Cross-diffusion systems coupled by a moving interface

Clément Cances, Claire Chainais-Hillairet, Jean Cauvin-Vila, Virginie Ehrlacher, Laurent
Monasse

FVOT 2024, Orsay, November 21st 2024

ECOLE NATIONALE DES

PONTS

er CHAUSSEES

P PARIS h pg

European Research Council

Established by the European Commission

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 1/45



@ Motivation

© Monophasic cross-diffusion models

iphasic cross-diffusion model with moving boundary
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Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:

o thin-film vapor deposition (solar cells)
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Motivations

Multispecies and multiphasic diffusion models with moving interfaces to model:
o thin-film vapor deposition (solar cells)
@ corrosion (nuclear waste storing)

@ concrete carbonation (structure engineering)
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Production process: Physical Vapor Decomposition (PVD)
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Modelisation

One has to take into account:

o the cross-diffusion phenomena occuring inside the solid phase and inside the gaseous phase
between the different chemical species;

@ the evolution of the boundary between the two phases.
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@ Motivation

© Monophasic cross-diffusion models

e Biphasic cross-diffusion model with moving boundary
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Diffusion systems

e n e N*¥: number of chemical species in the mixture
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Diffusion systems

e n e N*¥: number of chemical species in the mixture

o Q c RY: (fixed) spatial domain occupied by the mixture

o Forall 1 < i< n, let us denote by u;(t, x) the volumic fraction of the it" species at point
x € Q2 and time t > 0.
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Diffusion systems

e n e N*¥: number of chemical species in the mixture
o Q c RY: (fixed) spatial domain occupied by the mixture
o Forall 1 < i< n, let us denote by u;(t, x) the volumic fraction of the it" species at point
x € Q2 and time t > 0.
General form of a diffusion system:

Oru; — div (J,) =0, u,-(t =0, ) = u?, 1<i<n

with no-flux boundary conditions on 8, and J;(t, x) € R? the flux of the i*" species at point x
and time t > 0. = mass preservation for each chemical species

m?:Ju?>0
Q
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Diffusion systems

e n e N*¥: number of chemical species in the mixture
o Q c RY: (fixed) spatial domain occupied by the mixture

o Forall 1 < i< n, let us denote by u;(t, x) the volumic fraction of the it" species at point
x € Q2 and time t > 0.

General form of a diffusion system:

Orup —div(J) =0, wui(t=0,)=ud’

i, 1<i<n

with no-flux boundary conditions on 8, and J;(t, x) € R? the flux of the i*" species at point x
and time t > 0. = mass preservation for each chemical species

m?:Ju?>0
Q

Fick’s law: J; = D;Vu; for some D; > 0. This leads to a system of decoupled diffusion equations.
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Diffusion systems

e n e N*¥: number of chemical species in the mixture
o Q c RY: (fixed) spatial domain occupied by the mixture

o Forall 1 < i< n, let us denote by u;(t, x) the volumic fraction of the it" species at point
x € Q2 and time t > 0.

General form of a diffusion system:
Gtu,-—div(J,-) =0, u,-(t=0,') = u?, 1<i<n

with no-flux boundary conditions on 8, and J;(t, x) € R? the flux of the i*" species at point x
and time t > 0. = mass preservation for each chemical species

m?:fu?>0
Q

Fick’s law: J; = D;Vu; for some D; > 0. This leads to a system of decoupled diffusion equations.

Fick’s law is not always valid and in general J; may depend on Vuy,---, Vu, in multicomponent
systems.
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Cross-diffusion systems

In general,

Vi<i<n, Ji=) Aj(u)Vuj, (1)
j=1

where A,-j :R" — R is a smooth function for all 1 < /,j < n.
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Cross-diffusion systems

In general,

Vi<i<n, Ji=) Aj(u)Vuj, (1)
j=1

where A,-j :R" — R is a smooth function for all 1 < /,j < n.

Equations (1) can be rewritten in a more condensed form using the notation
u=(ut,yun), J= (e, dn)

as
J=A(u)Vu

where for all u € R", A(u) = (Aj(v)) € R"™¥" is called the diffusion matrix of the system.

1<i,j<n
General form of a cross-diffusion system:

oru—div(A(u)Vu) =0, wu(t=0,)=u’=(u, -, ud)
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Cross-diffusion systems as hydrodynamic limits

Hydrodynamic limits of microscopic and mesoscopic models lead to cross-diffusion systems with
non-diagonal diffusion matrices:

@ Markov chains on discrete state space: Quastel 1991; Erignoux 2018; ...
o Continuous stochastic differential equations: Chen, Daus, Jiingel 2019; ...

e Kinetic equations: Boudin, Grec, Salvarini, 2015; Boudin, Grec, Pavant, 2017; Bondesant,
Briant, 2019; ...
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Cross-diffusion systems with entropic structure

Oru — div (A(u)Vu) =0

We focus in the talk on a particular type of cross-diffusion systems which satisfy specific
properties

o Volumic constraints: V1 <i<n, ui(t,x)=>0 and > u(t,x)=1

e u(t,x)eA:={ueRy": 3"  u =1}
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Cross-diffusion systems with entropic structure

Oru — div (A(u)Vu) =0

We focus in the talk on a particular type of cross-diffusion systems which satisfy specific
properties

o Volumic constraints: V1 <i<n, ui(t,x)=>0 and > u(t,x)=1
e u(t,x)eA:={ueRy": 3"  u =1}
o Entropic structure

More precisely, we consider here cross-diffusion systems such that there exists an entropy
functional which is a Lyapunov function for the system (key ingredient in order to establish the
existence of solutions).

In general, such an entropy functional reads as 7(u) = {, h(u) for some convex function
h: A — R such that D?>h(u)A(u) is a positive semi-definite matrix

d d

dt’H(u) =% Qh(u) :J h(u) - Oru = — J VDh(u) - A(u)Vu

= J Vu- D*h(u)A(u)Vu <0
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Cross-diffusion systems with entropic structure

Denoting by M(u) := A(u)(D?h(u))~! the mobility matrix, then the cross-diffusion system
formally reads as

0ru — div(M(u)VDh(u)) =0
and it formally holds that

d d
L) = 5 L h(u) = L Dh(u) - Gt = _Lvnh(u).A(u)vu

- _f Vu- D2h(u)A(u)Vu
Q

— | VDh(u) - M(u)VDh(u) < 0.

Global existence results obtained using the so-called boundedness by entropy principle, first
introduced in [Burger, Di Francesco, Pietschmann, Schiake (2010)], and then further developped in [Siingel (2015)].
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Example 1: model for the solid phase

Model for solid phase: Cross-diffusion equations formally derived from a stochastic hopping
model on a network: for 1 < i < n,

n
Oruj — div Z c,-j (UjVu; — u,'Vuj') =0
j=1
for some coefficients cl.j. = cjsl. > 0.
Ji = Z cg- (ujVu,- — u,-Vuj) ie. J=As(u)Vu
j=1
Gradient flow structure: h(u) = .| ujlog u;

Important remarks:

o When cg = c for all 1 < i # j < n, the system boils down to a system of decoupled heat
equations:

8tu,- — CAU,' =0
o X1 J=0
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Example 2: the Stefan-Maxwell system

Proposed by Maxwell 1866/Stefan 1871.

Models the evolution of a gas mixture in non dilute regime

o Duncan-Toor 1962: Comparison between the Stefan-Maxwell model and experimental
measurements for a system composed of hydrogen, nitrogen and carbon dioxide.

Boudin, Grec, Salvarini, 2015: derivation from the Boltzmann equation for simple mixtures.

Application: Patients with airways obstruction inhale Heliox to speed up diffusion
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The Stefan-Maxwell system

The Stefan-Maxwell system reads, together with appropriate initial and no-flux boundary
conditions,

Oru; —div (J;) =0,
Vuj + 3, Bij(u)J; =0,
7:1 Ji=0
where
Vi<i#j<n, Bj(u)=—cfu, Biu)y= > cfy
1<j#i<n
with
cg = cﬁ > 0.

Notation:(u, v) := > ; u;v; for all u:= (uj)i<i<n, v 1= (Vi)1<i<n € R".
Condensed form:

Oru — div(J) =0,

Vu+ B(u)d =0,

(1,J5=0

where 1 = (1,--- ,1).
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Properties of the matrix B(u)
Giovangigli, 1999; Bothe, 2011; Boudin, Grec, Salvarani, 2012; Jiingel, Steltzer, 2013...

n
A= {U = (u)1<i<n €RY, > ui=(luy = 1}
i=1
n
V= {V = (Vili<i<n €R", Y vi=(L,v) = 0}

i=1

Lemma (Jingel, Steltzer, 2013)

Let ue (R*)" n A. Then, it holds that

Span B(u) =V and  Ker B(u) = Span{u}.
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Properties of the matrix B(u)

Consequence: Thus, for any v € (Ri)” N A, for any vector z € V and any vector y € R"” such
that {y, u) # 0, there exists a unique solution x € R" solution to

B(u)x =z and {y,x)=0.

Assume now that there exists a solution (u, J) to (2) such that u(t, x) € (R*)" n A for almost all
t>0and x € Q. Then, Vu(t, x) € V¥ since

n n
Z ui =1 a.e. implies that Z Vui =0 a.e.
i=1 i=1
Besides, (1,u) =1 # 0 a.e. Then, a.e., there exists a unique solution J(t,x) € R4 sych that,
a.e.
B(u)d +Vu=0,
<17 J> = 07

and there exists a matrix field Ag : (R*)" n A — R"*" such that

J=Ag(u)Vu.

Gradient flow structure: h(u) = .7 | ujlog u;
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Weak solution for the solid/Stefan-Maxwell system

Let T > 0 be some final time and Q7 := (0, T) x Q.

Definition (Weak solution)

A weak solution (u,J) to the the solid/Stefan-Maxwell system, corresponding to the initial profile

u® e L*(Q; A), with no-flux boundary conditions, is a pair (u,J) such that

ue L®(Qt;A) n L2((0, T); HY(Q)"), VA /u e L2(QT)"*9, J e [*(Q; V) satisfies
J=As(u)Vu or B(u)J+Vu=0a.e. in Qr

and such that for all ¢ := (¢;)1<i<n € CL([0, T) x Q)",

- fjor@’ O0rp) + L<u07 $(0,-)> + f Zn: Ji Vi = 0.

QT i=1

Theorem (Jiingel, Steltzer, 2013, Jiingel, 2015)

There exists at least one weak solution to (2) in the sense of the previous definition.
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Entropy dissipation for the solid /Stefan-Maxwell system

For both systems,

n
= Z u;j log uj
i=1

Let c* = mini<izj<n Cj > 0, Cj = ¢jj — c* >0andc:= maxi<£j<n Cjj-

Then, the following inequality holds for all u solution to the solid/Stefan-Maxell system

& A ﬂazf VP - ge* | 1P <
with
a = a(c*,e) > 0.

This inequality enables to obtain bounds on

| jQT vval ad | jQT P2
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Numerical scheme for the solid/Stefan-Maxwell system: wishlist

the non-negativity of the volumic fractions;

@ the conservation of mass
J u,-(t):J wW=md Vvi<i<n.
Q Q

@ the preservation of the volume-filling constraint
n
ui =0 and Zu,-:la.e.
i=1

@ the entropy dissipation relation (3) (or a discrete version of it).
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Numerical schemes for the solid/Stefan-Maxwell system: literature

Burger, Canceés, Carillo, Chainais-Hillaret, Daus, Filbet, Guichard, Jiingel, Perugia, Pietschamnn,

Schmidtchen...

In the particular case of the Stefan-Maxell system,
@ Boudin, Grec, Salvarani, 2012: ternary system, dimension 1

o Jiingel, Leingang, 2019: finite element approximation

Here, we use finite volume schemes based on two-point flux approximation:
o solid phase [Cances, Gaudeul, 2020]
o Stefan-Maxwell [Cances, Ehrlacher, Monasse, 2024]
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Focus on the Stefan-Maxwell case: fundamental remark for the scheme

For all u e Ri, it holds that

B(u) = c*{1, upl + c*C(u) + B(u)

where, for all 1 < i,j < n,

C,'j(Ll) = uj, E,‘,‘(U) = Z E,-juj? E,‘j(ﬂ) = 7?,‘]”,‘ i 7':_]

The matrix B has the same expression as B except that the coefficients cjj are replaced by ¢;;.

In particular, if ue A, B(u) = c*I 4 ¢*C(u) + B(u). Moreover, for all J eV, C(u)J = 0. Thus,

B(u)J = c*J+ B(u)J
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Admissible mesh with orthogonality property

T: set of cells  E: set of faces (or edges)  (xx)ke7: set of cell centers

Assumption: orthogonality property
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Time discretization

Let At >0, t, = pAt for all pe N and Pt € N* such that tp, = PTA =T.

The numerical method is an iterative scheme, where for all p € N*, a discrete solution
P 7\"
uP = (u)1<i<n € (R ) ;
so that uf = (ufK) e R7T with
) KeT
uP . an approximation of the function u; at time t, in the cell K,
iK P

will be computed given the value of the discrete solution at the previous time step uP~L.

Let u® = (u)1<j<, € (R7)" be a discretized initial condition.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024

24 /45



Notation

e For all K € T, mk = |K| the Lebesgue measure of the cell K;

e Foralloce &, my, = Hd’l(g) the d — 1-dimensional Hausdorff measure of the face o,

do [xk —xi| if o = K|L is an interior face;
7 d(xk,0) if o € Ek is an exterior face,
and
mey
To = —
do
q ----e
N
L]
/
/
/
/
[ ®--1--0 1
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Notation

For all v = (vk)ker € RT, for all K € T and all o € £, we denote by vk, the mirror value of

VK across o, i.e.

S 72 if o = K|L for some Le T,
Ko = VK if o is an exterior face,

The oriented jump of v across o is defined by

DKUV = VKo — VK

Finally, v, o denotes the logarithmic mean between vy and vk, i.e

0 if min(vk, vko) <0,
Volog =4 VK if vk = vko = 0,
o8 VK~ VKo i
otherwise.
log (v ) —log(vke)
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Numerical scheme

Forall Ke 7T and all1 <i < n,

uPK - u‘-’}l

i i, p

mg——— + mgJ: =0 4
At U;’K 7Tke 7 ( )

where for all o € &k, JI = (JfKn) € R" is computed as follows:
Ko J1<ign

e if o = K|L is an interior face,

1 - .
—Dicouf +* Iy, + D) Byl )k, =0, VI<i<n, (5)
c 1<j<n
P _ P
where Ug log = (uf>a‘|0g)1<,»<,,’ and
Jio = —Jko (6)

e if o is an exterior face,
L =o. ™
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Properties of the scheme

Solid phase: [Cances, Gaudeul, 2020]

Theorem (Cances, VE, Monasse, 2024)

Let (T, E, (xx)keT) be an admissible mesh of Q and let u® be an initial condition such that u® € A7 . Then,
for all p € N*, the nonlinear system of equations (4)-(5)-(6)-(7) has at least a (strictly) positive solution
uP € A7 . This solution satisfies
P 0

Z Uik = Z Ui k-

KeT KeT
In addition, the corresponding fluxes J° = (Jf ) ___ are uniquely determined by (5)-(6)-(7) and belong to V¥,
ie.

n
VKeT,Voe&k, > Iy, =0
i=1

Moreover, the following discrete entropy dissipation estimate holds

*
C « =
Er(u®) + At )] <7madaUﬁg|2 4 ETU\DKUVU"|2> < Er(ufh)
o=K|LEEn:

where the discrete entropy functional is defined as

Er(u) = Z Z mgu; k log(ui k), Yu = (Uj)i<i<n € AT
KeT i=1
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Convergence of the scheme

Let (Tm,Em, (X[(”)KeTm)meN be a sequence of admissible meshes such that

hr,, = diam(K 0
T 1= R, e

and

d(xk,0) -

(T,p i= min min =n, VmeN,

KETm 0€€K ds
for some 77 > 0 independent of m.

Let (Atm)men be a sequence of positive time steps such that At,, — 0.
m

—+00
Solid phase: [Cances, Gaudeul, 2020]

Theorem (Cances, VE, Monasse, 2024)

There exist u e L®(Qr;A) n L2((0, T); HX(Q)") with /u € L?>((0, T); H*(Q)") and
Je L2(QT, Vd) such that, up to the extraction of a subsequence,

UTm, Aty = (ui,Tm,Atm)lgign — wua.e. in Qr,

m— 400

: 2 nxd
—+>OOJ weakly in L*(Q7)"*°.

m—

ngaAtm = (Jl',gm,Afm)lgign

Besides, (u,J) is a weak solution of the Stefan-Maxwell problem.

See also [Jiingel, Zurek, 2022]
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@ Motivation

© Monophasic cross-diffusion models

© Biphasic cross-diffusion model with moving boundary

«O»r «Fr < >« > Q>



Simplified 1d model

Let us assume that there are n € N* chemical species involved in the process.

o Full spatial domain Q = (0,1)
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Simplified 1d model

Let us assume that there are n € N* chemical species involved in the process.

o Full spatial domain Q = (0,1)

o X(t) € Q: the location of the boundary between the solid phase and the gaseous phase at
time t;
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Simplified 1d model

Let us assume that there are n € N* chemical species involved in the process.

o Full spatial domain Q = (0,1)

o X(t) € Q: the location of the boundary between the solid phase and the gaseous phase at
time t;

@ o = s, g index refering to the solid (s) or gaseous (g) phase
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Simplified 1d model

Let us assume that there are n € N* chemical species involved in the process.

o Full spatial domain Q = (0,1)

o X(t) € Q: the location of the boundary between the solid phase and the gaseous phase at
time t;

@ o = s, g index refering to the solid (s) or gaseous (g) phase

o for 1 < i< n, ui(t,x) = u?(t,x): local volumic fraction of the chemical species i at time t
and point 0 < x < X(t) in the solid phase;

o for 1 < i< n, uj(t,x) = uf(t,x): local volumic fraction of the chemical species i at time t
and point X(t) < x < 1 in the gaseous phase;
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A toy model

For any function f : Q — R" regular enough on (0, X(t)) and (X(t),1):

£ = F(X()7), FE(t) = FX()T), [F] = F° — £8
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A toy model

For any function f : Q — R" regular enough on (0, X(t)) and (X(t),1):
£ = FX(0)7), F5(2) = FX(DF), [F] = £ — 5
Coupled cross-diffusion system:

Otu—0xJ =0, xeQ,
J = As(u)dxu, x € (0,X(t)),
J = Ag(u)oxu, x e (X(t),1).
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A toy model

For any function f : Q — R" regular enough on (0, X(t)) and (X(t),1):
£ = FX(0)7), F5(2) = FX(DF), [F] = £ — 5
Coupled cross-diffusion system:

Otu—0xJ =0, xeQ,
J = As(u)dxu, x € (0,X(t)),
J = Ag(u)oxu, x e (X(t),1).
Zero-flux conditions on the fixed boundary J(t,0) = J(t,1) = 0 and at the interface, if

X(t) € (0,1),
() + X' (t)us () = JB(t) + X' (t)ud(t) = F(t).
F accounts for the flux of chemical species from one phase to the other. We assume it to be of

Butler-Volmer type: for i € {1,...,n}, ,u;k’s, ,u;k‘g e R,

1 1
Fi = uf exp(5 [1]) — uf exp(—S [uFD-
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A toy model

For any function f : Q — R" regular enough on (0, X(t)) and (X(t),1):
£ = FX(0)7), F5(2) = FX(DF), [F] = £ — 5
Coupled cross-diffusion system:

Otu—0xJ =0, xeQ,
J = As(u)dxu, x € (0,X(t)),
J = Ag(u)oxu, x e (X(t),1).

Zero-flux conditions on the fixed boundary J(t,0) = J(t,1) = 0 and at the interface, if
X(t) € (0,1),
() + X' (t)us () = JB(t) + X' (t)ud(t) = F(t).

F accounts for the flux of chemical species from one phase to the other. We assume it to be of
Butler-Volmer type: for i € {1,...,n}, ,u;k’s, ,u;k‘g e R,

1 1
Fi = uf exp(5 [1]) — uf exp(—S [uFD-

Interface evolution: X'(t) = —X"_; Fi(t).
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Properties of the model |

o Total mass conservation for each species because at the interface [J(t)] + X’ (¢t)[u(t)] = 0.
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Properties of the model |

o Total mass conservation for each species because at the interface [J(t)] + X’ (¢t)[u(t)] = 0.

@ Preservation of the volumic constraints in each phase.
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Properties of the model |

o Total mass conservation for each species because at the interface [J(t)] + X’ (t)[u(t)] = 0.
@ Preservation of the volumic constraints in each phase.

o Free energy functional:

H(u, X) = LX hs(u) + J; hg (u),

with, for a € {s, g},

n

ha(u) = Y ui(log(ui) — 1) — uj + 1.
i=1
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Properties of the model |

o Total mass conservation for each species because at the interface [J(t)] + X' (t)[u(t)] =

@ Preservation of the volumic constraints in each phase.

o Free energy functional:
X 1
HuX) = [ hola) + [ he(u),
0 X

with, for a € {s, g},

n

ha(u) = Y ui(log(ui) — 1) — uj + 1.
i=1

o Chemical potentials: pif*(u) = Dha (u) = log(u;) — 1%,
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Properties of the model |

o Total mass conservation for each species because at the interface [J(t)] + X' (t)[u(t)] =

@ Preservation of the volumic constraints in each phase.

o Free energy functional:
X 1
HuX) = [ hola) + [ he(u),
0 X

with, for a € {s, g},

n

ha(u) = Y ui(log(ui) — 1) — uj + 1.
i=1
o Chemical potentials: pif*(u) = Dha (u) = log(u;) — 1%,
o Dissipation equality:

d

X(0) ;
E7LL(u(t),X(t))+L O log(u(t)) T M (u(1))x log(u(t))

1
+ J O log(u(t)) T Mg (u(£))éx log(u(t)) — F(£) [u(t)] = 0.
X(t)

Ms, Mg are positive semi-definite mobility matrices.
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Properties of the model Il

Reformulation of the Butler-Volmer fluxes: for i € {1,...,n},

1 1 / 1
Fi=u’ exp(a[[u,’."]]) —uf exp(—a[[u;"]]) =2/ usuf sinh <f§[[u;(t)}]> ,

which guarantees that F(t) " [u(t)] < 0.
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Properties of the model Il

Reformulation of the Butler-Volmer fluxes: for i € {1,...,n},

1 1 / . 1
Fi = uf exp(5 [01) — of exp(— [u]) = 2 /uff sinh (—Euumwﬂ) ,
which guarantees that F(t) " [u(t)] < 0. Therefore, the free energy is a Lyapunov functional:

%H(u(t)., X(t)) <0.
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Properties of the model Il

Reformulation of the Butler-Volmer fluxes: for i € {1,...,n},

1 1 / . 1
Fi=uf exp(i[[ul’-k]]) —uf eXp(_E[[“;k]]) =2/ usuf sinh <7§[[u;(t)ﬂ> ,
which guarantees that F(t) " [u(t)] < 0. Therefore, the free energy is a Lyapunov functional:
9 H(u(e). X (1) <0
—H(u(t), <0.
dt ’

Stationary solutions (7, X) must be constant in each connected part of Q := (0, X) u (X, 1).

Proposition (Stationary states)

In addition to the trivial pure phase solutions, there exists a non-trivial stationary solution
(v°,u8, X) e Ax Ax(0,1) if and only if

min <2 m? exp ([uF]), Z m? exp (—[[M,*]])> > 1.
i=1 i=1

Moreover, under the latter assumption, this stationary state is unique.
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Discretization

p—1 p—1
A AK+1
° | : \ | °
0 ! N ‘ ! 1
k-1 K+3 XK+3
xP=1

Figure: Mesh deformation at time tP~* = (p — 1)At where K := KP~! is the interface cell.

o Background mesh: N € N* reference cells of uniform size Ax = % N + 1 edge vertices
0—X1 <X3< <XN+1—1 XK+1—KAxforaIIKe{O ,N}. Time horizon T > 0

and a tlme dlscretlzatlon W|th mesh parameter At defined such that Ny At = T with
NT e N*,
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Figure: Mesh deformation at time tP~* = (p — 1)At where K := KP~! is the interface cell.

o Background mesh: N € N* reference cells of uniform size Ax = % N + 1 edge vertices
0—X1 <X3< <XN+1—1 XK+1—KAxforaIIKe{O ,N}. Time horizon T > 0

and a tlme dlscretlzatlon W|th mesh parameter At defined such that Ny At = T with
NT e N*,

o Discrete concentrations uy = (uf,)icq1,....n}, kef1,...,n} for p€ {0,..., Ny} Time-discrete
interface XP for pe {0,...,N7}. KP € {0,..., N} the index of the left interface cell.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024 35/45



Discretization

—1 p—1
AP A

| ! ‘ |
| [
k-1 XK+1

oe
@

Figure: Mesh deformation at time tP~* = (p — 1)At where K := KP~! is the interface cell.

o Background mesh: N € N* reference cells of uniform size Ax = % N + 1 edge vertices
0—X1 <X3< <XN+1—1 XK+1—KAxforaIIKe{O ,N}. Time horizon T > 0

and a tlme dlscretlzatlon W|th mesh parameter At defined such that Ny At = T with
NT e N*,

o Discrete concentrations uy = (uf,)icq1,....n}, kef1,...,n} for p€ {0,..., Ny} Time-discrete
interface XP for pe {0,...,N7}. KP € {0,..., N} the index of the left interface cell.

o The mesh is locally modified around XP~1: for all K € {1,..., N}, the size of the K cell is

(X! = xpa_y) K =KPTT,
ARt = (o113 = XPH) if K = KP=1 41,
Ax otherwise.
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First step: solving the conservation laws

° (uZ;l,Xp_l) — (uR’", XP): solving the conservation laws and updating the interface.

Implicit discretization: K € {1,...,N}, i€ {1,...,n},
1 AP* P> Apfl p—1 JP* JP* -0
A ARk T Bk ) ey ey =0
where

(XP = Xpp1_1) if K = KP~L,
2
AR = (XKP,1+% —XP) if K=KPl 41,

Ax otherwise.
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First step: solving the conservation laws

° (uZ;l,Xp_l) — (uR’", XP): solving the conservation laws and updating the interface.
Implicit discretization: K € {1,...,N}, i€ {1,...,n},

1
pyx p7 p—1 p—1 P> Py* _
A AR = AT e - I =0,

where
(XP = Xpp1_1) if K = KP~L,
2
AR = (XKP,1+% —XP) if K=KPl 41,

Ax otherwise.

o Bulk fluxes: discretized using logarithmic means for edge concentrations — variational
structure is conserved [Cances, Gaudeul '20], [Cances, Ehrlacher, Monasse '20].
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First step: solving the conservation laws

° (uZ;l,Xp_l) — (uR}, XP): solving the conservation laws and updating the interface.
Implicit discretization: K € {1,...,N}, i€ {1,...,n},

1
T (AP p, _ AP, p—1 Py _ P _
At(AK Al Ui )+J, K+l J, K—1 0,

where
(XP = Xpp1_1) if K = KP~L,
2
AR = (XKP,1+% —XP) if K=KPl 41,

Ax otherwise.

o Bulk fluxes: discretized using logarithmic means for edge concentrations — variational
structure is conserved [Cances, Gaudeul '20], [Cances, Ehrlacher, Monasse '20].

o Butler-Volmer interface fluxes naturally discretized as

1
Pox _  po* %
Fom = i Kp—1 eXP( [[N, D- “, (Kp 141 € (_5[[#[ D.
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First step: solving the conservation laws

° (uZ;l,Xp_l) — (uR’", XP): solving the conservation laws and updating the interface.

Implicit discretization: K € {1,...,N}, i€ {1,...,n},
1
pyx p7 p—1 p—1 P> Py* _
A AR = AT e - I =0,
where

(XP = Xpp1_1) if K = KP~L,
2
AR = (XKP,1+% —XP) if K=KPl 41,

Ax otherwise.

o Bulk fluxes: discretized using logarithmic means for edge concentrations — variational
structure is conserved [Cances, Gaudeul '20], [Cances, Ehrlacher, Monasse '20].

o Butler-Volmer interface fluxes naturally discretized as

1
F,'P7* = u,{j}:pﬂ eXP( [[N, D- “, (Kp 141 € (_5[[#,*]])

@ Interface evolution discretized as

n

—1 *

XP = XP~h— At Y P
i=1
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Second step: moving the mesh and post-processing

@ When XP crosses the center of a cell, one needs to update the mesh (change the interface
cell from KP~! to KP) and to post-process the concentrations into the final values uZX
accordingly.
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Second step: moving the mesh and post-processing

@ When XP crosses the center of a cell, one needs to update the mesh (change the interface
cell from KP~! to KP) and to post-process the concentrations into the final values uZX
accordingly.

@ We derive a linear CFL condition to enforce |XP — XP*1| < %, which in particular ensures

that |KP — KP~1| < 1 and simplifies the post-processing process.
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Second step: moving the mesh and post-processing

@ When XP crosses the center of a cell, one needs to update the mesh (change the interface
cell from KP~! to KP) and to post-process the concentrations into the final values uZX

accordingly.
@ We derive a linear CFL condition to enforce |XP — XP*1| < %, which in particular ensures
that |KP — KP~1| < 1 and simplifies the post-processing process.

_ kp-1 : : : P _ P
o If KP = KP~*, then we can directly iterate the scheme with u, = uy .
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Second step: moving the mesh and post-processing

@ When XP crosses the center of a cell, one needs to update the mesh (change the interface
cell from KP~! to KP) and to post-process the concentrations into the final values uZX
accordingly.

@ We derive a linear CFL condition to enforce |XP — XP*1| < %, which in particular ensures

that |KP — KP~1| < 1 and simplifies the post-processing process.
o If KP = KP~1, then we can directly iterate the scheme with u} = uR”.

o Otherwise, we project and average the values of uZ’; onto the new mesh (dictated by mass
conservation). By convexity of the energy functional, these operations decrease the total free
energy.
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Illustration of the two

steps of the scheme

p—1 p—1
i K Ui k1 Yiky2

0 ol
Xk-1 Fkpil Xk Xkl
XP-1
—_
p—1 p—1 p—1
AK AK-%—l AK-%—Q
ps* ps* Py*
Ui 'k Ui k+1Yi k+2
| | |
0 X, 1 X, o1 IX 3 Xy 5
K—3 Kt3  xpKt3 K+3
AN
p,* py* P>
AK AK+1 AK-%—2
P P P
Uik UYk+r Yiky2
1 - 1
0 Xy 1 X4l IXK‘Jré XKy 5
2 2 XP 2 2
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Numerical analysis

Discrete free energy functional

HP(ng,xp)=§"] > A';;hS(u,‘.jK)Jri > ARKE (Ul ).

i=1 K<KP i=lK=KP+1

Proposition (Structure preservation)

Let (uR ', XP~1) be such that u ' >0 and Y.0_, uP ! = 1 for any K € {1,..., N}. There
exists a so/utlon (uR ., XP) to the scheme such that it holds

WP, >0, Vie{l,...,n}, VK € {1,..., N},

Dl =1,VKefl,...,N},

N
ZAZIUK,VIE{I ,n},

ZAKIK

HP (U], XP) < HP MRt XP7L).
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Numerical analysis

Discrete free energy functional

HP(ng,xp)=§"] > A';;hS(u,‘.jK)Jri > ARKE (Ul ).

i=1 K<KP i=lK=KP+1

Proposition (Structure preservation)

Let (uR ', XP~1) be such that u ' >0 and Y.0_, uP ! = 1 for any K € {1,..., N}. There
exists a so/utlon (uR ., XP) to the scheme such that it holds

WP, >0, Vie{l,...,n}, VK € {1,..., N},

Dl =1,VKefl,...,N},

Z ar- luPKl, Vie{l,...,n},

ZAKIK

HP(uR , XP) < Hf’*l(ug;l,xpfl).

4

Proof: topological degree argument on a modified scheme (truncations, scalings) to satisfy all the
a priori estimates.
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Numerical results

@ Numerical scheme implemented in the Julia language using Newton method with stopping

criterion HuZ’f+1 - UZ’f”oo < 10712 and adaptive time stepping.
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Numerical results

@ Numerical scheme implemented in the Julia language using Newton method with stopping
criterion HuZ’f+1 - uZ’Xk oo < 107*2 and adaptive time stepping.

o Cross-diffusion matrices: size-exclusion [Cances, Gaudeul '20] for the solid and
Stefan-Maxwell [Cances, Ehrlacher, Monasse '20] for the gas.
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Numerical results

@ Numerical scheme implemented in the Julia language using Newton method with stopping

p,k+1 P,k

criterion [uR" ™" — uR oo < 10712 and adaptive time stepping.

o Cross-diffusion matrices: size-exclusion [Cances, Gaudeul '20] for the solid and
Stefan-Maxwell [Cances, Ehrlacher, Monasse '20] for the gas.

o Initial interface X° = 0.51 and smooth initial concentrations

(1 — cos(mx))

N =

HA(x) = Bd(x) = % (1 4 cos(mx)), ud(x) =

discretized on a uniform mesh of N = 100 cells.

V. Ehrlacher Cross-diffusion systems coupled by a moving interface FVOT 2024

40/45



Numerical results

@ Numerical scheme implemented in the Julia language using Newton method with stopping
criterion HuZ’f+1 - UZ’:”oo < 10712 and adaptive time stepping.

o Cross-diffusion matrices: size-exclusion [Cances, Gaudeul '20] for the solid and
Stefan-Maxwell [Cances, Ehrlacher, Monasse '20] for the gas.

o Initial interface X° = 0.51 and smooth initial concentrations

(1 — cos(mx))

N =

1
u () = §(x) = § (1+ cos(mx)) , u(x) =
discretized on a uniform mesh of N = 100 cells.

o Long-time asymptotics: relative free energy ”;’-U’(ugx7 XP) — H®(u®, X®) and relative
interface [X® — XP| over time.
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Long-time asymptotics

1’ 10f

10

0 1 2 3 4 5 0 1 2 3 4 5
time time

Figure: Equilibrium case. Figure: Non-equilibrium case: convergence to a

one-phase stationary state.
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Convergence of the scheme

1! distance
=

107°

10t 10° 10°
number of cells

Figure: Convergence analysis of the solution under space grid refinement

Loss of order: first-order accurate on the concentrations in the case of a moving interface,

second-order in fixed domains.
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Perspectives

@ Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.
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Perspectives

@ Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

@ Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.
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existence of global solutions to the model.

@ Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

o Generalizations to higher dimension, including geometric effects such as surface diffusion.
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Perspectives

@ Proving convergence of the scheme to an appropriate notion of weak solution, providing
existence of global solutions to the model.

@ Long-time behaviour. Conjecture: under the equilibrium condition, the non-trivial stationary
state is the only stable one and weak solutions converge exponentially fast to it for close
enough initial conditions.

o Generalizations to higher dimension, including geometric effects such as surface diffusion.

o Hybrid finite volume schemes for cross-diffusion ? (remove the orthogonality assumption on
the mesh)

Thank you for your attention
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Formal (1d) derivation of the model for the cross-diffusion equations inside
the solid

Uk71 Uk u{<+l
1 ! 1
uk1 uk uktt
J J

X0 XN

Xk—2 Xk—1 Xk Xk+1
Let At > 0. Let p;j = pj; represent the probability that an atom of type i exchange its position in the solid
with an atom of type ;.

Assume for the moment that d = 1, Q = (0, ) with ¢y > 0 and let us introduce a uniform discretization grid
(xk)o<k<n of (0, eo) defined by x¢ = kAx with Ax = 0 for N € N*,

Let us denote by u’(t) the local concentration of atom i in the Kt cell (xx—1, xi)-

uf(t + At) — uf(b)

~ > pluf (e ) + uf (Duf T — TN () + uf T (O (1)

osj<n, j#i

~ Y pluf (W) + uf ) — 20 (8) — uf () (T + uf T () — 20 (1))

0<j<n, j#i
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Formal derivation of the model for the diffusion equations inside the solid

Taking now (for instance) the scaling At = 2QAx? for some constant @ > 0 and denoting by

I-Js- = % we obtain the limit equation

Oruj= Z ¢ (uj Ot — UjOxcj)
o<j<n, j#i

Il
;3)

S
Z c; (uj-axu,- - u,-(?xuj-)

Osjsn, j#i

Remark: Rigorous hydrodynamic limit of multi-species symmetric exclusion systems
[Quastel, 91], [Erignoux, 2018], [Dabaghi, VE, Strdssner, 2018]
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