nabla u = 0\\ \langle 1, J \rangle = 0, \end{cases}$$

and there exists a matrix field $A_g : (\mathbb{R}^*_+)^n \cap \mathcal{A} \to \mathbb{R}^{n \times n}$ such that

 $J = A_g(u)\nabla u.$

Gradient flow structure: $h(u) = \sum_{i=1}^{n} u_i \log u_i$

イロト イヨト イヨト イヨト 二日

Let T > 0 be some final time and $Q_T := (0, T) \times \Omega$.

Definition (Weak solution)

A weak solution (u, J) to the the solid/Stefan-Maxwell system, corresponding to the initial profile $u^0 \in L^{\infty}(\Omega; \mathcal{A})$, with no-flux boundary conditions, is a pair (u, J) such that $u \in L^{\infty}(Q_T; \mathcal{A}) \cap L^2((0, T); H^1(\Omega)^n)$, $\nabla \sqrt{u} \in L^2(Q_T)^{n \times d}$, $J \in L^2(Q_T; \mathcal{V}^d)$ satisfies

 $J = A_s(u)\nabla u$ or $B(u)J + \nabla u = 0$ a.e. in Q_T

and such that for all $\phi := (\phi_i)_{1 \leqslant i \leqslant n} \in \mathcal{C}^{\infty}_{c}([0, T) \times \overline{\Omega})^n$,

$$-\int \int_{Q_T} \langle u, \partial_t \phi \rangle + \int_{\Omega} \langle u^0, \phi(0, \cdot) \rangle + \int \int_{Q_T} \sum_{i=1}^n J_i \cdot \nabla \phi_i = 0.$$

Theorem (Jüngel, Steltzer, 2013, Jüngel, 2015)

There exists at least one weak solution to (2) in the sense of the previous definition.

For both systems,

$$h(u) = \sum_{i=1}^n u_i \log u_i$$

Let $c^* := \min_{1 \leq i \neq j \leq n} c_{ij} > 0$, $\overline{c}_{ij} = c_{ij} - c^* \ge 0$ and $\overline{c} := \max_{1 \leq i \neq j \leq n} \overline{c}_{ij}$.

Then, the following inequality holds for all u solution to the solid/Stefan-Maxell system

$$\frac{d}{dt}\mathcal{H}(u) \leqslant -\frac{1}{2}\alpha \sum_{i=1}^{n} \int_{\Omega} |\nabla \sqrt{u_i}|^2 - \frac{1}{2}c^* \int_{\Omega} |J|^2 \leqslant 0,$$
(3)

with

$$\alpha = \alpha(c^*, \overline{c}) > 0.$$

This inequality enables to obtain bounds on

$$\int\!\int_{Q_T} |\nabla \sqrt{u_i}|^2 \quad \text{ and } \quad \int\!\int_{Q_T} |J|^2$$

イロト イヨト イヨト イヨト

- the non-negativity of the volumic fractions;
- the conservation of mass

$$\int_{\Omega} u_i(t) = \int_{\Omega} u_i^0 = m_i^0, \quad \forall 1 \leq i \leq n.$$

• the preservation of the volume-filling constraint

$$u_i \ge 0$$
 and $\sum_{i=1}^n u_i = 1$ a.e.

• the entropy dissipation relation (3) (or a discrete version of it).

< ロ > < 同 > < 回 > < 回 >

Burger, Cancès, Carillo, Chainais-Hillaret, Daus, Filbet, Guichard, Jüngel, Perugia, Pietschamnn, Schmidtchen...

In the particular case of the Stefan-Maxell system,

- Boudin, Grec, Salvarani, 2012: ternary system, dimension 1
- Jüngel, Leingang, 2019: finite element approximation

Here, we use finite volume schemes based on two-point flux approximation:

- solid phase [Cancès, Gaudeul, 2020]
- Stefan-Maxwell [Cancès, Ehrlacher, Monasse, 2024]

< ロ > < 同 > < 回 > < 回 >

For all $u \in \mathbb{R}^n_+$, it holds that

$$B(u) = c^* \langle 1, u \rangle I + c^* C(u) + \overline{B}(u)$$

where, for all $1 \leq i, j \leq n$,

$$c_{ij}(u) = u_i, \quad \overline{B}_{ii}(u) = \sum_{1 \le i \ne j \le n} \overline{c}_{ij} u_j, \quad \overline{B}_{ij}(u) = -\overline{c}_{ij} u_i \ i \ne j$$

The matrix \overline{B} has the same expression as B except that the coefficients c_{ij} are replaced by \overline{c}_{ij} .

In particular, if $u \in A$, $B(u) = c^*I + c^*C(u) + \overline{B}(u)$. Moreover, for all $J \in \mathcal{V}$, C(u)J = 0. Thus,

$$B(u)J = c^*J + \overline{B}(u)J$$

イロト イロト イヨト イヨー

 \mathcal{T} : set of cells \mathcal{E} : set of faces (or edges) $(x_{\mathcal{K}})_{\mathcal{K}\in\mathcal{T}}$: set of cell centers Assumption: orthogonality property

Let $\Delta t > 0$, $t_p = p\Delta t$ for all $p \in \mathbb{N}$ and $P_T \in \mathbb{N}^*$ such that $t_{P_T} = P_T \Delta = T$.

The numerical method is an iterative scheme, where for all $p \in \mathbb{N}^*$, a discrete solution

$$\boldsymbol{u}^{p} := (\boldsymbol{u}_{i}^{p})_{1 \leqslant i \leqslant n} \in \left(\mathbb{R}^{\mathcal{T}}\right)^{n},$$

so that $\boldsymbol{u}_i^p = \left(u_{i,K}^p\right)_{K\in\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$ with

 $u_{i,K}^{p}$ an approximation of the function u_{i} at time t_{p} in the cell K,

will be computed given the value of the discrete solution at the previous time step \boldsymbol{u}^{p-1} . Let $\boldsymbol{u}^0 = (\boldsymbol{u}^0_i)_{1 \leq i \leq n} \in (\mathbb{R}^{\mathcal{T}})^n$ be a discretized initial condition.

イロト イヨト イヨト イヨト 二日

Notation

- For all $K \in \mathcal{T}$, $m_K = |K|$ the Lebesgue measure of the cell K;
- For all $\sigma \in \mathcal{E}$, $m_{\sigma} = \mathcal{H}^{d-1}(\sigma)$ the d-1-dimensional Hausdorff measure of the face σ ,

$$d_{\sigma} := \begin{cases} |x_{\mathcal{K}} - x_{\mathcal{L}}| & \text{if } \sigma = \mathcal{K}|\mathcal{L} \text{ is an interior face;} \\ d(x_{\mathcal{K}}, \sigma) & \text{if } \sigma \in \mathcal{E}_{\mathcal{K}} \text{ is an exterior face,} \end{cases}$$

and

$$\tau_{\sigma} = \frac{m_{\sigma}}{d_{\sigma}}$$

Notation

For all $\mathbf{v} = (v_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$, for all $K \in \mathcal{T}$ and all $\sigma \in \mathcal{E}_K$, we denote by $v_{K\sigma}$ the mirror value of v_K across σ , i.e.

$$v_{K\sigma} = \begin{cases} v_L & \text{if } \sigma = K | L \text{ for some } L \in \mathcal{T}, \\ v_K & \text{if } \sigma \text{ is an exterior face,} \end{cases}$$

The oriented jump of \boldsymbol{v} across σ is defined by

$$D_{K\sigma} \mathbf{v} := \mathbf{v}_{K\sigma} - \mathbf{v}_K$$

Finally, $v_{\sigma,\log}$ denotes the logarithmic mean between v_K and $v_{K\sigma}$, i.e.

$$u_{\sigma,\log} := \begin{cases}
0 & \text{if } \min(v_{\mathcal{K}}, v_{\mathcal{K}\sigma}) \leqslant 0, \\
v_{\mathcal{K}} & \text{if } v_{\mathcal{K}} = v_{\mathcal{K}\sigma} \geqslant 0, \\
\frac{v_{\mathcal{K}} - v_{\mathcal{K}\sigma}}{\log(v_{\mathcal{K}}) - \log(v_{\mathcal{K}\sigma})} & \text{otherwise.}
\end{cases}$$

イロト イヨト イヨト イヨト

Numerical scheme

For all $K \in \mathcal{T}$ and all $1 \leq i \leq n$,

$$m_{K} \frac{u_{i,K}^{p} - u_{i,K}^{p-1}}{\Delta t} + \sum_{\sigma \in \mathcal{E}_{K}} m_{\sigma} J_{i,K\sigma}^{p} = 0,$$
(4)

where for all $\sigma \in \mathcal{E}_{K}$, $J_{K\sigma}^{p} = \left(J_{i,K\sigma}^{p}\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}$ is computed as follows:

• if $\sigma = K | L$ is an interior face,

$$\frac{1}{d_{\sigma}}D_{K\sigma}\boldsymbol{u}_{i}^{p}+\boldsymbol{c}^{*}J_{i,K\sigma}^{p}+\sum_{1\leqslant j\leqslant n}\overline{B}_{ij}(\boldsymbol{u}_{\sigma,\log}^{p})J_{j,K\sigma}^{p}=0,\quad\forall 1\leqslant i\leqslant n,$$
(5)

where $u^p_{\sigma,\log} = \left(u^p_{i,\sigma,\log}
ight)_{1\leqslant i\leqslant n}$, and

$$J_{L\sigma} = -J_{K\sigma} \tag{6}$$

• if σ is an exterior face,

$$J^{p}_{K\sigma} = 0.$$
 (7)

・ロト ・四ト ・ヨト ・ヨト
Properties of the scheme

Solid phase: [Cancès, Gaudeul, 2020]

Theorem (Cancès, VE, Monasse, 2024)

Let $(\mathcal{T}, \mathcal{E}, (x_K)_{K \in \mathcal{T}})$ be an admissible mesh of Ω and let \mathbf{u}^0 be an initial condition such that $\mathbf{u}^0 \in \mathcal{A}^{\mathcal{T}}$. Then, for all $p \in \mathbb{N}^*$, the nonlinear system of equations (4)-(5)-(6)-(7) has at least a (strictly) positive solution $\mathbf{u}^p \in \mathcal{A}^{\mathcal{T}}$. This solution satisfies

$$\sum_{K\in\mathcal{T}}u_{i,K}^{p}=\sum_{K\in\mathcal{T}}u_{i,K}^{0}.$$

In addition, the corresponding fluxes $\mathbf{J}^{p} = (J^{p}_{\kappa\sigma})_{\sigma\in\mathcal{E}}$ are uniquely determined by (5)-(6)-(7) and belong to $\mathcal{V}^{\mathcal{E}}$, i.e.

$$\forall K \in \mathcal{T}, \ \forall \sigma \in \mathcal{E}_K, \quad \sum_{i=1}^n J_{i,K\sigma}^p = 0$$

Moreover, the following discrete entropy dissipation estimate holds

$$E_{\mathcal{T}}(\boldsymbol{u}^{p}) + \Delta t \sum_{\sigma = K \mid L \in \mathcal{E}_{int}} \left(\frac{c^{*}}{2} m_{\sigma} d_{\sigma} |J_{K\sigma}^{p}|^{2} + \frac{\alpha}{2} \tau_{\sigma} |D_{K\sigma} \sqrt{\boldsymbol{u}^{p}}|^{2} \right) \leq E_{\mathcal{T}}(\boldsymbol{u}^{p-1})$$

where the discrete entropy functional is defined as

$$E_{\mathcal{T}}(\boldsymbol{u}) = \sum_{K \in \mathcal{T}} \sum_{i=1}^{n} m_{K} u_{i,K} \log(u_{i,K}), \quad \forall \boldsymbol{u} = (\boldsymbol{u}_{i})_{1 \leq i \leq n} \in \mathcal{A}^{\mathcal{T}}.$$

Convergence of the scheme

Let $(\mathcal{T}_m, \mathcal{E}_m, (x_K^m)_{K \in \mathcal{T}_m})_{m \in \mathbb{N}}$ be a sequence of admissible meshes such that $h_{\mathcal{T}_m} := \max_{K \in \mathcal{T}_m} \operatorname{diam}(K) \underset{m \to +\infty}{\longrightarrow} 0$ and

$$\zeta_{\mathcal{T}_m} := \min_{K \in \mathcal{T}_m} \min_{\sigma \in \mathcal{E}_K} \frac{d(x_K, \sigma)}{d_{\sigma}} \ge \eta, \quad \forall m \in \mathbb{N},$$

for some $\eta > 0$ independent of *m*.

Let $(\Delta t_m)_{m\in\mathbb{N}}$ be a sequence of positive time steps such that $\Delta t_m \xrightarrow[m \to +\infty]{} 0$. Solid phase: [Cancès, Gaudeul, 2020]

Theorem (Cancès, VE, Monasse, 2024)

There exist $u \in L^{\infty}(Q_T; \mathcal{A}) \cap L^2((0, T); H^1(\Omega)^n)$ with $\sqrt{u} \in L^2((0, T); H^1(\Omega)^n)$ and $J \in L^2(Q_T, \mathcal{V}^d)$ such that, up to the extraction of a subsequence,

$$\begin{split} & u_{\mathcal{T}_m,\Delta t_m} = (u_{i,\mathcal{T}_m,\Delta t_m})_{1 \leqslant i \leqslant n} \underset{m \to +\infty}{\longrightarrow} u \text{ a.e. in } Q_T, \\ & J_{\mathcal{E}_m,\Delta t_m} = (J_{i,\mathcal{E}_m,\Delta t_m})_{1 \leqslant i \leqslant n} \underset{m \to +\infty}{\longrightarrow} J \text{ weakly in } L^2(Q_T)^{n \times d} \end{split}$$

Besides, (u, J) is a weak solution of the Stefan-Maxwell problem.

See also [Jüngel, Zurek, 2022]

V. Ehrlacher

Cross-diffusion systems coupled by a moving interface

FVOT 2024 29 / 45

イロト イヨト イヨト イヨト

Monophasic cross-diffusion models

3 Biphasic cross-diffusion model with moving boundary

• Full spatial domain $\Omega = (0, 1)$

イロン イロン イヨン イヨン

- Full spatial domain $\Omega = (0, 1)$
- X(t) ∈ Ω: the location of the boundary between the solid phase and the gaseous phase at time t;

イロン イロン イヨン イヨン

- Full spatial domain $\Omega = (0, 1)$
- X(t) ∈ Ω: the location of the boundary between the solid phase and the gaseous phase at time t;
- $\alpha = s, g$ index referring to the solid (s) or gaseous (g) phase

イロト イヨト イヨト イヨト

- Full spatial domain $\Omega = (0, 1)$
- X(t) ∈ Ω: the location of the boundary between the solid phase and the gaseous phase at time t;
- $\alpha = s, g$ index referring to the solid (s) or gaseous (g) phase
- for 1 ≤ i ≤ n, u_i(t, x) = u_i^s(t, x): local volumic fraction of the chemical species i at time t and point 0 < x < X(t) in the solid phase;
- for 1 ≤ i ≤ n, u_i(t, x) = u_i^g(t, x): local volumic fraction of the chemical species i at time t and point X(t) < x < 1 in the gaseous phase;

・ロ・・ (日・・ 川下・ (日・・)

For any function $f : \Omega \to \mathbb{R}^n$ regular enough on (0, X(t)) and (X(t), 1):

$$f^{s} := f(X(t)^{-}), \ f^{g}(t) = f(X(t)^{+}), \ [\![f]\!] = f^{s} - f^{g}$$

イロト イヨト イヨト イヨト

For any function $f : \Omega \to \mathbb{R}^n$ regular enough on (0, X(t)) and (X(t), 1):

$$f^{s} := f(X(t)^{-}), \ f^{g}(t) = f(X(t)^{+}), \ [\![f]\!] = f^{s} - f^{g}$$

Coupled cross-diffusion system:

$$\begin{aligned} \partial_t u - \partial_x J &= 0, \quad x \in \Omega, \\ J &= A_s(u) \partial_x u, \quad x \in (0, X(t)), \\ J &= A_g(u) \partial_x u, \quad x \in (X(t), 1). \end{aligned}$$

ヘロト ヘロト ヘヨト ヘヨト

For any function $f : \Omega \to \mathbb{R}^n$ regular enough on (0, X(t)) and (X(t), 1):

$$f^{s} := f(X(t)^{-}), \ f^{g}(t) = f(X(t)^{+}), \ [\![f]\!] = f^{s} - f^{g}$$

Coupled cross-diffusion system:

$$\partial_t u - \partial_x J = 0, \quad x \in \Omega,$$

$$J = A_s(u) \partial_x u, \quad x \in (0, X(t)),$$

$$J = A_g(u) \partial_x u, \quad x \in (X(t), 1).$$

Zero-flux conditions on the fixed boundary J(t,0) = J(t,1) = 0 and at the interface, if $X(t) \in (0,1)$,

$$J^{s}(t) + X'(t)u^{s}(t) = J^{g}(t) + X'(t)u^{g}(t) = F(t).$$

F accounts for the flux of chemical species from one phase to the other. We assume it to be of Butler-Volmer type: for $i \in \{1, ..., n\}$, $\mu_i^{*,s}, \mu_i^{*,s} \in \mathbb{R}$,

$$F_{i} = u_{i}^{s} \exp(\frac{1}{2} \llbracket \mu_{i}^{*} \rrbracket) - u_{i}^{g} \exp(-\frac{1}{2} \llbracket \mu_{i}^{*} \rrbracket).$$

V. Ehrlacher

イロト イヨト イヨト イヨト

For any function $f : \Omega \to \mathbb{R}^n$ regular enough on (0, X(t)) and (X(t), 1):

$$f^{s} := f(X(t)^{-}), \ f^{g}(t) = f(X(t)^{+}), \ [\![f]\!] = f^{s} - f^{g}$$

Coupled cross-diffusion system:

$$\partial_t u - \partial_x J = 0, \quad x \in \Omega,$$

$$J = A_s(u) \partial_x u, \quad x \in (0, X(t)),$$

$$J = A_g(u) \partial_x u, \quad x \in (X(t), 1).$$

Zero-flux conditions on the fixed boundary J(t,0) = J(t,1) = 0 and at the interface, if $X(t) \in (0,1)$,

$$J^{s}(t) + X'(t)u^{s}(t) = J^{g}(t) + X'(t)u^{g}(t) = F(t).$$

F accounts for the flux of chemical species from one phase to the other. We assume it to be of Butler-Volmer type: for $i \in \{1, ..., n\}$, $\mu_i^{*,s}, \mu_i^{*,s} \in \mathbb{R}$,

$$F_{i} = u_{i}^{s} \exp(\frac{1}{2} \llbracket \mu_{i}^{*} \rrbracket) - u_{i}^{g} \exp(-\frac{1}{2} \llbracket \mu_{i}^{*} \rrbracket).$$

Interface evolution: $X'(t) = -\sum_{i=1}^{n} F_i(t)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Total mass conservation for each species because at the interface [J(t)] + X'(t)[[u(t)]] = 0.

- Total mass conservation for each species because at the interface [J(t)] + X'(t)[[u(t)]] = 0.
- Preservation of the volumic constraints in each phase.

- Total mass conservation for each species because at the interface $[\![J(t)]\!] + X'(t)[\![u(t)]\!] = 0$.
- Preservation of the volumic constraints in each phase.
- Free energy functional:

$$\mathcal{H}(u,X) = \int_0^X h_s(u) + \int_X^1 h_g(u),$$

with, for $\alpha \in \{s, g\}$,

$$h_{\alpha}(u) = \sum_{i=1}^{n} u_i(\log(u_i) - \mu_i^{*,\alpha}) - u_i + 1.$$

- Total mass conservation for each species because at the interface $[\![J(t)]\!] + X'(t)[\![u(t)]\!] = 0$.
- Preservation of the volumic constraints in each phase.
- Free energy functional:

$$\mathcal{H}(u,X) = \int_0^X h_s(u) + \int_X^1 h_g(u),$$

with, for $\alpha \in \{s, g\}$,

$$h_{\alpha}(u) = \sum_{i=1}^{n} u_i(\log(u_i) - \mu_i^{*,\alpha}) - u_i + 1.$$

• Chemical potentials: $\mu_i^{\alpha}(u) = Dh_{\alpha}(u) = \log(u_i) - \mu_i^{*,\alpha}$.

イロト イヨト イヨト イヨト

- Total mass conservation for each species because at the interface $[\![J(t)]\!] + X'(t)[\![u(t)]\!] = 0$.
- Preservation of the volumic constraints in each phase.
- Free energy functional:

$$\mathcal{H}(u,X) = \int_0^X h_s(u) + \int_X^1 h_g(u),$$

with, for $\alpha \in \{s, g\}$,

$$h_{\alpha}(u) = \sum_{i=1}^{n} u_i(\log(u_i) - \mu_i^{*,\alpha}) - u_i + 1.$$

- Chemical potentials: $\mu_i^{\alpha}(u) = Dh_{\alpha}(u) = \log(u_i) \mu_i^{*,\alpha}$.
- Dissipation equality:

$$\begin{aligned} \frac{d}{dt}\mathcal{H}(\boldsymbol{u}(t),\boldsymbol{X}(t)) &+ \int_{0}^{\boldsymbol{X}(t)} \partial_{\boldsymbol{x}} \log(\boldsymbol{u}(t))^{T} \boldsymbol{M}_{\boldsymbol{s}}(\boldsymbol{u}(t)) \partial_{\boldsymbol{x}} \log(\boldsymbol{u}(t)) \\ &+ \int_{\boldsymbol{X}(t)}^{1} \partial_{\boldsymbol{x}} \log(\boldsymbol{u}(t))^{T} \boldsymbol{M}_{\boldsymbol{g}}(\boldsymbol{u}(t)) \partial_{\boldsymbol{x}} \log(\boldsymbol{u}(t)) - \boldsymbol{F}(t)^{T} \llbracket \boldsymbol{\mu}(t) \rrbracket = 0. \end{aligned}$$

 M_s, M_g are positive semi-definite mobility matrices.

Reformulation of the Butler-Volmer fluxes: for $i \in \{1, ..., n\}$,

$$F_i = u_i^s \exp\left(\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) - u_i^g \exp\left(-\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) = 2\sqrt{u_i^s u_i^g} \sinh\left(-\frac{1}{2} \llbracket \mu_i(t) \rrbracket\right),$$

which guarantees that $F(t)^T \llbracket \mu(t) \rrbracket \leq 0$.

イロン イロン イヨン イヨン

Reformulation of the Butler-Volmer fluxes: for $i \in \{1, \ldots, n\}$,

$$F_i = u_i^s \exp\left(\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) - u_i^g \exp\left(-\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) = 2\sqrt{u_i^s u_i^g} \sinh\left(-\frac{1}{2} \llbracket \mu_i(t) \rrbracket\right),$$

which guarantees that $F(t)^T \llbracket \mu(t) \rrbracket \leq 0$. Therefore, the free energy is a Lyapunov functional:

 $\frac{d}{dt}\mathcal{H}(u(t),X(t))\leqslant 0.$

Reformulation of the Butler-Volmer fluxes: for $i \in \{1, \ldots, n\}$,

$$F_i = u_i^s \exp\left(\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) - u_i^g \exp\left(-\frac{1}{2} \llbracket \mu_i^* \rrbracket\right) = 2\sqrt{u_i^s u_i^g} \sinh\left(-\frac{1}{2} \llbracket \mu_i(t) \rrbracket\right),$$

which guarantees that $F(t)^T \llbracket \mu(t) \rrbracket \leq 0$. Therefore, the free energy is a Lyapunov functional:

 $\frac{d}{dt}\mathcal{H}(u(t),X(t)) \leq 0.$

Stationary solutions $(\overline{u}, \overline{X})$ must be constant in each connected part of $\overline{\Omega} := (0, \overline{X}) \cup (\overline{X}, 1)$.

Proposition (Stationary states)

In addition to the trivial pure phase solutions, there exists a non-trivial stationary solution $(\overline{u}^s, \overline{u}^g, \overline{X}) \in \mathcal{A} \times \mathcal{A} \times (0, 1)$ if and only if

$$\min\left(\sum_{i=1}^{n} m_{i}^{0} \exp\left(\left[\left[\mu_{i}^{*}\right]\right]\right), \sum_{i=1}^{n} m_{i}^{0} \exp\left(-\left[\left[\mu_{i}^{*}\right]\right]\right)\right) > 1$$

Moreover, under the latter assumption, this stationary state is unique.

イロン イロン イヨン イヨン

Discretization

Figure: Mesh deformation at time $t^{p-1} = (p-1)\Delta t$ where $K := K^{p-1}$ is the interface cell.

• Background mesh: $N \in \mathbb{N}^*$ reference cells of uniform size $\Delta x = \frac{1}{N}$. N + 1 edge vertices $0 = x_{\frac{1}{2}} \leq x_{\frac{3}{2}} \leq \cdots \leq x_{N+\frac{1}{2}} = 1$, $x_{K+\frac{1}{2}} = K\Delta x$ for all $K \in \{0, \dots, N\}$. Time horizon T > 0and a time discretization with mesh parameter Δt defined such that $N_T \Delta t = T$ with $N_T \in \mathbb{N}^*$.

Discretization

Figure: Mesh deformation at time $t^{p-1} = (p-1)\Delta t$ where $K := K^{p-1}$ is the interface cell.

- Background mesh: $N \in \mathbb{N}^*$ reference cells of uniform size $\Delta x = \frac{1}{N}$. N + 1 edge vertices $0 = x_{\frac{1}{2}} \leq x_{\frac{3}{2}} \leq \cdots \leq x_{N+\frac{1}{2}} = 1$, $x_{K+\frac{1}{2}} = K\Delta x$ for all $K \in \{0, \dots, N\}$. Time horizon T > 0 and a time discretization with mesh parameter Δt defined such that $N_T \Delta t = T$ with $N_T \in \mathbb{N}^*$.
- Discrete concentrations u^p_{∆x} = (u^p_{i,K})_{i∈{1,...,n}, K∈{1,...,N}} for p ∈ {0,..., N_T}. Time-discrete interface X^p for p ∈ {0,..., N_T}. K^p ∈ {0,..., N} the index of the left interface cell.

Discretization

Figure: Mesh deformation at time $t^{p-1} = (p-1)\Delta t$ where $K := K^{p-1}$ is the interface cell.

- Background mesh: $N \in \mathbb{N}^*$ reference cells of uniform size $\Delta x = \frac{1}{N}$. N + 1 edge vertices $0 = x_{\frac{1}{2}} \leq x_{\frac{3}{2}} \leq \cdots \leq x_{N+\frac{1}{2}} = 1$, $x_{K+\frac{1}{2}} = K\Delta x$ for all $K \in \{0, \dots, N\}$. Time horizon T > 0 and a time discretization with mesh parameter Δt defined such that $N_T \Delta t = T$ with $N_T \in \mathbb{N}^*$.
- Discrete concentrations u^p_{∆x} = (u^p_{i,K})_{i∈{1,...,n}, K∈{1,...,N}} for p ∈ {0,..., N_T}. Time-discrete interface X^p for p ∈ {0,..., N_T}. K^p ∈ {0,..., N} the index of the left interface cell.
- The mesh is locally modified around X^{p-1} : for all $K \in \{1, ..., N\}$, the size of the K^{th} cell is

$$\Delta_{K}^{p-1} = \begin{cases} (X^{p-1} - x_{K^{p-1} - \frac{1}{2}}) & \text{if } K = K^{p-1}, \\ (x_{K^{p-1} + \frac{3}{2}} - X^{p-1}) & \text{if } K = K^{p-1} + 1, \\ \Delta x & \text{otherwise.} \end{cases}$$

• $(\boldsymbol{u}_{\Delta x}^{p-1}, X^{p-1}) \rightarrow (\boldsymbol{u}_{\Delta x}^{p,\star}, X^{p})$: solving the conservation laws and updating the interface. Implicit discretization: $K \in \{1, \dots, N\}, i \in \{1, \dots, n\},$

$$\frac{1}{\Delta t} \left(\Delta_{K}^{p,\star} u_{i,K}^{p,\star} - \Delta_{K}^{p-1} u_{i,K}^{p-1} \right) + J_{i,K+\frac{1}{2}}^{p,\star} - J_{i,K-\frac{1}{2}}^{p,\star} = 0,$$

where

$$\Delta_{K}^{p,\star} = \begin{cases} (\frac{X^{p} - x_{K^{p-1} - \frac{1}{2}}) & \text{if } K = K^{p-1}, \\ (x_{K^{p-1} + \frac{3}{2}} - \frac{X^{p}}{2}) & \text{if } K = K^{p-1} + 1, \\ \Delta x & \text{otherwise.} \end{cases}$$

• $(\boldsymbol{u}_{\Delta x}^{p-1}, X^{p-1}) \rightarrow (\boldsymbol{u}_{\Delta x}^{p,\star}, X^{p})$: solving the conservation laws and updating the interface. Implicit discretization: $K \in \{1, \dots, N\}, i \in \{1, \dots, n\},$

$$\frac{1}{\Delta t} (\Delta_{K}^{p,\star} u_{i,K}^{p,\star} - \Delta_{K}^{p-1} u_{i,K}^{p-1}) + J_{i,K+\frac{1}{2}}^{p,\star} - J_{i,K-\frac{1}{2}}^{p,\star} = 0,$$

where

$$\Delta_{K}^{p,\star} = \begin{cases} (X^{p} - x_{K^{p-1} - \frac{1}{2}}) & \text{if } K = K^{p-1}, \\ (x_{K^{p-1} + \frac{3}{2}} - X^{p}) & \text{if } K = K^{p-1} + 1, \\ \Delta x & \text{otherwise.} \end{cases}$$

• Bulk fluxes: discretized using logarithmic means for edge concentrations → variational structure is conserved [Cancès, Gaudeul '20], [Cancès, Ehrlacher, Monasse '20].

• $(\boldsymbol{u}_{\Delta x}^{p-1}, X^{p-1}) \rightarrow (\boldsymbol{u}_{\Delta x}^{p,\star}, X^{p})$: solving the conservation laws and updating the interface. Implicit discretization: $K \in \{1, \dots, N\}, i \in \{1, \dots, n\},$

$$\frac{1}{\Delta t} (\Delta_{K}^{p,\star} u_{i,K}^{p,\star} - \Delta_{K}^{p-1} u_{i,K}^{p-1}) + J_{i,K+\frac{1}{2}}^{p,\star} - J_{i,K-\frac{1}{2}}^{p,\star} = 0,$$

where

$$\Delta_{K}^{p,\star} = \begin{cases} (X^{p} - x_{K^{p-1} - \frac{1}{2}}) & \text{if } K = K^{p-1}, \\ (x_{K^{p-1} + \frac{3}{2}} - X^{p}) & \text{if } K = K^{p-1} + 1, \\ \Delta x & \text{otherwise.} \end{cases}$$

- Bulk fluxes: discretized using logarithmic means for edge concentrations → variational structure is conserved [Cancès, Gaudeul '20], [Cancès, Ehrlacher, Monasse '20].
- Butler-Volmer interface fluxes naturally discretized as

$$F_{i}^{p,\star} = u_{i,K^{p-1}}^{p,\star} \exp(\frac{1}{2} \llbracket \mu_{i}^{\star} \rrbracket) - u_{i,(K^{p-1}+1)}^{p,\star} \exp(-\frac{1}{2} \llbracket \mu_{i}^{\star} \rrbracket).$$

・ロト ・四ト ・ヨト ・ヨト

• $(\boldsymbol{u}_{\Delta x}^{p-1}, X^{p-1}) \rightarrow (\boldsymbol{u}_{\Delta x}^{p,\star}, X^{p})$: solving the conservation laws and updating the interface. Implicit discretization: $K \in \{1, \dots, N\}, i \in \{1, \dots, n\},$

$$\frac{1}{\Delta t} (\Delta_{K}^{p,\star} u_{i,K}^{p,\star} - \Delta_{K}^{p-1} u_{i,K}^{p-1}) + J_{i,K+\frac{1}{2}}^{p,\star} - J_{i,K-\frac{1}{2}}^{p,\star} = 0,$$

where

$$\Delta_{K}^{p,\star} = \begin{cases} (X^{p} - x_{K^{p-1} - \frac{1}{2}}) & \text{if } K = K^{p-1}, \\ (x_{K^{p-1} + \frac{3}{2}} - X^{p}) & \text{if } K = K^{p-1} + 1, \\ \Delta x & \text{otherwise.} \end{cases}$$

- Bulk fluxes: discretized using logarithmic means for edge concentrations → variational structure is conserved [Cancès, Gaudeul '20], [Cancès, Ehrlacher, Monasse '20].
- Butler-Volmer interface fluxes naturally discretized as

$$F_{i}^{p,\star} = u_{i,K^{p-1}}^{p,\star} \exp(\frac{1}{2} \llbracket \mu_{i}^{\star} \rrbracket) - u_{i,(K^{p-1}+1)}^{p,\star} \exp(-\frac{1}{2} \llbracket \mu_{i}^{\star} \rrbracket).$$

Interface evolution discretized as

$$X^{p} = X^{p-1} - \Delta t \sum_{i=1}^{n} F_{i}^{p,\star}.$$

V. Ehrlacher

・ロト ・四ト ・ヨト ・ヨト

 When X^ρ crosses the center of a cell, one needs to update the mesh (change the interface cell from K^{ρ-1} to K^ρ) and to post-process the concentrations into the final values u^ρ_{Δx} accordingly.

- When X^{p} crosses the center of a cell, one needs to update the mesh (change the interface cell from K^{p-1} to K^{p}) and to post-process the concentrations into the final values $u_{\Delta x}^{p}$ accordingly.
- We derive a linear CFL condition to enforce $|X^p X^{p-1}| \leq \frac{\Delta x}{2}$, which in particular ensures that $|K^p K^{p-1}| \leq 1$ and simplifies the post-processing process.

イロン イロン イヨン イヨン

- When X^{p} crosses the center of a cell, one needs to update the mesh (change the interface cell from K^{p-1} to K^{p}) and to post-process the concentrations into the final values $u_{\Delta x}^{p}$ accordingly.
- We derive a linear CFL condition to enforce $|X^p X^{p-1}| \leq \frac{\Delta x}{2}$, which in particular ensures that $|K^p K^{p-1}| \leq 1$ and simplifies the post-processing process.
- If $K^p = K^{p-1}$, then we can directly iterate the scheme with $u^p_{\Delta x} = u^{p,\star}_{\Delta x}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- When X^ρ crosses the center of a cell, one needs to update the mesh (change the interface cell from K^{ρ-1} to K^ρ) and to post-process the concentrations into the final values u^ρ_{Δx} accordingly.
- We derive a linear CFL condition to enforce $|X^{p} X^{p-1}| \leq \frac{\Delta x}{2}$, which in particular ensures that $|K^{p} K^{p-1}| \leq 1$ and simplifies the post-processing process.
- If $K^p = K^{p-1}$, then we can directly iterate the scheme with $u^p_{\Delta x} = u^{p,\star}_{\Delta x}$.
- Otherwise, we project and average the values of u^{p,*}_{Δx} onto the new mesh (dictated by mass conservation). By convexity of the energy functional, these operations decrease the total free energy.

・ロト ・四ト ・ヨト ・ヨト

Illustration of the two steps of the scheme

Numerical analysis

Discrete free energy functional

$$\mathcal{H}^{p}(\boldsymbol{u}_{\Delta \times}^{p}, X^{p}) = \sum_{i=1}^{n} \sum_{K \leqslant K^{p}} \Delta_{K}^{p} h^{s}(\boldsymbol{u}_{i,K}^{p}) + \sum_{i=1}^{n} \sum_{K \geqslant K^{p}+1} \Delta_{K}^{p} h^{g}(\boldsymbol{u}_{i,K}^{p})$$

Proposition (Structure preservation)

Let $(\boldsymbol{u}_{\Delta_{X}}^{p-1}, X^{p-1})$ be such that $\boldsymbol{u}_{\Delta_{X}}^{p-1} \ge 0$ and $\sum_{i=1}^{n} u_{i,K}^{p-1} = 1$ for any $K \in \{1, \ldots, N\}$. There exists a solution $(\boldsymbol{u}_{\Delta_{X}}^{p}, X^{p})$ to the scheme such that it holds

$$\begin{aligned} u_{i,K}^{p} &> 0, \ \forall i \in \{1, \dots, n\}, \ \forall K \in \{1, \dots, N\},\\ \sum_{i=1}^{n} u_{i,K}^{p} &= 1, \ \forall K \in \{1, \dots, N\},\\ \sum_{K=1}^{N} \Delta_{K}^{p} u_{i,K}^{p} &= \sum_{K=1}^{N} \Delta_{K}^{p-1} u_{i,K}^{p-1}, \ \forall i \in \{1, \dots, n\},\\ t^{p}(\mathbf{u}_{\Delta x}^{p}, \mathbf{X}^{p}) &\leq t^{p-1}(\mathbf{u}_{\Delta x}^{p-1}, \mathbf{X}^{p-1}). \end{aligned}$$

イロト イヨト イヨト イヨト

Numerical analysis

Discrete free energy functional

$$\mathcal{H}^{p}(\boldsymbol{u}_{\Delta \times}^{p}, X^{p}) = \sum_{i=1}^{n} \sum_{K \leqslant K^{p}} \Delta_{K}^{p} h^{s}(\boldsymbol{u}_{i,K}^{p}) + \sum_{i=1}^{n} \sum_{K \geqslant K^{p}+1} \Delta_{K}^{p} h^{g}(\boldsymbol{u}_{i,K}^{p})$$

Proposition (Structure preservation)

Let $(\boldsymbol{u}_{\Delta_{X}}^{p-1}, X^{p-1})$ be such that $\boldsymbol{u}_{\Delta_{X}}^{p-1} \ge 0$ and $\sum_{i=1}^{n} u_{i,K}^{p-1} = 1$ for any $K \in \{1, \ldots, N\}$. There exists a solution $(\boldsymbol{u}_{\Delta_{X}}^{p}, X^{p})$ to the scheme such that it holds

$$\begin{split} u_{i,K}^{p} &> 0, \ \forall i \in \{1, \dots, n\}, \ \forall K \in \{1, \dots, N\}, \\ \sum_{i=1}^{n} u_{i,K}^{p} &= 1, \ \forall K \in \{1, \dots, N\}, \\ \sum_{K=1}^{N} \Delta_{K}^{p} u_{i,K}^{p} &= \sum_{K=1}^{N} \Delta_{K}^{p-1} u_{i,K}^{p-1}, \ \forall i \in \{1, \dots, n\}, \\ t^{p}(\mathbf{u}_{\Delta x}^{p}, \mathbf{X}^{p}) &\leq \mathcal{H}^{p-1}(\mathbf{u}_{\Delta x}^{p-1}, \mathbf{X}^{p-1}). \end{split}$$

Proof: topological degree argument on a modified scheme (truncations, scalings) to satisfy all the a priori estimates.

V. Ehrlacher

• Numerical scheme implemented in the Julia language using Newton method with stopping criterion $\|\boldsymbol{u}_{\Delta x}^{p,k+1} - \boldsymbol{u}_{\Delta x}^{p,k}\|_{\infty} \leq 10^{-12}$ and adaptive time stepping.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Numerical scheme implemented in the Julia language using Newton method with stopping criterion $\|\boldsymbol{u}_{\Delta x}^{p,k+1} \boldsymbol{u}_{\Delta x}^{p,k}\|_{\infty} \leq 10^{-12}$ and adaptive time stepping.
- Cross-diffusion matrices: size-exclusion [Cancès, Gaudeul '20] for the solid and Stefan-Maxwell [Cancès, Ehrlacher, Monasse '20] for the gas.

・ロト ・四ト ・ヨト ・ヨト

- Numerical scheme implemented in the Julia language using Newton method with stopping criterion $\|\boldsymbol{u}_{\Delta x}^{p,k+1} \boldsymbol{u}_{\Delta x}^{p,k}\|_{\infty} \leq 10^{-12}$ and adaptive time stepping.
- Cross-diffusion matrices: size-exclusion [Cancès, Gaudeul '20] for the solid and Stefan-Maxwell [Cancès, Ehrlacher, Monasse '20] for the gas.
- Initial interface $X^0 = 0.51$ and smooth initial concentrations

$$u_1^0(x) = u_2^0(x) = \frac{1}{4} (1 + \cos(\pi x)), \ u_3^0(x) = \frac{1}{2} (1 - \cos(\pi x))$$

discretized on a uniform mesh of N = 100 cells.

・ロ・・ (日・・ 川下・ (日・・)
- Numerical scheme implemented in the Julia language using Newton method with stopping criterion $\|\boldsymbol{u}_{\Delta x}^{p,k+1} \boldsymbol{u}_{\Delta x}^{p,k}\|_{\infty} \leq 10^{-12}$ and adaptive time stepping.
- Cross-diffusion matrices: size-exclusion [Cancès, Gaudeul '20] for the solid and Stefan-Maxwell [Cancès, Ehrlacher, Monasse '20] for the gas.
- Initial interface $X^0 = 0.51$ and smooth initial concentrations

$$u_1^0(x) = u_2^0(x) = \frac{1}{4} \left(1 + \cos(\pi x) \right), \ u_3^0(x) = \frac{1}{2} \left(1 - \cos(\pi x) \right)$$

discretized on a uniform mesh of N = 100 cells.

• Long-time asymptotics: relative free energy $\mathcal{H}^{p}(\boldsymbol{u}_{\Delta x}^{p}, X^{p}) - \mathcal{H}^{\infty}(\boldsymbol{u}^{\infty}, X^{\infty})$ and relative interface $|X^{\infty} - X^{p}|$ over time.

Convergence of the scheme

Figure: Convergence analysis of the solution under space grid refinement

Loss of order: first-order accurate on the concentrations in the case of a moving interface, second-order in fixed domains.

• • • • • • • • • • •

• Proving convergence of the scheme to an appropriate notion of weak solution, providing existence of global solutions to the model.

< □ > < □ > < □ > < □ > < □ >

- Proving convergence of the scheme to an appropriate notion of weak solution, providing existence of global solutions to the model.
- Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary state is the only stable one and weak solutions converge exponentially fast to it for close enough initial conditions.

< □ > < □ > < □ > < □ > < □ >

- Proving convergence of the scheme to an appropriate notion of weak solution, providing existence of global solutions to the model.
- Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary state is the only stable one and weak solutions converge exponentially fast to it for close enough initial conditions.
- Generalizations to higher dimension, including geometric effects such as surface diffusion.

イロト イヨト イヨト

- Proving convergence of the scheme to an appropriate notion of weak solution, providing existence of global solutions to the model.
- Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary state is the only stable one and weak solutions converge exponentially fast to it for close enough initial conditions.
- Generalizations to higher dimension, including geometric effects such as surface diffusion.
- Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on the mesh)

Thank you for your attention

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formal (1d) derivation of the model for the cross-diffusion equations inside the solid

Let $\Delta t > 0$. Let $p_{ij} = p_{ji}$ represent the probability that an atom of type *i* exchange its position in the solid with an atom of type *j*.

Assume for the moment that d = 1, $\Omega = (0, e_0)$ with $e_0 > 0$ and let us introduce a uniform discretization grid $(x_k)_{0 \le k \le N}$ of $(0, e_0)$ defined by $x_k = k\Delta x$ with $\Delta x = \frac{e_0}{N}$ for $N \in \mathbb{N}^*$.

Let us denote by $u_i^k(t)$ the local concentration of atom *i* in the k^{th} cell (x_{k-1}, x_k) .

$$\begin{split} & u_i^k(t + \Delta t) - u_i^k(t) \\ &\approx \sum_{0 \le j \le n, \ j \ne i} p_{ij}[u_j^k(t)u_i^{k+1}(t) + u_j^k(t)u_i^{k-1}(t) - u_j^{k-1}(t)u_i^k(t) + u_j^{k+1}(t)u_i^k(t)] \\ &\approx \sum_{0 \le j \le n, \ j \ne i} p_{ij}[u_j^k(t)(u_i^{k+1}(t) + u_i^{k-1}(t) - 2u_i^k(t)) - u_i^k(t)(u_j^{k-1} + u_j^{k+1}(t) - 2u_j^k(t))] \end{split}$$

イロト イヨト イヨト イヨト

Taking now (for instance) the scaling $\Delta t = 2Q\Delta x^2$ for some constant Q > 0 and denoting by $c_{ii}^s := \frac{p_{ij}}{Q}$, we obtain the limit equation

$$\partial_t u_i = \sum_{0 \le j \le n, \ j \ne i} c_{ij}^{s} (u_j \partial_{xx} u_i - u_i \partial_{xx} u_j)$$
$$= \partial_x \left[\sum_{0 \le j \le n, \ j \ne i} c_{ij}^{s} (u_j \partial_x u_i - u_i \partial_x u_j) \right]$$

Remark: Rigorous hydrodynamic limit of multi-species symmetric exclusion systems [Quastel, 91], [Erignoux, 2018], [Dabaghi, VE, Strössner, 2018]

イロト イヨト イヨト イヨト