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Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:

thin-film vapor deposition (solar cells)

corrosion (nuclear waste storing)

concrete carbonation (structure engineering)...
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Thin film solar cell
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Production process: Physical Vapor Decomposition (PVD)
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Modelisation

One has to take into account:

the cross-diffusion phenomena occuring inside the solid phase and inside the gaseous phase
between the different chemical species;

the evolution of the boundary between the two phases.
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Diffusion systems

n P N˚: number of chemical species in the mixture

Ω Ă Rd : (fixed) spatial domain occupied by the mixture

For all 1 ď i ď n, let us denote by ui pt, xq the volumic fraction of the i th species at point
x P Ω and time t ą 0.

General form of a diffusion system:

Btui ´ div pJi q “ 0, ui pt “ 0, ¨q “ u0
i , 1 ď i ď n

with no-flux boundary conditions on BΩ, and Ji pt, xq P Rd the flux of the i th species at point x
and time t ą 0. ñ mass preservation for each chemical species

m0
i “

ż

Ω
u0
i ą 0

Fick’s law: Ji “ Di∇ui for some Di ą 0. This leads to a system of decoupled diffusion equations.

Fick’s law is not always valid and in general Ji may depend on ∇u1, ¨ ¨ ¨ ,∇un in multicomponent
systems.
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Cross-diffusion systems

In general,

@1 ď i ď n, Ji “
n
ÿ

j“1

Aij puq∇uj , (1)

where Aij : Rn Ñ R is a smooth function for all 1 ď i , j ď n.

Equations (1) can be rewritten in a more condensed form using the notation

u “ pu1, ¨ ¨ ¨ , unq, J “ pJ1, ¨ ¨ ¨ , Jnq

as
J “ Apuq∇u

where for all u P Rn, Apuq “
`

Aij puq
˘

1ďi,jďn
P Rnˆn is called the diffusion matrix of the system.

General form of a cross-diffusion system:

Btu ´ div pApuq∇uq “ 0, upt “ 0, ¨q “ u0 “ pu0
1 , ¨ ¨ ¨ , u

0
nq
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Cross-diffusion systems as hydrodynamic limits

Hydrodynamic limits of microscopic and mesoscopic models lead to cross-diffusion systems with
non-diagonal diffusion matrices:

Markov chains on discrete state space: Quastel 1991; Erignoux 2018; ...

Continuous stochastic differential equations: Chen, Daus, Jüngel 2019; ...

Kinetic equations: Boudin, Grec, Salvarini, 2015; Boudin, Grec, Pavant, 2017; Bondesant,
Briant, 2019; ...
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Cross-diffusion systems with entropic structure

Btu ´ div pApuq∇uq “ 0

We focus in the talk on a particular type of cross-diffusion systems which satisfy specific
properties

Volumic constraints: @1 ď i ď n, ui pt, xq ě 0 and
řn

i“1 ui pt, xq “ 1

i.e. upt, xq P A :“
 

u P R`n :
řn

i“1 ui “ 1
(

.

Entropic structure

More precisely, we consider here cross-diffusion systems such that there exists an entropy
functional which is a Lyapunov function for the system (key ingredient in order to establish the
existence of solutions).

In general, such an entropy functional reads as Hpuq “
ş

Ω hpuq for some convex function

h : AÑ R such that D2hpuqApuq is a positive semi-definite matrix

d

dt
Hpuq “

d

dt

ż

Ω
hpuq “

ż

Ω
Dhpuq ¨ Btu “ ´

ż

Ω
∇Dhpuq ¨ Apuq∇u

“ ´

ż

Ω
∇u ¨ D2hpuqApuq∇u ď 0.
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Cross-diffusion systems with entropic structure

Denoting by Mpuq :“ ApuqpD2hpuqq´1 the mobility matrix, then the cross-diffusion system
formally reads as

Btu ´ divpMpuq∇Dhpuqq “ 0

and it formally holds that

d

dt
Hpuq “

d

dt

ż

Ω
hpuq “

ż

Ω
Dhpuq ¨ Btu “ ´

ż

Ω
∇Dhpuq ¨ Apuq∇u

“ ´

ż

Ω
∇u ¨ D2hpuqApuq∇u

“ ´

ż

Ω
∇Dhpuq ¨Mpuq∇Dhpuq ď 0.

Global existence results obtained using the so-called boundedness by entropy principle, first
introduced in [Burger, Di Francesco, Pietschmann, Schlake (2010)], and then further developped in [Jüngel (2015)].
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Example 1: model for the solid phase

Model for solid phase: Cross-diffusion equations formally derived from a stochastic hopping
model on a network: for 1 ď i ď n,

Btui ´ div

¨

˝

n
ÿ

j“1

csij
`

uj∇ui ´ ui∇uj
˘

˛

‚“ 0

for some coefficients csij “ csji ą 0.

Ji “
n
ÿ

j“1

csij
`

uj∇ui ´ ui∇uj
˘

i.e. J “ Aspuq∇u

Gradient flow structure: hpuq “
řn

i“1 ui log ui

Important remarks:

When csij “ c for all 1 ď i ‰ j ď n, the system boils down to a system of decoupled heat
equations:

Btui ´ c∆ui “ 0
řn

i“1 Ji “ 0
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Example 2: the Stefan-Maxwell system

Proposed by Maxwell 1866/Stefan 1871.

Models the evolution of a gas mixture in non dilute regime

Duncan-Toor 1962: Comparison between the Stefan-Maxwell model and experimental
measurements for a system composed of hydrogen, nitrogen and carbon dioxide.

Boudin, Grec, Salvarini, 2015: derivation from the Boltzmann equation for simple mixtures.

Application: Patients with airways obstruction inhale Heliox to speed up diffusion
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The Stefan-Maxwell system

The Stefan-Maxwell system reads, together with appropriate initial and no-flux boundary
conditions,

$

&

%

Btui ´ div pJi q “ 0,
∇ui `

řn
j“1 Bij puqJj “ 0,

řn
i“1 Ji “ 0

where
@1 ď i ‰ j ď n, Bij puq “ ´c

g
ij ui , Bii puq “

ÿ

1ďj‰iďn

cgij uj

with
cgij “ cgji ą 0.

Notation:xu, vy :“
řn

i“1 uivi for all u :“ pui q1ďiďn, v :“ pvi q1ďiďn P Rn.

Condensed form:
$

&

%

Btu ´ div pJq “ 0,
∇u ` BpuqJ “ 0,
x1, Jy “ 0

(2)

where 1 “ p1, ¨ ¨ ¨ , 1q.
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Properties of the matrix Bpuq

Giovangigli, 1999; Bothe, 2011; Boudin, Grec, Salvarani, 2012; Jüngel, Steltzer, 2013...

A :“

#

u :“ pui q1ďiďn P Rn
`,

n
ÿ

i“1

ui “ x1, uy “ 1

+

V :“

#

v :“ pvi q1ďiďn P Rn,
n
ÿ

i“1

vi “ x1, vy “ 0

+

Lemma (Jüngel, Steltzer, 2013)

Let u P pR˚`qn XA. Then, it holds that

Span Bpuq “ V and Ker Bpuq “ Spantuu.
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Properties of the matrix Bpuq

Consequence: Thus, for any u P pR˚`qn XA, for any vector z P V and any vector y P Rn such
that xy , uy ‰ 0, there exists a unique solution x P Rn solution to

Bpuqx “ z and xy , xy “ 0.

Assume now that there exists a solution pu, Jq to (2) such that upt, xq P pR˚`qn XA for almost all

t ą 0 and x P Ω. Then, ∇upt, xq P Vd since

n
ÿ

i“1

ui “ 1 a.e. implies that
n
ÿ

i“1

∇ui “ 0 a.e.

Besides, x1, uy “ 1 ‰ 0 a.e. Then, a.e., there exists a unique solution Jpt, xq P Rnˆd such that,
a.e.

"

BpuqJ `∇u “ 0,
x1, Jy “ 0,

and there exists a matrix field Ag : pR˚`qn XAÑ Rnˆn such that

J “ Ag puq∇u.

Gradient flow structure: hpuq “
řn

i“1 ui log ui
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Weak solution for the solid/Stefan-Maxwell system

Let T ą 0 be some final time and QT :“ p0,T q ˆ Ω.

Definition (Weak solution)

A weak solution pu, Jq to the the solid/Stefan-Maxwell system, corresponding to the initial profile
u0 P L8pΩ;Aq, with no-flux boundary conditions, is a pair pu, Jq such that
u P L8pQT ;Aq X L2pp0,T q;H1pΩqnq, ∇

?
u P L2pQT q

nˆd , J P L2pQT ;Vd q satisfies

J “ Aspuq∇u or BpuqJ `∇u “ 0 a.e. in QT

and such that for all φ :“ pφi q1ďiďn P C8c pr0,T q ˆ Ωqn,

´

ż ż

QT

xu, Btφy `

ż

Ω
xu0, φp0, ¨qy `

ż ż

QT

n
ÿ

i“1

Ji ¨∇φi “ 0.

Theorem (Jüngel, Steltzer, 2013, Jüngel, 2015)

There exists at least one weak solution to (2) in the sense of the previous definition.
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Entropy dissipation for the solid/Stefan-Maxwell system

For both systems,

hpuq “
n
ÿ

i“1

ui log ui

Let c˚ :“ min1ďi‰jďn cij ą 0, c ij “ cij ´ c˚ ě 0 and c :“ max1ďi‰jďn c ij .

Then, the following inequality holds for all u solution to the solid/Stefan-Maxell system

d

dt
Hpuq ď ´

1

2
α

n
ÿ

i“1

ż

Ω
|∇
?
ui |

2 ´
1

2
c˚

ż

Ω
|J|2 ď 0, (3)

with
α “ αpc˚, cq ą 0.

This inequality enables to obtain bounds on

ż ż

QT

|∇
?
ui |

2 and

ż ż

QT

|J|2
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Numerical scheme for the solid/Stefan-Maxwell system: wishlist

the non-negativity of the volumic fractions;

the conservation of mass
ż

Ω
ui ptq “

ż

Ω
u0
i “ m0

i , @1 ď i ď n.

the preservation of the volume-filling constraint

ui ě 0 and
n
ÿ

i“1

ui “ 1 a.e.

the entropy dissipation relation (3) (or a discrete version of it).
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Numerical schemes for the solid/Stefan-Maxwell system: literature

Burger, Cancès, Carillo, Chainais-Hillaret, Daus, Filbet, Guichard, Jüngel, Perugia, Pietschamnn,
Schmidtchen...

In the particular case of the Stefan-Maxell system,

Boudin, Grec, Salvarani, 2012: ternary system, dimension 1

Jüngel, Leingang, 2019: finite element approximation

Here, we use finite volume schemes based on two-point flux approximation:

solid phase [Cancès, Gaudeul, 2020]

Stefan-Maxwell [Cancès, Ehrlacher, Monasse, 2024]
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Focus on the Stefan-Maxwell case: fundamental remark for the scheme

For all u P Rn
`, it holds that

Bpuq “ c˚x1, uyI ` c˚Cpuq ` Bpuq

where, for all 1 ď i , j ď n,

cij puq “ ui , B ii puq “
ÿ

1ďi‰jďn

c ijuj , B ij puq “ ´c ijui i ‰ j

The matrix B has the same expression as B except that the coefficients cij are replaced by c ij .

In particular, if u P A, Bpuq “ c˚I ` c˚Cpuq ` Bpuq. Moreover, for all J P V, CpuqJ “ 0. Thus,

BpuqJ “ c˚J ` BpuqJ
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Admissible mesh with orthogonality property

T : set of cells E: set of faces (or edges) pxK qKPT : set of cell centers

Assumption: orthogonality property
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Time discretization

Let ∆t ą 0, tp “ p∆t for all p P N and PT P N˚ such that tPT
“ PT ∆ “ T .

The numerical method is an iterative scheme, where for all p P N˚, a discrete solution

up :“ pup
i q1ďiďn P

´

RT
¯n
,

so that up
i “

´

upi,K

¯

KPT
P RT with

upi,K an approximation of the function ui at time tp in the cell K ,

will be computed given the value of the discrete solution at the previous time step up´1.

Let u0 “ pu0
i q1ďiďn P

`

RT ˘n
be a discretized initial condition.
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Notation

For all K P T , mK “ |K | the Lebesgue measure of the cell K ;

For all σ P E, mσ “ Hd´1pσq the d ´ 1-dimensional Hausdorff measure of the face σ,

dσ :“

"

|xK ´ xL| if σ “ K |L is an interior face;
dpxK , σq if σ P EK is an exterior face,

and
τσ “

mσ

dσ
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Notation

For all v “ pvK qKPT P RT , for all K P T and all σ P EK , we denote by vKσ the mirror value of
vK across σ, i.e.

vKσ “

"

vL if σ “ K |L for some L P T ,
vK if σ is an exterior face,

The oriented jump of v across σ is defined by

DKσv :“ vKσ ´ vK

Finally, vσ,log denotes the logarithmic mean between vK and vKσ , i.e.

vσ,log :“

$

’

&

’

%

0 if minpvK , vKσq ď 0,
vK if vK “ vKσ ě 0,

vK´vKσ
logpvK q´logpvKσq

otherwise.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 26 / 45



Numerical scheme

For all K P T and all 1 ď i ď n,

mK

upi,K ´ up´1
i,K

∆t
`

ÿ

σPEK

mσJ
p
i,Kσ “ 0, (4)

where for all σ P EK , JpKσ “
´

Jpi,Kσ

¯

1ďiďn
P Rn is computed as follows:

if σ “ K |L is an interior face,

1

dσ
DKσup

i ` c˚Jpi,Kσ `
ÿ

1ďjďn

B ij pu
p
σ,logqJ

p
j,Kσ “ 0, @1 ď i ď n, (5)

where upσ,log “

´

upi,σ,log

¯

1ďiďn
, and

JLσ “ ´JKσ (6)

if σ is an exterior face,
JpKσ “ 0. (7)
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Properties of the scheme

Solid phase: [Cancès, Gaudeul, 2020]

Theorem (Cancès, VE, Monasse, 2024)

Let pT , E, pxK qKPT q be an admissible mesh of Ω and let u0 be an initial condition such that u0
P AT . Then,

for all p P N˚, the nonlinear system of equations (4)-(5)-(6)-(7) has at least a (strictly) positive solution

up
P AT . This solution satisfies

ÿ

KPT
up
i,K “

ÿ

KPT
u0
i,K .

In addition, the corresponding fluxes Jp
“

`

Jp
Kσ

˘

σPE are uniquely determined by (5)-(6)-(7) and belong to VE ,
i.e.

@K P T , @σ P EK ,
n
ÿ

i“1

Jp
i,Kσ “ 0.

Moreover, the following discrete entropy dissipation estimate holds

ET pu
p
q `∆t

ÿ

σ“K|LPEint

˜

c˚

2
mσdσ|J

p
Kσ |

2
`
α

2
τσ |DKσ

?
up |

2

¸

ď ET pu
p´1
q

where the discrete entropy functional is defined as

ET puq “
ÿ

KPT

n
ÿ

i“1

mKui,K logpui,K q, @u “ pui q1ďiďn P AT
.
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Convergence of the scheme

Let
`

Tm, Em, pxmK qKPTm

˘

mPN be a sequence of admissible meshes such that

hTm :“ max
KPTm

diampKq ÝÑ
mÑ`8

0

and

ζTm :“ min
KPTm

min
σPEK

dpxK , σq

dσ
ě η, @m P N,

for some η ą 0 independent of m.

Let p∆tmqmPN be a sequence of positive time steps such that ∆tm ÝÑ
mÑ`8

0.

Solid phase: [Cancès, Gaudeul, 2020]

Theorem (Cancès, VE, Monasse, 2024)

There exist u P L8pQT ;Aq X L2pp0,T q;H1pΩqnq with
?
u P L2pp0,T q;H1pΩqnq and

J P L2pQT ,Vd q such that, up to the extraction of a subsequence,

uTm,∆tm “ pui,Tm,∆tm q1ďiďn ÝÑ
mÑ`8

u a.e. in QT ,

JEm,∆tm “
`

Ji,Em,∆tm

˘

1ďiďn
ÝÑ

mÑ`8
J weakly in L2pQT q

nˆd .

Besides, pu, Jq is a weak solution of the Stefan-Maxwell problem.

See also [Jüngel, Zurek, 2022]
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Outline of the talk

1 Motivation

2 Monophasic cross-diffusion models

3 Biphasic cross-diffusion model with moving boundary
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Simplified 1d model

Let us assume that there are n P N˚ chemical species involved in the process.

Full spatial domain Ω “ p0, 1q

X ptq P Ω: the location of the boundary between the solid phase and the gaseous phase at
time t;

α “ s, g index refering to the solid (s) or gaseous (g) phase

for 1 ď i ď n, ui pt, xq “ usi pt, xq: local volumic fraction of the chemical species i at time t
and point 0 ă x ă X ptq in the solid phase;

for 1 ď i ď n, ui pt, xq “ ugi pt, xq: local volumic fraction of the chemical species i at time t
and point X ptq ă x ă 1 in the gaseous phase;
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A toy model

For any function f : Ω Ñ Rn regular enough on p0,X ptqq and pX ptq, 1q:

f s :“ f pX ptq´q, f g ptq “ f pX ptq`q, Jf K “ f s ´ f g

Coupled cross-diffusion system:

Btu ´ BxJ “ 0, x P Ω,

J “ AspuqBxu, x P p0,X ptqq,

J “ Ag puqBxu, x P pX ptq, 1q.

Zero-flux conditions on the fixed boundary Jpt, 0q “ Jpt, 1q “ 0 and at the interface, if
X ptq P p0, 1q,

Jsptq ` X 1ptqusptq “ Jg ptq ` X 1ptqug ptq “ F ptq.

F accounts for the flux of chemical species from one phase to the other. We assume it to be of
Butler-Volmer type: for i P t1, . . . , nu, µ˚,si , µ˚,gi P R,

Fi “ usi expp
1

2
Jµ˚i Kq ´ ugi expp´

1

2
Jµ˚i Kq.

Interface evolution: X 1ptq “ ´
řn

i“1 Fi ptq.
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Properties of the model I

Total mass conservation for each species because at the interface JJptqK` X 1ptqJuptqK “ 0.

Preservation of the volumic constraints in each phase.

Free energy functional:

Hpu,X q “
ż X

0
hspuq `

ż 1

X
hg puq,

with, for α P ts, gu,

hαpuq “
n
ÿ

i“1

ui plogpui q ´ µ
˚,α
i q ´ ui ` 1.

Chemical potentials: µαi puq “ Dhαpuq “ logpui q ´ µ
˚,α
i .

Dissipation equality:

d

dt
Hpuptq,X ptqq `

ż Xptq

0
Bx logpuptqqTMspuptqqBx logpuptqq

`

ż 1

Xptq
Bx logpuptqqTMg puptqqBx logpuptqq ´ F ptqT JµptqK “ 0.

Ms ,Mg are positive semi-definite mobility matrices.
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Properties of the model II

Reformulation of the Butler-Volmer fluxes: for i P t1, . . . , nu,

Fi “ usi expp
1

2
Jµ˚i Kq ´ ugi expp´

1

2
Jµ˚i Kq “ 2

b

usi u
g
i sinh

ˆ

´
1

2
Jµi ptqK

˙

,

which guarantees that F ptqT JµptqK ď 0.

Therefore, the free energy is a Lyapunov functional:

d

dt
Hpuptq,X ptqq ď 0.

Stationary solutions pu,X q must be constant in each connected part of Ω :“ p0,X q Y pX , 1q.

Proposition (Stationary states)

In addition to the trivial pure phase solutions, there exists a non-trivial stationary solution
pus , ug ,X q P AˆAˆ p0, 1q if and only if

min

˜

n
ÿ

i“1

m0
i exp

`

Jµ˚i K
˘

,
n
ÿ

i“1

m0
i exp

`

´Jµ˚i K
˘

¸

ą 1.

Moreover, under the latter assumption, this stationary state is unique.
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Discretization

0 1xK` 1
2

xK´ 1
2

xK` 3
2

X p´1

∆p´1
K

∆p´1
K`1

Figure: Mesh deformation at time tp´1
“ pp ´ 1q∆t where K :“ K p´1 is the interface cell.

Background mesh: N P N˚ reference cells of uniform size ∆x “ 1
N

. N ` 1 edge vertices
0 “ x 1

2
ď x 3

2
ď ¨ ¨ ¨ ď xN` 1

2
“ 1, xK` 1

2
“ K∆x for all K P t0, . . . ,Nu. Time horizon T ą 0

and a time discretization with mesh parameter ∆t defined such that NT ∆t “ T with
NT P N˚.

Discrete concentrations up
∆x “ pu

p
i,K qiPt1,...,nu, KPt1,...,Nu for p P t0, . . . ,NT u. Time-discrete

interface X p for p P t0, . . . ,NT u. Kp P t0, . . . ,Nu the index of the left interface cell.

The mesh is locally modified around X p´1: for all K P t1, . . . ,Nu, the size of the K th cell is

∆p´1
K “

$

’

’

&

’

’

%

pX p´1 ´ xKp´1´ 1
2
q if K “ Kp´1,

pxKp´1` 3
2
´ X p´1q if K “ Kp´1 ` 1,

∆x otherwise.
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First step: solving the conservation laws

pup´1
∆x ,X p´1q Ñ pup,‹

∆x ,X
pq: solving the conservation laws and updating the interface.

Implicit discretization: K P t1, . . . ,Nu, i P t1, . . . , nu,

1

∆t
p∆p,‹

K up,‹i,K ´∆p´1
K up´1

i,K q ` Jp,‹
i,K` 1

2

´ Jp,‹
i,K´ 1

2

“ 0,

where

∆p,‹
K “

$

’

’

&

’

’

%

pX p ´ xKp´1´ 1
2
q if K “ Kp´1,

pxKp´1` 3
2
´ X pq if K “ Kp´1 ` 1,

∆x otherwise.

Bulk fluxes: discretized using logarithmic means for edge concentrations Ñ variational
structure is conserved [Cancès, Gaudeul ’20], [Cancès, Ehrlacher, Monasse ’20].

Butler-Volmer interface fluxes naturally discretized as

F p,‹
i “ up,‹

i,Kp´1 expp
1

2
Jµ˚i Kq ´ up,‹

i,pKp´1`1q
expp´

1

2
Jµ˚i Kq.

Interface evolution discretized as

X p “ X p´1 ´∆t
n
ÿ

i“1

F p,‹
i .
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Bulk fluxes: discretized using logarithmic means for edge concentrations Ñ variational
structure is conserved [Cancès, Gaudeul ’20], [Cancès, Ehrlacher, Monasse ’20].

Butler-Volmer interface fluxes naturally discretized as

F p,‹
i “ up,‹

i,Kp´1 expp
1

2
Jµ˚i Kq ´ up,‹

i,pKp´1`1q
expp´

1

2
Jµ˚i Kq.

Interface evolution discretized as

X p “ X p´1 ´∆t
n
ÿ

i“1

F p,‹
i .
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Second step: moving the mesh and post-processing

When X p crosses the center of a cell, one needs to update the mesh (change the interface
cell from Kp´1 to Kp) and to post-process the concentrations into the final values up

∆x
accordingly.

We derive a linear CFL condition to enforce |X p ´ X p´1| ď ∆x
2

, which in particular ensures

that |Kp ´ Kp´1| ď 1 and simplifies the post-processing process.

If Kp “ Kp´1, then we can directly iterate the scheme with up
∆x “ up,‹

∆x .

Otherwise, we project and average the values of up,‹
∆x onto the new mesh (dictated by mass

conservation). By convexity of the energy functional, these operations decrease the total free
energy.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 37 / 45



Second step: moving the mesh and post-processing

When X p crosses the center of a cell, one needs to update the mesh (change the interface
cell from Kp´1 to Kp) and to post-process the concentrations into the final values up

∆x
accordingly.

We derive a linear CFL condition to enforce |X p ´ X p´1| ď ∆x
2

, which in particular ensures

that |Kp ´ Kp´1| ď 1 and simplifies the post-processing process.

If Kp “ Kp´1, then we can directly iterate the scheme with up
∆x “ up,‹

∆x .

Otherwise, we project and average the values of up,‹
∆x onto the new mesh (dictated by mass

conservation). By convexity of the energy functional, these operations decrease the total free
energy.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 37 / 45



Second step: moving the mesh and post-processing

When X p crosses the center of a cell, one needs to update the mesh (change the interface
cell from Kp´1 to Kp) and to post-process the concentrations into the final values up

∆x
accordingly.

We derive a linear CFL condition to enforce |X p ´ X p´1| ď ∆x
2

, which in particular ensures

that |Kp ´ Kp´1| ď 1 and simplifies the post-processing process.

If Kp “ Kp´1, then we can directly iterate the scheme with up
∆x “ up,‹

∆x .

Otherwise, we project and average the values of up,‹
∆x onto the new mesh (dictated by mass

conservation). By convexity of the energy functional, these operations decrease the total free
energy.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 37 / 45



Second step: moving the mesh and post-processing

When X p crosses the center of a cell, one needs to update the mesh (change the interface
cell from Kp´1 to Kp) and to post-process the concentrations into the final values up

∆x
accordingly.

We derive a linear CFL condition to enforce |X p ´ X p´1| ď ∆x
2

, which in particular ensures

that |Kp ´ Kp´1| ď 1 and simplifies the post-processing process.

If Kp “ Kp´1, then we can directly iterate the scheme with up
∆x “ up,‹

∆x .

Otherwise, we project and average the values of up,‹
∆x onto the new mesh (dictated by mass

conservation). By convexity of the energy functional, these operations decrease the total free
energy.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 37 / 45



Illustration of the two steps of the scheme

0 1xK` 1
2

xK´ 1
2

xK` 3
2

xK` 5
2

X p´1

up´1
i,K up´1

i,K`1 up´1
i,K`2

∆p´1
K

∆p´1
K`1 ∆p´1

K`2

0 1xK` 1
2

xK´ 1
2

xK` 3
2

xK` 5
2X p

up,‹i,K up,‹i,K`1u
p,‹
i,K`2

∆p,‹
K

∆p,‹
K`1 ∆p,‹

K`2

0 1xK` 1
2

xK´ 1
2

xK` 3
2

xK` 5
2X p

upi,K upi,K`1 upi,K`2
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Numerical analysis

Discrete free energy functional

Hppup
∆x ,X

pq “

n
ÿ

i“1

ÿ

KďKp

∆p
Kh

spupi,K q `
n
ÿ

i“1

ÿ

KěKp`1

∆p
Kh

g pupi,K q.

Proposition (Structure preservation)

Let pup´1
∆x ,X p´1q be such that up´1

∆x ě 0 and
řn

i“1 u
p´1
i,K “ 1 for any K P t1, . . . ,Nu. There

exists a solution pup
∆x ,X

pq to the scheme such that it holds

upi,K ą 0, @i P t1, . . . , nu, @K P t1, . . . ,Nu,

n
ÿ

i“1

upi,K “ 1, @K P t1, . . . ,Nu,

N
ÿ

K“1

∆p
Ku

p
i,K “

N
ÿ

K“1

∆p´1
K up´1

i,K , @i P t1, . . . , nu,

Hppup
∆x ,X

pq ď Hp´1pup´1
∆x ,X p´1q.

Proof: topological degree argument on a modified scheme (truncations, scalings) to satisfy all the
a priori estimates.
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Numerical results

Numerical scheme implemented in the Julia language using Newton method with stopping

criterion }up,k`1
∆x ´ up,k

∆x }8 ď 10´12 and adaptive time stepping.

Cross-diffusion matrices: size-exclusion [Cancès, Gaudeul ’20] for the solid and
Stefan-Maxwell [Cancès, Ehrlacher, Monasse ’20] for the gas.

Initial interface X 0 “ 0.51 and smooth initial concentrations

u0
1pxq “ u0

2pxq “
1

4
p1` cospπxqq , u0

3pxq “
1

2
p1´ cospπxqq

discretized on a uniform mesh of N “ 100 cells.

Long-time asymptotics: relative free energy Hppup
∆x ,X

pq ´H8pu8,X8q and relative
interface |X8 ´ X p | over time.
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Long-time asymptotics

Figure: Equilibrium case. Figure: Non-equilibrium case: convergence to a
one-phase stationary state.
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Convergence of the scheme

Figure: Convergence analysis of the solution under space grid refinement

Loss of order: first-order accurate on the concentrations in the case of a moving interface,
second-order in fixed domains.
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Perspectives

Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

Generalizations to higher dimension, including geometric effects such as surface diffusion.

Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on
the mesh)

Thank you for your attention

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 43 / 45



Perspectives

Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

Generalizations to higher dimension, including geometric effects such as surface diffusion.

Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on
the mesh)

Thank you for your attention

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 43 / 45



Perspectives

Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

Generalizations to higher dimension, including geometric effects such as surface diffusion.

Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on
the mesh)

Thank you for your attention

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 43 / 45



Perspectives

Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

Generalizations to higher dimension, including geometric effects such as surface diffusion.

Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on
the mesh)

Thank you for your attention

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 43 / 45



Formal (1d) derivation of the model for the cross-diffusion equations inside
the solid

x0 xNxk´2 xk´1 xk xk`1

uk´1
i

uk´1
j

uki

ukj

uk`1
i

uk`1
j

Let ∆t ą 0. Let pij “ pji represent the probability that an atom of type i exchange its position in the solid
with an atom of type j .

Assume for the moment that d “ 1, Ω “ p0, e0q with e0 ą 0 and let us introduce a uniform discretization grid
pxkq0ďkďN of p0, e0q defined by xk “ k∆x with ∆x “

e0
N for N P N˚.

Let us denote by uk
i ptq the local concentration of atom i in the k th cell pxk´1, xkq.

uk
i pt `∆tq ´ uk

i ptq

«
ÿ

0ďjďn, j‰i

pij ru
k
j ptqu

k`1
i ptq ` uk

j ptqu
k´1
i ptq ´ uk´1

j ptquk
i ptq ` uk`1

j ptquk
i ptqs

«
ÿ

0ďjďn, j‰i

pij ru
k
j ptqpu

k`1
i ptq ` uk´1

i ptq ´ 2uk
i ptqq ´ uk

i ptqpu
k´1
j ` uk`1

j ptq ´ 2uk
j ptqqs
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Formal derivation of the model for the diffusion equations inside the solid

Taking now (for instance) the scaling ∆t “ 2Q∆x2 for some constant Q ą 0 and denoting by

csij :“
pij
Q

, we obtain the limit equation

Btui“
ÿ

0ďjďn, j‰i

csij pujBxxui ´ uiBxxuj q

“ Bx

»

–

ÿ

0ďjďn, j‰i

csij
`

ujBxui ´ uiBxuj
˘

fi

fl .

Remark: Rigorous hydrodynamic limit of multi-species symmetric exclusion systems
[Quastel, 91], [Erignoux, 2018], [Dabaghi, VE, Strössner, 2018]
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