
Three examples of persistent homology applications in material science

Porquerolles meeting

Senja Barthel EPFL Laboratory of Molecular Simulation

18 October, 2016

EPFL Valais

Energypolis 'campus' in Sion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

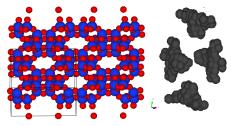
Overview

Three applications:

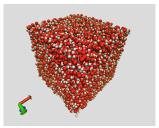
- Description of pore shapes of nano-porous materials
- Analysis of hydrogen-bond networks in water (inside porous materials / model comparison)
- Prediction of ionic conductivity in super ionic conductors

Overview

Three applications:


- Description of pore shapes of nano-porous materials
- Analysis of hydrogen-bond networks in water (inside porous materials / model comparison)
- Prediction of ionic conductivity in super ionic conductors

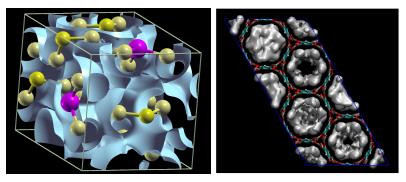
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@


- 1. Typical settings
- 2. Describing pore shapes
- 3. Comparing water models
- 4. Water in metal organic frameworks
- 5. What is the right setting? Warning
- 6. Super ionic conductors
- 7. Typical questions

Let's dive straight in

i Structure described by points

zeolite ITW

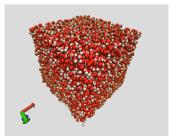


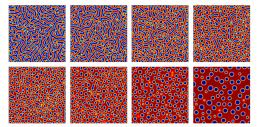
◆□▶ ◆舂▶ ◆恵▶ ◆恵▶ ○酒

bulk water

Let's dive straight in

ii Structure described by a grid


electron charge density

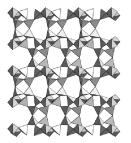

water probability

▲ロト ▲理ト ▲ヨト ▲ヨト 三ヨー のへの

typical tasks

- averaging (from snapshots)

Paweł & Thomas' phase separation dynamics in binary metal alloys

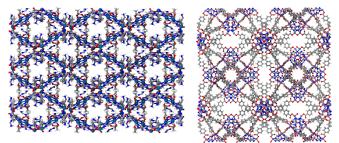

Zeolites

Zeolites [$\zeta\epsilon\omega~\lambda i\theta o\sigma]$ boiling stone, up to 40 % water

Nano-porous materials

Main industrial application:

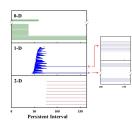

Ion exchange in washing detergents to decrease water hardness.

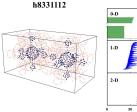

Zeolites consist of SiO_4 -tetrahedrons

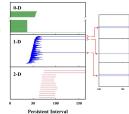
Metal organic frameworks (MOF's)

'Generalisation' of zeolites. Porous materials.

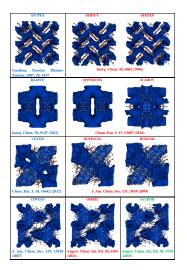
MOF's: organic linkers attached to metal centers

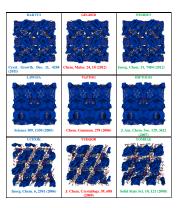

Pore geometry of nano porous materials (zeolites, MOF's, etc) use persistent homology to


- a develop a descriptor capturing the geometry of pores
 - \rightarrow quantify similarity,
 - ightarrow compare,
 - \rightarrow classify materials by shapes
- b illuminate the topography of material libraries
 - \rightarrow distinct classes of top-performing materials,
 - \rightarrow different optimisation strategies


- 1.a) Development of a pore shape descriptor:
 - $1. \ \ \text{Sample the pore surface}$
 - 2. Construct the Vietoris-Rips complex
 - 3. Compute the 0-, 1-, 2-dimensional homologies

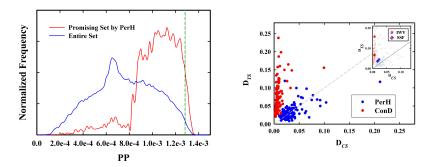
DON



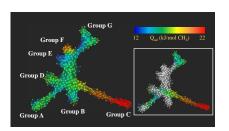


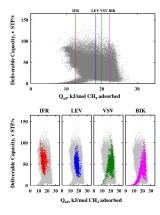
- 1.a) Development of a pore shape descriptor
- \rightarrow quantify similarity,
- \rightarrow search for similar structures

Seed	Descriptor	Selected Nth Similar Structure 1st 2nd 3rd 4th			
SSF	PerH				
	ConD			2004 (2004) 2 2005 (2 2007 (2005)	
	PerH				
	ConD	1960 1960 1960 1960			


- 1.a) Development of a pore shape descriptor
- \rightarrow quantify similarity,
- \rightarrow search for similar structures

Pore shape matters!


- Pore shape is related to performance (carbon capture, methane storage, etc)
- and doing better than conventional descriptors

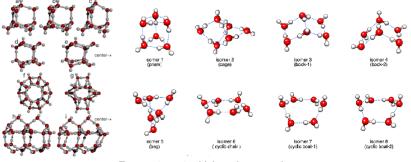


イロト 不得 トイヨト イヨト

э

- 1.b) Topography of zeolites
 - Diversity of top-performing structures
 - 6 different classes of pore-shapes
 - Optimise within a class, e.g., heat of adsorption

Hydrogen bond networks in H_2O


- Comparing different models
- Get correction terms
- Experimentally known is only averaged atom number around each atom per distance (RDF)

bulk water

(日)、

э

Formations in H bond networks

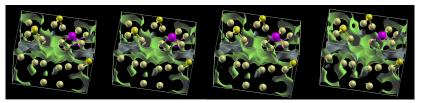
Hydrogen bond networks in H₂O

- Water inside MOF's
- Perform simulations of bulk water and water in MOFs.
 Ranking a MOF based on how little it 'disrupt' the PH of bulk water.
- What hydrogen bond network forms? How dependent of the shape of the pores?

Water density inside MOFs

\land WARNING 🔬

- 'What do you want?' answered by 'What can you do?'
- users take ph-output as intrinsic property/as fixed tool Interpretation?
- will give you anything (unmotivated) to get insight, demanding unsupervised analysis to find the unknown. Instead: know your system


🕂 WARNING 🕂

- 'What do you want?' answered by 'What can you do?'
- users take ph-output as intrinsic property/as fixed tool Interpretation?
- will give you anything (unmotivated) to get insight, demanding unsupervised analysis to find the unknown. Instead: know your system
- 1. worst case: User works blindly with software
- 2. second worst case: We are performing the analysis unsupervised for them, underestimating the complexity and uniqueness of each application
- 3. further problem: slow thinking mathematician
- 4. desired: Know what you are looking for and modify your analysis accordingly instead of using (random) results as guidance. Problem: Impatience, try and error approach, constructive instead of specific approach

Conductivity of super ionic conductors

Predicting and screening for ionic conductivity of Li conductors

- ▶ When do channels close diffusion & temperature → death time of 1-dimensional homology classes to predict activation energy of diffusion
- 'dimensionality' of diffusion
- sizes of channel system
- minimal value along a paths, all values along a path (same info back as scalar function)

Electron charge density iso-surfaces

Conductivity of super ionic conductors

(loading video)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Typical questions

- using symmetries
- periodicity (non-orthogonal)
- weighted Voronoi decompositions
- > path detection, dimensionality, independence
- properties along paths (barriers, diameters, min value, long parts of tunnels with particular size, adsorption sites ...)

connected component detection

Thank you!

for your attention

Thanks to the people on the projects

LSMO Yongjin Lee Seyed Mohamad Moosavi Amber Mace Matthew Witman Berend Smit

THEOS Leonid Kahle Aris Marcolongo

INRIA Paweł Dłotko

UPHESS Kathryn Hess

