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Proteins: from structure to function across dynamics

. Demo vmd

. Given is the Potential Energy Landscape: a potential energy function i.e.

U : C → R (1)

. Core questions pertain to the realms of:

– Structure: stable states (conformations) / ensembles of coherent conformations
→ sampling the PEL: enumerating low lying local minima

– Thermodynamics: probability for the stable states
→ integrating Boltzmann’s factor on the basins of the PEL

– Kinetics: dynamics between the stable states
→ building Markov state model on the PEL



Energy landscapes and the trinity
Structure – Thermodynamics – Dynamics

. Problem statement: emergence of function from structure and dynamics
For proteins: understanding minimal frustration

. State-of-the-art: contributions from various perspectives
– Molecular dynamics (including REMD, metadynamics),
– Energy landscapes methods (the basin hopping lineage),
– Monte Carlo methods (MCMC, Wang-Landau, importance sampling)
– Markov state models
– Dimensionality reduction (PCA, Isomap, diffusion maps)

.Ref: Becker and Karplus, The Journal of Chemical Physics, 1997

.Ref: Wales; Energy Landscapes; 2003

.Ref: Chipot; Frontiers in free-energy calculations; 2014



BLN69: a Simplified Protein Model
. Description:

– Three types of Beads: : hydrophobic(B), hydrophylic(L) and neutral(N)
– Configuration space of intermediate dimension: 207
– Challenging: frustrated system
– Exhaustively studied: DB of ∼ 450k critical points (Industry)
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. Disconnectivity graph: describes merge events between basins

.Ref: Honeycutt, Thirumalai, PNAS, 1990

.Ref: Oakley, Wales, Johnston, J. Phys. Chem., 2011
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Exploring Potential Energy Landscapes:
basin hopping

. Goal: enumerating low energy local minima

. Basin-hopping and the basin hopping transform
– Random walk in the space of local minima
– Requires a move set and an acceptance test (cf Metropolis)

and the ability to descend the gradient (quenching)
aka energy minizations

E

C
mimi+1

.Ref: Li and Scheraga, PNAS, 1987



Exploring Potential Energy Landscapes:
transition based rapidly exploring random trees (T-RRT)

. Goal: sample basins and transitions

. Algorithm growing a random tree favoring yet unexplored regions
– node to be extended selection: Voronoi bias
– node extension: interpolation + Metropolis criterion (+temperature tuning)

pn
δ

pe

T

pr C
pr

pn

.Ref: LaValle, Kuffner, IEEE ICRA 2000

.Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. Chem, 2011



Exploring energy landscapes:
a generic approach yielding BH, T-RRT,. . .

. Template:

Require: E(·): potential energy
Require: Parameters: T :

temperature; δ: step size

Initialize the set P with one
conformation
while StopCondition= False do

pn ←
SelectConformationToExtend(P)
pe ← ExtendConformation(pn)
UpdateMoveSetParams(δ)
if AcceptConformation(pn, pe)
then

RecordNewConformation(pe ,P)
UpdateAcceptanceTestParams

. Hybrid algorithm: alternate BH and
T-RRT extensions

. Key ingredients:

I Boosting the identification of
low lying minima

I Favoring spatial
adaptation—local exploration
parameters

I Handling distances efficiently

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015



Exploring energy landscapes: performances of Hybrid

. Contributions: enhanced exploration of low lying regions of a complex landscape

. Protocol:
– Contenders: BH, T-RRT, Hybrid for various parameter values b
– Count and assess the local minima reported from two reference databases:

BLN69−min − all : 458,082 minima
BLN69-min-E−100: 5932 minima.

• Bounding box ∅: all mins vs low lying • Median energies
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. Assessment:
– Combines critical building blocks:

minimization, spatial exploration boosting, nearest neighbor searches
– Bridging the gap to thermodynamics

.Ref: Oakley et al; J. of Physical Chemistry B; 2011

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015



Lennard-Jonnes cluster LJ60
. Coarse graining the system:
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. Using the distribution of barriers’ heights:
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.Ref: Carr, Mazauric, Cazals, Wales; J. Chem. Phys.; 2016



Sampling: discussion

. Critical features
+ - distance used – impacts the Voronoi bias
+ - data structures used for nearest neighbor queries
+ - move set
+ - temperature and step size adaptation

. Open questions
(parameterized) mathematical models for PEL
output sensitive analysis for exploration algorithms
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The Structural Bioinformatics Library (SBL): 101
http://sbl.inria.fr

. What: generic C++ / Python library for Structural Bioinformatics
– Combining high level applications

and low level algorithms (combinatorial, topological and geometric)
. Who for:

– End-Users : compiled binaries solving specific problems
Space filling models / Conformational analysis / large assemblies

– Developers : C++ framework to create novel applications
– Contributors : contribute generic C++ packages ”a la” CGAL

. Platforms: Unix Linux and MacOS (released) and Windows (pending)

. License: academia: open source like; industries: specific licence

. Getting the SBL: http://sbl.inria.fr/downloads

. Getting the pre-compiled applications: http://sbl.inria.fr > Applications

http://sbl.inria.fr
http://sbl.inria.fr/downloads
http://sbl.inria.fr
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Structural similarity measures
. Comparing conformations of:

(PB1) the same molecule: mapping between atoms known (identical atoms!)
→ a geometric problem

(PB2) two related molecules (e.g. two polypeptide chains of different length)
→ a dual combinatorial (common contacts) + geometric problem (how similar?)

. (PB1) Geometric comparison of the same molecule:

I least RMSD, Cauchy-Binet score

I issue #1: for large structures, small numbers ∼ 1Å are fine; larger
number are often meaningless.

I issue #2 (related): a score does not give a mapping

. (PB2) Comparison of two related molecules:

I contact map overlap

I main issue: the longer the alignment the worse the geometric measure

TBEV pre-fusion TBEV post-fusion

.Ref: Kabsch, Act. Crystall. A, 1976

.Ref: Arun et al, IEEE PAMI, 1987

.Ref: Guyon and Tuffery Bioinformatics, 2014



A geometric distance for two ordered point clouds:
the least Root Mean Square Deviation: lRMSD

. Data: two point sets A = {ai}i=1,...,n,B = {bi}i=1,...,n, with a 1-1
correspondence ai ↔ bi
. Root Mean Square Deviation:

RMSD(A,B) =

√√√√1

n

n∑
i=1

‖ai − bi‖22 (1)

a1 a2

a3
a4

a5

b1

b2

b3
b4

b5

. least Root Mean Square Deviation:

lRMSD(A,B) = min
g∈SE(3)

RMSD(A, g · B). (2)

. Pros and cons:

I pro: easy to compute (quadratic problem, SVD)

I cons: medium range values for large structures tell nothing

.Ref: Umeyama, IEEE PAMI 1991

.Ref: Steipe, Acta Crystallographica Section A, 2002



Contact map overlap with Apurva
. Contact map of a polypeptide chain

A graph stating when two
amino-acids (a.a.) are in close
proximity (e.g. distance between
their Cα carbons).

. Contact map overlap (CMO):

I Find subsets of vertices I and J yielding the largest set of common edges
in their induced graphs

I Constraint: since amino-acids are linearly ordered, crossings are not
allowed (Fig.)

. Hardness: decision problem is NP-hard.

. Algorithm: integer programming model + branch-and-bound algorithm +
Lagrangian relaxation.
.Ref: Papadimitriou et al, FOCS 1999

.Ref: R. Andonov, N. Malod-Dognin, and N. Yanev, J. of Computational

Biology, 2011



Ex: TBEV glycoprotein in two different conformations
pre and post fusion

. Classical analysis:

Statistics from Apurva:

I 370 a.a. aligned

I lRMSD: 11.1Å

. Our motifs:

pre-fusion post-fusion

Motif Alignment size lRMSD

Red 88 1.69
Purple 40 0.38



Structural Motif

. Input: We are given two polypeptide chains SA and SB

Definition 1. Given two sets of a.a. MA = {ai1 , . . . , ais} ⊂ SA and
MB = {bi1 , . . . , bis} ⊂ SB , and a one-to-one alignment {(aij ↔ bij )} between
them, we define the least RMSD ratio as follows:

rlRMSD(MA,MB) = lRMSD(MA,MB)/lRMSD(SA,SB). (3)

The sets MA and MB are called structural motifs provided that
|MA| = |MB | ≥ s0 and rlRMSD(MA,MB) ≤ r0, for appropriate thresholds s0 and
r0.
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Detecting Motifs: overview
. Rationale: Using a criterion of structural conservation to order residues, the
persistent connected components that arise upon inserting them in that order
in a space filling model should correspond to structural motifs.

Ordering of the residues i.e.
Cα carbons

Filtrations of space
filling models

Persistence diagram

Identification of struc-
tural motifs

Pre-processing Step 2

Step 4

D

B

1 2 3

Given two structures,
compute a pairwise
structural alignment

Step 1 Step 3



Step 1: computing Cα ranks for the polypeptide chains A
and B

. Input: a structural alignment
yields

I dA
i,j : dist. between Cα i and j

on chain A

I dB
i,j : dist. between Cα i and j

on chain B

i j
Chain A

Chain B

dAi,j

dBi,j

. Distance difference matrix between A and B:

si,j =| dA
i,j − dB

i,j |, i = 1, . . . ,N, j = 1, . . . ,N. (4)

. Cα rank of residue i: index of the smallest si,j involving this residue in the
sorted sequence Sorted{si,j}.

Assuming the ordering of scores
depicted, the ranks are as follows:

I one for C1 and C2

I two for C3 and C4

I likewise for the second chain.

C1

C2 C3
C4

C
′
1

C
′
2

C
′
4 C

′
3

Sorted scores: s12 < s34 < s23 < s13 < s14 < s24



Step 2: building filtrations of space filling models
(NB: filtration = nested set)

. Model a collection of amino-acids with its Solvent Accessible Surface

todo: add pict a.a. as lines / as vdw / as SAS

. For both structures, independently:

I insert a.a. by increasing Cα ranks,

I maintain the corresponding space filling model

(A) (B)
A(1) A(2)

A(3)

A(4)

A(5)

A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(7)A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(7)A(6)

A(8)

2 6

7
8

(D)(C)

Birth

Death

c.c. involving A(6)

c.c. involving
A(2), A(3), A(4), A(5), A(6), A(7)

y = x



Step 3: compute the persistence diagram of the connected
components of the space filling models

. Assessing the stability of conserved regions:

I compute its connected components

I maintain the associated persistence diagram

(A) (B)
A(1) A(2)

A(3)

A(4)

A(5)

A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(7)A(6)

A(1) A(2)

A(3)

A(4)

A(5)

A(7)A(6)

A(8)

2 6

7
8

(D)(C)

Birth

Death

c.c. involving A(6)

c.c. involving
A(2), A(3), A(4), A(5), A(6), A(7)

y = x



Step 4: identifying motifs – rationale

. Structure comparison yield motifs (def 1): connected components associated
to the PD points:

I New structural alignment yields two motifs MA and MB

I if rlRMSD ≤ r0 and |MA| = |MB | ≥ s0 record the structural motif

Comparing connected components
associated with neighboring points
in the PD

. Topological changes and accretion:

I accretion: insertion of an a.a. connected to an already existing connected
component.

I concomitant birth and death i.e. 0-persistence i.e. point on the diagonal
of the PD for c.c.

I pitfall: accretion may be such that a PD has very few points!



Step 4: identifying motifs – details

. Identifying motifs:

– For each critical value (death date) t of either persistence diagram:
– compute the c.c. FA = {c1, . . . , cnA} of FA

t

– compute the c.c. FB = {c ′1, . . . , c ′nB } of FB
t

– (simple) compute a structural alignment for each pair (ci , c
′
j ) ∈ FA × FB

– (involved) solve a k-partition matching for FA and FB ,
and run a structural alignment on the resulting meta-clusters

. Filtering motifs:

I compute the Hasse diagram (for the inclusion) of the motifs found
NB: inclusion owes to the nested-ness of sublevel ets.

I retain the roots of the Hasse diagrams only.
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Class II fusion proteins

. Function: involved in membrane fusion of viruses–including dengue and zika.

. Hierarchical structure: secondary, tertiary, quaternary structures conserved
Organized in three domains.

. Main statistics: structural conservation ∼ 15Å; sequence identity < 10%

.Ref: Rey et al, Cell 157, 2014



Study
. Data: Consider N structures with mild atomic structure conservation and
poor pairwise sequence identity.

. Questions:

I 1. can we identify structural motifs that would characterize the N
structures?

I 2. are these motifs characterized by conserved sequence patterns, that
would allow retrieving fusion proteins from databases of protein
sequences?

Name Family Genus PDB file

Semliki Forest virus Togaviridae Alphavirus SFV-1RER.pdb

Dengue fever virus Flaviviridae Flavivirus DFV.pdb
Tick-borne encephalitis virus Flaviviridae Flavivirus TBEV.pdb

Hantaan river virus Bunyaviridae Hantavirus HRV.pdb
Rift valley fever virus Bunyaviridae Phlebovirus RVFV.pdb

Rubella virus Togaviridae Rubivirus RBV-4ADI.pdb

C.Elegans NA NA EFF1.pdb

Table: Structures used in this study



Structure of class II fusion proteins: details

Figure: SSE elements on fusion domains from Perez et al, 2014



Structural motifs: results

. Summary: We uncover 124 structural motifs with sizes ranging from 20 to
153, 18 of which display and exceptionally good lRMSD ratio (≤ 0.5).



From structural motifs to sequence patterns

. Ordered structural motifs: Upon ordering the structural motifs with
increasing lRMSD ratio (r1 < · · · < ri < ri+1 < · · · < rk), we perform the
following steps (on a per domain basis).

EFF1
DFV
HRV
RBV
RV FV
SFV
TBEV

TGIIHQLVLQGAPHRSEKLG
VLTIGISEETFVITPH
QDRPVNDNAHGD
GEYLCLTQQPVRAG
GIKSALNLALTSASVGLKFK
LKAKVRMPYGVVFQTKV
ETTVFVVKVEGTRVTLVL

Multiple sequence
alignment:

•Alignment score gs

lRMSD ratio: ri lRMSD ratio: ri+1

EFF1 RSEKLG
RBV VGLKFK

Pair: (ri+1, gs)



Results

HRV-Hanta. RVFV-Phlebo.

RBV-Rubi. SFV-Alpha.

EFF-1 TBEV



Conclusions and further work

. Two main contributions:

I A method to detect sub-regions of increased sequence and structural
conservation in a set of structures.

I Application of this method to the class II fusion proteins: yields structural
motifs significantly more conserved than the whole + correlation
between this structural conservation and the associated sequence
conservation.

. Further work, applied:

I Comparing proteins in different conformations – sampling energy
landscapes

. Further work, theory:

I When/why does our method work?

I subtle interplay between the quality of the initial alignment,
and the matching encoding in persistence diagrams

I k-partition matching: NP-complete problem with polynomial time
algorithms for specific (intersection) graphs


