Reconstruction of Filament Structure

Ruqi HUANG

INRIA-Geometrica

Joint work with Frédéric CHAZAL and Jian SUN

27/10/2014
1 Problem Statement
 Characterization of Dataset
 Formulation

2 Our Approaches
 Reeb Graph
 Geometrical Guarantee
 \(\alpha \)-Reeb Graph
 Topological Guarantee
We are interested in the dataset with underlying linear structure.

Example
Earthquake faults:
Outline

1. Problem Statement
 Characterization of Dataset
 Formulation

2. Our Approaches
 Reeb Graph
 Geometrical Guarantee
 α–Reeb Graph
 Topological Guarantee
Let \((X, d_X)\) and \((Y, d_Y)\) be two metric spaces, an \(\epsilon\)-correspondence between them is a subset \(C \subseteq X \times Y\) such that:

- for any \(x \in X\), there exists \(y \in Y\) such that \((x, y) \in C\);
- for any \(y \in Y\), there exists \(x \in X\) such that \((x, y) \in C\);
- for any \((x, y), (x', y') \in C\), \(|d_X(x, x') - d_Y(y, y')| \leq \epsilon\).
Let \((X, d_X)\) and \((Y, d_Y)\) be two metric spaces, an \(\epsilon\)-correspondence between them is a subset \(C \subseteq X \times Y\) such that:

- for any \(x \in X\), there exists \(y \in Y\) such that \((x, y) \in C\);
- for any \(y \in Y\), there exists \(x \in X\) such that \((x, y) \in C\);
- for any \((x, y), (x', y') \in C\), \(|d_X(x, x') - d_Y(y, y')| \leq \epsilon\).

Gromov-Hausdorff Distance

\[
d_{GH}(X, Y) = \frac{1}{2} \inf \{ \epsilon : \text{there exists an \(\epsilon\)-correspondence between } X \text{ and } Y \}\n\]
Problem Statement

Input
A compact path metric space \((X, d_X) \), which is close to some unknown metric graph \((G', d_{G'}) \), meaning \(d_{GH}(X, G') < \epsilon \).
Problem Statement

Input
A compact path metric space \((X, d_X)\), which is close to some unknown metric graph \((G', d_{G'})\), meaning \(d_{GH}(X, G') < \epsilon\).

Output
A metric graph \((G, d_G)\) as an approximation of \((G', d_{G'})\).
Problem Statement

Input
A compact path metric space \((X, d_X)\), which is close to some unknown metric graph \((G', d_{G'})\), meaning \(d_{GH}(X, G') < \epsilon\).

Output
A metric graph \((G, d_G)\) as an approximation of \((G', d_{G'})\).
Outline

1 Problem Statement
 Characterization of Dataset
 Formulation

2 Our Approaches
 Reeb Graph
 Geometrical Guarantee
 α—Reeb Graph
 Topological Guarantee
Let \((X, d_X)\) be a compact path metric. We set \(r \in X\) as a root point, let \(d(x) = d_X(r, x)\) the distance function to \(r\) in \(X\).
Definition

Let \((X, d_X)\) be a compact path metric. We set \(r \in X\) as a root point, let \(d(x) = d_X(r, x)\) the distance function to \(r\) in \(X\).

Equivalence

\(x \sim y\) IFF \(d(x) = d(y)\) and \(x, y\) are in the same connected component of \(d^{-1}(d(x))\).
Definition

Let \((X, d_X)\) be a compact path metric. We set \(r \in X\) as a root point, let \(d(x) = d_X(r, x)\) the distance function to \(r\) in \(X\).

Equivalence

\(x \sim y\) IFF \(d(x) = d(y)\) and \(x, y\) are in the same connected component of \(d^{-1}(d(x))\).

Reeb Graph

\[G = X \backslash \sim \]
Illustration
1 Problem Statement
 Characterization of Dataset
 Formulation

2 Our Approaches
 Reeb Graph
 Geometrical Guarantee
 α—Reeb Graph
 Topological Guarantee
Let $\pi : X \rightarrow G$ be $\pi(x) = [x]$. Then we consider correspondence $(x, \pi(x)) \subset X \times G$.
Let $\pi : X \to G$ be $\pi(x) = [x]$. Then we consider correspondence $(x, \pi(x)) \subset X \times G$.

- 1-Lipschitz: $d_X(x, y) \geq d_G(\pi(x), \pi(y))$;
Properties

Let $\pi : X \to G$ be $\pi(x) = [x]$. Then we consider correspondence $(x, \pi(x)) \subset X \times G$.

- 1-Lipschitz: $d_X(x, y) \geq d_G(\pi(x), \pi(y))$;
- $d_X(x, y) \leq d_G(\pi(x), \pi(y)) + 2(\beta_1(G) + 1)M$;
Properties

Let $\pi : X \rightarrow G$ be $\pi(x) = [x]$. Then we consider correspondence $(x, \pi(x)) \subset X \times G$.

- 1-Lipschitz: $d_X(x, y) \geq d_G(\pi(x), \pi(y))$;
- $d_X(x, y) \leq d_G(\pi(x), \pi(y)) + 2(\beta_1(G) + 1)M$;
- bounding the diameter of level-set, i.e. $M = \sup_{x \in X} \text{diam}(d^{-1}(d(x)))$.

Since X is close to some underlying graph G', there is an upper bound for the level-set.
Bounding M

Since X is close to some underlying graph G', there is an upper bound for the level-set.

Theorem

For any $l > \alpha$, the diameter of any connected component L of $d^{-1}[l - \alpha, l + \alpha]$ satisfies:

$$diam(L) \leq 4(2 + N_{E,G'}(4(\alpha + 2\epsilon)))(\alpha + 2\epsilon) + \epsilon$$

$N_{E,G'}(\delta)$ is the number of edges of G' with length small than δ.

Let $\alpha = 0$, $M \leq (8N_{E,G'}(8\epsilon) + 17)\epsilon$.

Since X is close to some underlying graph G', there is an upper bound for the level-set.

Theorem

For any $l > \alpha$, the diameter of any connected component L of $d^{-1}[l - \alpha, l + \alpha]$ satisfies:

$$diam(L) \leq 4(2 + N_{E,G'}(4(\alpha + 2\epsilon)))(\alpha + 2\epsilon) + \epsilon$$

$N_{E,G'}(\delta)$ is the number of edges of G' with length small than δ.

Let $\alpha = 0$, $M \leq (8N_{E,G'}(8\epsilon) + 17)\epsilon$
To conclude, we proved that:

\[d_{GH}(X, G) < (\beta_1(G) + 1)(17 + 8N_{E,G'}(8\epsilon))\epsilon \]
1 Problem Statement
 Characterization of Dataset
 Formulation

2 Our Approaches
 Reeb Graph
 Geometrical Guarantee
 α–Reeb Graph
 Topological Guarantee
We modify the equivalence relation to construct the α–Reeb graph.

- Cover the range of $d(x)$ with the intervals $\{l_i\}$ of length at most 2α, for example, $l_i = (i\alpha, (i + 2)\alpha), i = 0, 1, 2...$;
We modify the equivalence relation to construct the α–Reeb graph.

- Cover the range of $d(x)$ with the intervals $\{I_i\}$ of length at most 2α, for example, $I_i = (i\alpha, (i + 2)\alpha)$, $i = 0, 1, 2...$;
- Define equivalence relationship $x \sim_\alpha y$ IFF $d(x) = d(y)$ and x, y are in the same connected component of $d^{-1}(I_i)$;
\[\alpha - \text{Reeb Graph} \]

We modify the equivalence relation to construct the \[\alpha \]–Reeb graph.

- Cover the range of \(d(x) \) with the intervals \(\{ l_i \} \) of length at most \(2\alpha \), for example, \(l_i = (i\alpha, (i + 2)\alpha) \), \(i = 0, 1, 2... \);
- Define equivalence relationship \(x \sim_\alpha y \) IFF \(d(x) = d(y) \) and \(x, y \) are in the same connected component of \(d^{-1}(l_i) \);
- \(G_\alpha = X / \sim_\alpha \).
Illustration

\[H \quad d \quad \mathcal{T} \]

\[\tilde{G} \]

disjoint union of copies of intervals

\[\alpha \text{-Reeb graph} \]
Geometrical Guarantee

Similarly, we have:

\[d_{GH}(X, G_\alpha) < (\beta_1(G_\alpha) + 1)(4(2 + N_{E,G'}(4(\alpha + 2\epsilon))))(\alpha + 2\epsilon) + \epsilon) \]
Outline

1 Problem Statement
 Characterization of Dataset
 Formulation

2 Our Approaches
 Reeb Graph
 Geometrical Guarantee
 α–Reeb Graph
 Topological Guarantee
Homotopy Equivalence Result

Theorem
Let $r \in X$, $\alpha > 60\varepsilon$ and $I\{[0, 2\alpha), (i\alpha, (i + 2)\alpha)|1 \leq i \leq m\}$ covers the segment $[0, \text{Diam}(X)]$. If no edges of G' is shorter than L and no loops of G' is shorter than $2L$ with $L \geq (17\alpha + 9\varepsilon)$, then we have G_α and G' are homotopy equivalent.
Nerve Complex

Let $\mathcal{U} = \bigcup_{i \in A} U_i$ be a finite open covering of topological space T. Then the nerve complex of \mathcal{U}, K, is a simplicial complex whose vertex set is A, and where a family $\{i_0, i_1, ..., i_k\}$ spans a k–simplex in K IFF $U_{i_0} \cap U_{i_1} \cap ... \cap U_{i_k} \neq \emptyset$.
Illustration

H d \mathcal{I}

\tilde{G}

disjoint union of copies of intervals

α-Reeb graph
Nerve Complex

Let $\mathcal{U} = \bigcup_{i \in A} U_i$ be a finite open covering of topological space T. Then the nerve complex of \mathcal{U}, K, is a simplicial complex whose vertex set is A, and where a family $\{i_0, i_1, ..., i_k\}$ spans a $k-$simplex in K IFF $U_{i_0} \cap U_{i_1} \cap ... \cap U_{i_k} \neq \emptyset$.

Nerve Lemma

Furthermore, if all finite intersections of the open sets in the open covering are either empty or contractible, then T is homotopy equivalent to K.
Illustration

\[H \] disjoint union of copies of intervals

\[\tilde{G} \] disjoint union of copies of intervals

\[\alpha\text{-Reeb graph} \]
Correspondence between X and G'

Let $(r, g_r) \in C(X, G')$, $b(g) = d_{G'}(g_r, g)$. Define $C(U) = \{ g : (x, g) \in C, \forall x \in U \subseteq X \}$ ($C(V)$ is defined in the same way for $V \subseteq G'$).
Correspondence between X and G'

Let $(r, g_r) \in C(X, G')$, $b(g) = d_{G'}(g_r, g)$. Define $C(U) = \{g : (x, g) \in C, \forall x \in U \subset X\} (C(V) \text{ is defined in the same way for } V \subset G').$

Path Correspondence

For $x_1, x_2 \in X$, if there is a path in $d^{-1}(l, u)$ connecting them, then for $g_i, (x_i, g_i) \in C$, we can always find a path in $b^{-1}(l - 2\epsilon, u + 2\epsilon)$ connecting g_1, g_2.
New Open Covering of X

$\tilde{V}_1 \in \tilde{V}_1$

$\tilde{V}_2 \in \tilde{V}_2$

$\tilde{V}_3 \in \tilde{V}_3$

$N(V_0)$
Thanks for your attention.

Questions?