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Where did | start playing with statistics?

» Analysis of time varying patterns from dynamical systems,
more than 4 years ago.

» No statistical tools for persistent homology available.

» No efficient implementation of Bottleneck/\Wasserstein
distances available.

> Yet, there was a strong need for that in topological data
analysis.
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Persistence landscapes.

v

Idea by Peter Bubenik.

Very closely related to size functions used before (in
dimension 0) by Bologna group.

v

v

Lift persistence diagrams to Banach space of functions.

This space is large enough to have well defined averages and
scalar products.

v



Persistence landscapes.




Persistence landscapes.




Persistence landscapes.




Persistence landscapes.




Persistence landscapes.

NN L




Persistence landscapes.




Persistence landscapes.

N\ / \




Persistence landscapes.




Persistence landscapes.




Persistence landscapes.

AN




Persistence landscapes.

v

Bottleneck stability.
> Averages.

LP distances.

v

v

Scalar products.

» Various ways to vectorize.



Persistence landscape toolbox.

» Computations of distance matrix.

» Computation of averages landscapes.
» Standard deviation.

» Computations of integrals.

» Moments computations.

» Permutation test.

> T-test, anova.

» Classifiers.



Persistence landscape toolbox.

» In almost all the cases, we used only a few property of the
landscapes.

» And it was not important at all that we use landscapes.

» Let us have a look at a concrete example.



Permutation test example.

Input: Two collections of persistence diagrams ci,...,c, and
di,...,dn.
Output: p-value of a statement that averages of ci,...,c, and
di,..., d, are different.
Convert them to your favourite representation A.
counter = Q.
C = average of ¢, ..., c,, D = average of dy, ..., d,.
for N times do
B = {Cl, «ees Cp,y dl, ceey d,,}.
Shuffle B, and divide to B; and Bs.
if d(Bi1,B2) > d(C,D) then
Increment counter.
return <Unter




What do we need to do statistics?

Distances.

v

v

Averages.

v

Scalar product.

Vectorization.

v

Confidence bounds.

v



Other representations of persistence.

» Persistence landscapes on a grid (simplified representation
used in TDA R-package).

» Persistence vectors (by M. Cariere, S. Oudot and M.
Ovsjanikov).
» Various types of "put a (weighted) kernel in every point of
persistence diagrams” distributions:
» Persistence Stable Space Kernel, by J. Reininghaus, U. Bauer,
R. Kwitt.
> Persistence Weighted Gaussian Kernel by G. Kusano, K.
Fukumizu, Y. Hiraoka.
» Persistence Images by Chepushtanova, Emerson, Hanson,
Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier.



(Truncated) Vectors of distances.
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(Truncated) Vectors of distances, statistical operations.

Point-wise averages.
Max, /P distances.
Various projections to R are possible.

Scalar products of vectors well defined.

AN .

Vectorization is for free.



Distributions on diagrams.




Distributions on diagrams.

In any comparisons, grid sizes have to be comparable.
Distances and averages possible to define.
W-1 stable.

Vectorization possible.

o L=

Real-valued function possible to define.
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Additional features.

1. Topological inference.

2. Distance to measure.



Looking forward, time varying data.

v

Quite often our data are time—varying.

v

In each time step we are given a scalar value function.

v

But filtration is changing (continuously).

v

Multi dimensional persistence.... no...

v

Methods for time varying data.

v

Note that we cannot go back in time.




Time varying data.

» Suppose we know only the data from the constitutive time
steps.

» We do not know how they were transformed to each other.
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Topological process.

v

The representation of a process is a time series (a vector) of
persistence diagrams.

v

| call this time series a topological process.

v

All the statistical operations can be done coordinate—wise.

v

We may however have more information.



Full transformation.




Full transformation.
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Full transformation.
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Time-varying data statistics.

Diagrams, points — paths (vines and vineyards).

v

v

(Dynamic) landscapes (updating of structure is needed).

Gaussian kernel-based representations (we get 3d instead of
2d distribution).

Persistence vectors changing in a sooth way.

v

v



Time-varying trees statistics, vines and vineyards.

» Continuously time-varying persistence diagram gives us a
vineyard.

» Standard bottleneck and Wasserstein distances defined by
integrals of standard distances.

» Mean vineyard can be defined in analogy to Frechet mean of
two diagrams.

» See phd thesis of Liz Munch.



Time-varying trees statistics, landscapes.
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Time-varying trees statistics, landscapes.




Time-varying trees statistics, landscapes, non generic
points.




Time-varying trees statistics, landscapes, non generic
points.




Time-varying trees statistics, landscapes.

v

The points are moving in a continuous way.

v

Therefore intersection of line segments used to create
landscapes moves in continuous way.

v

New intersections may be created.

v

Old intersections may disappear.



Time-varying diagrams statistics.

> In this case, the Gaussian kernel (with whatever mean and
stdiv) travels along wines in vineyard.

» That gives continuous distribution in R3.
» Distances and averages are the standard ones from the LP
space.



Finally.

Let us have some goodies!



Thank you for your time!

I want you in Gudhi!

DataShape Team, INRIA, Saclay and Sophia-Antipolis
contact: pawel.dlotko, vincent.rouvreau @ inria.fr



	General motivation.

