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Where did I start playing with statistics?

I Analysis of time varying patterns from dynamical systems,
more than 4 years ago.

I No statistical tools for persistent homology available.
I No efficient implementation of Bottleneck/Wasserstein

distances available.
I Yet, there was a strong need for that in topological data

analysis.
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Persistence landscapes.

I Idea by Peter Bubenik.
I Very closely related to size functions used before (in

dimension 0) by Bologna group.
I Lift persistence diagrams to Banach space of functions.
I This space is large enough to have well defined averages and

scalar products.
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Persistence landscapes.

I Bottleneck stability.
I Averages.
I Lp distances.
I Scalar products.
I Various ways to vectorize.



Persistence landscape toolbox.

I Computations of distance matrix.
I Computation of averages landscapes.
I Standard deviation.
I Computations of integrals.
I Moments computations.
I Permutation test.
I T-test, anova.
I Classifiers.



Persistence landscape toolbox.

I In almost all the cases, we used only a few property of the
landscapes.

I And it was not important at all that we use landscapes.
I Let us have a look at a concrete example.



Permutation test example.

Input: Two collections of persistence diagrams c1, ..., cn and
d1, ..., dn.
Output: p-value of a statement that averages of c1, ..., cn and

d1, ..., dn are different.
Convert them to your favourite representation A.
counter = 0.
C = average of c1, ..., cn, D = average of d1, ..., dn.
for N times do
B = {c1, ..., cn, d1, ..., dn}.
Shuffle B, and divide to B1 and B2.
if d(B1,B2) > d(C ,D) then

Increment counter .
return counter

N .



What do we need to do statistics?

I Distances.
I Averages.
I Scalar product.
I Vectorization.
I Confidence bounds.



Other representations of persistence.

I Persistence landscapes on a grid (simplified representation
used in TDA R-package).

I Persistence vectors (by M. Cariere, S. Oudot and M.
Ovsjanikov).

I Various types of ”put a (weighted) kernel in every point of
persistence diagrams” distributions:

I Persistence Stable Space Kernel, by J. Reininghaus, U. Bauer,
R. Kwitt.

I Persistence Weighted Gaussian Kernel by G. Kusano, K.
Fukumizu, Y. Hiraoka.

I Persistence Images by Chepushtanova, Emerson, Hanson,
Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier.



(Truncated) Vectors of distances.
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(Truncated) Vectors of distances, statistical operations.

1. Point-wise averages.

2. Max, lp distances.

3. Various projections to R are possible.

4. Scalar products of vectors well defined.

5. Vectorization is for free.
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Distributions on diagrams.

1. In any comparisons, grid sizes have to be comparable.

2. Distances and averages possible to define.

3. W-1 stable.

4. Vectorization possible.

5. Real-valued function possible to define.



Topological infomation
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Additional features.

1. Topological inference.

2. Distance to measure.



Looking forward, time varying data.

I Quite often our data are time–varying.
I In each time step we are given a scalar value function.
I But filtration is changing (continuously).
I Multi dimensional persistence.... no...
I Methods for time varying data.
I Note that we cannot go back in time.



Time varying data.

I Suppose we know only the data from the constitutive time
steps.

I We do not know how they were transformed to each other.



Distances and averages.
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Topological process.

I The representation of a process is a time series (a vector) of
persistence diagrams.

I I call this time series a topological process.
I All the statistical operations can be done coordinate–wise.
I We may however have more information.



Full transformation.
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Time-varying data statistics.

I Diagrams, points → paths (vines and vineyards).
I (Dynamic) landscapes (updating of structure is needed).
I Gaussian kernel–based representations (we get 3d instead of

2d distribution).
I Persistence vectors changing in a sooth way.
I ...



Time-varying trees statistics, vines and vineyards.

I Continuously time-varying persistence diagram gives us a
vineyard.

I Standard bottleneck and Wasserstein distances defined by
integrals of standard distances.

I Mean vineyard can be defined in analogy to Frechet mean of
two diagrams.

I See phd thesis of Liz Munch.
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Time-varying trees statistics, landscapes, non generic
points.
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Time-varying trees statistics, landscapes.

I The points are moving in a continuous way.
I Therefore intersection of line segments used to create

landscapes moves in continuous way.
I New intersections may be created.
I Old intersections may disappear.



Time-varying diagrams statistics.

I In this case, the Gaussian kernel (with whatever mean and
stdiv) travels along wines in vineyard.

I That gives continuous distribution in R3.
I Distances and averages are the standard ones from the Lp

space.



Finally.

Let us have some goodies!



Thank you for your time!
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	General motivation.

