Shallow Packings and their Applications

Kunal Dutta

INRIA, DATASHAPE group (Based on joint works with Arijit Ghosh, Bruno Jartoux and Nabil Mustafa)

> GUDHI Workshop, Porquerolles October, 2016

- 2 Lower Bounds on Shallow Packings
- 3) ε -nets from Shallow Packings
- 4 Remarks and Open Questions

< 口 > < 同 >

→ E → < E</p>

Geometric Set Systems

 (X, \mathcal{R}) : X - a universe of "elements", e.g. points in \mathbb{R}^d or regions of \mathbb{R}^d .

 \mathcal{R} : a collection of subsets of the universe, having some geometric property, e.g. induced by containment or intersections with a given family of geometric objects.

Geometric Set Systems

Figure: Points and intervals in \mathbb{R}

Figure: Points and axis-parallel rectangles in \mathbb{R}^2

Figure: Points and disks in \mathbb{R}^2

< 口 > < 同 >

•

Shallow Packings

Given a set system (X, \mathcal{R}) , a δ -packing $\mathcal{P} \subset \mathcal{R}$ is a subcollection of sets such that

$$\{\forall S_1, S_2 \in \mathcal{P} : |S_1 \Delta S_2| > \delta\}.$$

A *k*-shallow δ -packing is a δ -packing, all of whose sets contain at most *k* points.

Figure: 5-packing with points and half-spaces (lines) in \mathbb{R}^2

Given a set system (X, \mathcal{R}) , and a set $Y \subset X$, the *projection* of \mathcal{R} on Y is

$$\mathcal{R}|_{\mathsf{Y}} := \{ \boldsymbol{S} \cap \boldsymbol{Y} | \boldsymbol{S} \in \mathcal{R} \}.$$

Shallow Cell Complexity

A set system (X, \mathcal{R}) has *shallow cell complexity* $\varphi(.,.)$, if for any $Y \subseteq X$, the number of subsets in $\mathcal{R}|_Y$ of size at most k, is $O(|Y| \cdot \varphi(|Y|, k))$.

If the dependence of φ on k is polynomial, we'll drop the second parameter and call it $\varphi(.)$.

Primal shatter dimension *d*: If $\varphi(m, k) = O(m^{d-1})$, for any $1 \le k \le m$.

Clarkson-Shor property (d, d_1) : If $\varphi(m, k) = O(m^{d_1-1}k^{d-d_1})$.

イロト イポト イラト イラ

Shallow Cell Complexity

A set system (X, \mathcal{R}) has *shallow cell complexity* $\varphi(.,.)$, if for any $Y \subseteq X$, the number of subsets in $\mathcal{R}|_Y$ of size at most k, is $O(|Y| \cdot \varphi(|Y|, k))$.

If the dependence of φ on k is polynomial, we'll drop the second parameter and call it $\varphi(.)$.

Primal shatter dimension *d*: If $\varphi(m, k) = O(m^{d-1})$, for any $1 \le k \le m$.

Clarkson-Shor property (d, d_1) : If $\varphi(m, k) = O(m^{d_1-1}k^{d-d_1})$.

Shallow Cell Complexity

A set system (X, \mathcal{R}) has *shallow cell complexity* $\varphi(.,.)$, if for any $Y \subseteq X$, the number of subsets in $\mathcal{R}|_Y$ of size at most k, is $O(|Y| \cdot \varphi(|Y|, k))$.

If the dependence of φ on k is polynomial, we'll drop the second parameter and call it $\varphi(.)$.

Primal shatter dimension *d*: If $\varphi(m, k) = O(m^{d-1})$, for any $1 \le k \le m$.

Clarkson-Shor property (d, d_1) : If $\varphi(m, k) = O(m^{d_1-1}k^{d-d_1})$.

Shallow Cell Complexity

A set system (X, \mathcal{R}) has *shallow cell complexity* $\varphi(.,.)$, if for any $Y \subseteq X$, the number of subsets in $\mathcal{R}|_Y$ of size at most k, is $O(|Y| \cdot \varphi(|Y|, k))$.

If the dependence of φ on *k* is polynomial, we'll drop the second parameter and call it $\varphi(.)$.

Primal shatter dimension *d*: If $\varphi(m, k) = O(m^{d-1})$, for any $1 \le k \le m$.

Clarkson-Shor property (d, d_1) : If $\varphi(m, k) = O(m^{d_1-1}k^{d-d_1})$.

< ロ > < 同 > < 三 > < 三 > 、

Packing Theorems

Theorem[Haussler, 1995] Given a set system having primal shatter dimension at most *d* (i.e. shallow cell complexity m^{d-1}), any δ -packing has size at most $O\left(\left(\frac{n}{\delta}\right)^{d}\right)$.

Theorem Ezra '14, D.-Ezra-Ghosh '15, Mustafa '15: Any set system having primal shatter dimension at most *d* and shallow cell complexity $\varphi(.,.)$, can have (k, δ) packings of size at most $\frac{24dn}{\delta}\varphi(\frac{4dn}{\delta},\frac{12dk}{\delta})$.

< ロ > < 同 > < 回 > < 回 >

Packing Theorems

Theorem[Haussler, 1995] Given a set system having primal shatter dimension at most *d* (i.e. shallow cell complexity m^{d-1}), any δ -packing has size at most $O\left(\left(\frac{n}{\delta}\right)^{d}\right)$.

Theorem Ezra '14, D.-Ezra-Ghosh '15, Mustafa '15: Any set system having primal shatter dimension at most *d* and shallow cell complexity $\varphi(.,.)$, can have (k, δ) packings of size at most $\frac{24dn}{\delta}\varphi(\frac{4dn}{\delta},\frac{12dk}{\delta})$.

イロト イポト イラト イラト

Our results: Lower bounds, applications etc.

Lower bounds: Tight upto constants (in *d*).

Bounds on (all known classes of) ε -nets as functions of shallow cell complexity. (Summarises 30 years of progress!)

Bounds on M-nets (combinatorial analogs of Macbeath regions) as functions of shallow cell complexity.

.

I

Our results: Lower bounds, applications etc.

Lower bounds: Tight upto constants (in *d*).

Bounds on (all known classes of) ε -nets as functions of shallow cell complexity. (Summarises 30 years of progress!)

Bounds on M-nets (combinatorial analogs of Macbeath regions) as functions of shallow cell complexity.

.

Our results: Lower bounds, applications etc.

Lower bounds: Tight upto constants (in *d*).

Bounds on (all known classes of) ε -nets as functions of shallow cell complexity. (Summarises 30 years of progress!)

Bounds on M-nets (combinatorial analogs of Macbeath regions) as functions of shallow cell complexity.

- **2** Lower Bounds on Shallow Packings
 - 3) ε -nets from Shallow Packings
 - 4 Remarks and Open Questions

< 口 > < 同 >

★ ∃ → ★ ∃

Lower Bound Result

(D.-Ezra-Ghosh, SoCG'15): The upper bound on shallow packings is tight upto constants, when $\varphi(m, k) = O(mk^2)$.

Theorem(D.-Ghosh-Jartoux-Mustafa, '16+) For any positive integers $d, d_1, n, d \ge d_1$, there exists a set system (X, \mathcal{R}) on n elements such that

- (i) (X, \mathcal{R}) has shallow cell complexity $\psi(m, r) = m^{d_1 1} r^{d d_1}$, and,
- (ii) for any k and δ such that $\delta \leq \frac{k}{4d}$, (X, \mathcal{R}) has a k-shallow δ -packing of size $\Omega\left(\frac{n^{d_1-1}k^{d-d_1}}{\delta^d}\right)$.

< ロ > < 同 > < 回 > < 回 > .

Construction: (1, 1)-Clarkson-Shor system

Figure: (1, 1)-Clarkson-Shor system

Figure: (1, 1)-CS system: Alternate view

4 E b

For each node v of the tree T, there is an edge in \mathcal{P} consisting of the leaves of the sub-tree rooted at v.

(1,1)-Clarkson-Shor system (contd.)

Observation: For any set $S \subseteq X$, and $r \in \mathbb{N}$, $|\mathcal{P}_i|_{S, \leq r}| < 2|S|$.

Proof: easy if the leaves in $\mathcal{P}|_S$ form a connected component.

Otherwise: induct on the number of connected components.

Crucial: independent of r.

(1,1)-Clarkson-Shor system (contd.)

Observation: For any set $S \subseteq X$, and $r \in \mathbb{N}$, $|\mathcal{P}_i|_{S, < r}| < 2|S|$.

Proof: easy if the leaves in $\mathcal{P}|_{\mathcal{S}}$ form a connected component.

Otherwise: induct on the number of connected components.

Crucial: independent of r.

< ロ > < 同 > < 回 > < 回 >

(1,1)-Clarkson-Shor system (contd.)

Observation: For any set $S \subseteq X$, and $r \in \mathbb{N}$, $|\mathcal{P}_i|_{S, < r}| < 2|S|$.

Proof: easy if the leaves in $\mathcal{P}|_S$ form a connected component.

Otherwise: induct on the number of connected components.

Crucial: independent of r.

(1,1)-Clarkson-Shor system (contd.)

Observation: For any set $S \subseteq X$, and $r \in \mathbb{N}$, $|\mathcal{P}_i|_{S, < r}| < 2|S|$.

Proof: easy if the leaves in $\mathcal{P}|_S$ form a connected component.

Otherwise: induct on the number of connected components.

Crucial: independent of r.

< ロ > < 同 > < 回 > < 回 >

(1,0)-Clarkson-Shor system

Figure: (1,0)-Clarkson-Shor system

 $\mathcal{Q} = \{\{1\}, \{1, 2\}, \{1, 2, 3\}, \dots, \{1, 2, \dots, n/d\}\}.$

< ロ > < 同 > < 回 > < 回 > .

Combining (1, 1)- and (1, 0)- CS systems

Take d_1 copies of $(X, \mathcal{P})_{i=1}^{d_1}$, and $d - d_1$ copies of $(Y, \mathcal{Q})_{i=d_1+1}^d$:

 $Z = \prod_{i=1}^{a_1} X_i \times \prod_{d_1+1}^{a} Y_i.$ $\mathcal{R} = \{r_1 \cup r_2 \cup \dots r_d | (r_1, \dots, r_d) \in \mathcal{P}_1 \times \dots \mathcal{P}_{d_1} \times \mathcal{Q}_{d_1+1} \times \dots \in \mathcal{Q}_{d_1+1} \times \dots \oplus \mathcal{Q}_{d_1+1$

$$\begin{aligned} \mathcal{R}|_{\mathcal{S},\leq l}| &\leq \left(\prod_{i=1}^{d_1} \mathcal{P}_i|_{X_i,\leq l}\right) \times \left(\prod_{d_1+1}^{d} \mathcal{Q}_i|_{Y_i,\leq l}\right) \\ &\leq (2m)^{d_1} \times (l)^{d-d_1} \end{aligned}$$

A B M A B M

Combining (1, 1)- and (1, 0)- CS systems

Take d_1 copies of $(X, \mathcal{P})_{i=1}^{d_1}$, and $d - d_1$ copies of $(Y, \mathcal{Q})_{i=d_1+1}^d$: $Z = \prod_{i=1}^{d_1} X_i \times \prod_{d_1+1}^d Y_i$. $\mathcal{R} = \{r_1 \cup r_2 \cup \ldots r_d | (r_1, \ldots, r_d) \in \mathcal{P}_1 \times \ldots \mathcal{P}_{d_1} \times \mathcal{Q}_{d_1+1} \times \ldots \mathcal{Q}_d\}$. For any $S \subseteq Z$,

$$\begin{aligned} \mathcal{R}|_{\mathcal{S},\leq l}| &\leq \left(\prod_{i=1}^{d_1} \mathcal{P}_i|_{X_i,\leq l}\right) \times \left(\prod_{d_1+1}^{d} \mathcal{Q}_i|_{Y_i,\leq l}\right) \\ &\leq (2m)^{d_1} \times (l)^{d-d_1} \end{aligned}$$

(*) * (*) *)

Combining (1, 1)- and (1, 0)- CS systems

Take d_1 copies of $(X, \mathcal{P})_{i=1}^{d_1}$, and $d - d_1$ copies of $(Y, \mathcal{Q})_{i=d_1+1}^d$: $Z = \prod_{i=1}^{d_1} X_i \times \prod_{d_1+1}^d Y_i$. $\mathcal{R} = \{r_1 \cup r_2 \cup \ldots r_d | (r_1, \ldots, r_d) \in \mathcal{P}_1 \times \ldots \mathcal{P}_{d_1} \times \mathcal{Q}_{d_1+1} \times \ldots \mathcal{Q}_d\}$. For any $S \subseteq Z$,

$$\begin{aligned} \mathcal{R}|_{S,\leq l}| &\leq \left(\prod_{i=1}^{d_1} \mathcal{P}_i|_{X_i,\leq l}\right) \times \left(\prod_{d_1+1}^{d} \mathcal{Q}_i|_{Y_i,\leq l}\right) \\ &\leq (2m)^{d_1} \times (l)^{d-d_1} \end{aligned}$$

Combining (1, 1)- and (1, 0)- CS systems

Take d_1 copies of $(X, \mathcal{P})_{i=1}^{d_1}$, and $d - d_1$ copies of $(Y, \mathcal{Q})_{i=d_1+1}^d$: $Z = \prod_{i=1}^{d_1} X_i \times \prod_{d_1+1}^d Y_i$. $\mathcal{R} = \{r_1 \cup r_2 \cup \ldots r_d | (r_1, \ldots, r_d) \in \mathcal{P}_1 \times \ldots \mathcal{P}_{d_1} \times \mathcal{Q}_{d_1+1} \times \ldots \mathcal{Q}_d\}$. For any $S \subseteq Z$,

$$\begin{aligned} \mathcal{R}|_{\mathcal{S},\leq l}| &\leq \left(\prod_{i=1}^{d_1} \mathcal{P}_i|_{X_i,\leq l}\right) \times \left(\prod_{d_1+1}^{d} \mathcal{Q}_i|_{Y_i,\leq l}\right) \\ &\leq (2m)^{d_1} \times (l)^{d-d_1} \end{aligned}$$

Combining (1, 1)- and (1, 0)- CS systems (contd.):

\bigcirc	\bigcirc	\bigcirc	\circ	0	\bigcirc	\bigcirc
(i, 1)	(i, 2)					$(i, \frac{n}{d})$

Figure: Height: $\geq \log_2 \delta$

$$\mathcal{P}_i^{k,\delta} = \{\{i\} \times \{\mathbf{2}^{\alpha}\beta + 1, \dots, \mathbf{2}^{\alpha}(\beta+1)\} | \log_2 \delta \le \alpha \le \log_2(k/d), 0 \le \beta \le \mathbf{2}^{-\alpha}(n/d)\}.$$

 $\mathcal{Q}_i^{k,\delta} = \{\{i\} \times \{1, 2, \dots, \gamma\delta\} | 1 \le \gamma \le k/(d\delta)\}.$

∃ ► < ∃ ►</p>

Combining (1, 1)- and (1, 0)- CS systems (contd.):

$$\begin{aligned} |\mathcal{R}| &\geq (2\delta)^{-d_1} \left(\frac{n}{d}\right)^{d_1} \left(\frac{k}{d\delta}\right)^{d-d_1} \\ &\geq 2^{-d_1} d^{-d} \left(\frac{n^{d_1} k^{d-d_1}}{\delta^d}\right) \end{aligned}$$

Kunal Dutta Shallow Packings and their Applications

< ロ > < 同 > < 回 > < 回 > :

- 2 Lower Bounds on Shallow Packings
- ε-nets from Shallow Packings
 - 4 Remarks and Open Questions

< 口 > < 同 >

★ ∃ → ★ ∃

What are ε -nets?

 $\varepsilon\text{-nets:}$ Subset of elements hitting all sets having at least εn elements.

Haussler-Welzl ('87): Let (X, \mathcal{R}) be a set system with $\varphi(m) = O(m^{d-1})$ for some constant *d*, let $\varepsilon > 0$ be a given parameter.

Let N be a random sample constructed by sampling each point of X randomly and independently with probability

$$\frac{4}{\varepsilon|X|}\log\frac{2}{\gamma} + \frac{8d}{\varepsilon|X|}\log\frac{8d}{\varepsilon}.$$

Then *N* is an ε -net with probability at least $1 - \gamma$.

More on ε -nets: Uses

Approximation algorithms,

Discrete and computational geometry,

Meshing theory,

Discrepancy theory,

Learning theory, etc.

Image: A matrix

★ ∃ → ★ ∃

Results on *ε***-nets**

Papers published roughly each year since 1987, showing existence of "small" ε -nets for specific geometric set systems.

Matoušek: Multiple results in '90s, including half-planes, bounded primal shatter dimension, etc.

Clarkson-Varadarajan (2007)): Size of ε -nets for dual systems in terms of union complexity.

Ray-Pyrga (2008): Pseudo-disks have $O(1/\varepsilon)$ -sized ε -nets.

Aronov-Ezra-Sharir (2010): Dual set systems actually have $\varepsilon^{-1} \log \varphi(\varepsilon^{-1})$ -sized nets.

Aronov-Ezra-Sharir (2010): Axis-parallel rectangles have $\varepsilon^{-1} \log \log(\varepsilon^{-1})$ -sized nets.

イロト イポト イラト イラ

Theorem[Chan et al '10, Varadarajan '07] (Mustafa-D.-Ghosh '16+): Shallow cell complexity $\varphi(.)$ (where $\varphi(.) = O(n^d)$) implies there exists an ε -net of size $O\left(\frac{1}{\varepsilon}\log\varphi\left(\frac{1}{\varepsilon}\right)\right)$.

- E - E

Want to hit all sets of size $\geq \varepsilon n$, (assume sets have exactly εn elements).

Figure: Nearest neighbours in (3, 4)-packing

Nearest neighbour property:

Each set *S* in the system has a neighbour in any maximal δ -packing \mathcal{D} , whose distance from *S* is at most δ .

Proof

So if $\delta = \varepsilon n/2$, then each set *S* of size εn has a neighbour in \mathcal{D} , which shares $\varepsilon n/2$ of its elements with *S*.

Suffices to take 1/2-nets over all sets in a maximal $\varepsilon n/2$ -packing!

Choose $k = \varepsilon n$ to get appropriate number of sets.

So if $\delta = \varepsilon n/2$, then each set *S* of size εn has a neighbour in \mathcal{D} , which shares $\varepsilon n/2$ of its elements with *S*.

Suffices to take 1/2-nets over all sets in a maximal $\varepsilon n/2$ -packing!

Choose $k = \varepsilon n$ to get appropriate number of sets.

So if $\delta = \varepsilon n/2$, then each set *S* of size εn has a neighbour in \mathcal{D} , which shares $\varepsilon n/2$ of its elements with *S*.

Suffices to take 1/2-nets over all sets in a maximal $\varepsilon n/2$ -packing!

Choose $k = \varepsilon n$ to get appropriate number of sets.

So if $\delta = \varepsilon n/2$, then each set *S* of size εn has a neighbour in \mathcal{D} , which shares $\varepsilon n/2$ of its elements with *S*.

Suffices to take 1/2-nets over all sets in a maximal $\varepsilon n/2$ -packing!

Choose $k = \varepsilon n$ to get appropriate number of sets.

Proof

Note: by Shallow Packing lemma, $(\varepsilon n, \varepsilon n/2)$ -packing has size $O\left(\frac{n\varphi(n/(\varepsilon n/2))((\varepsilon n/2)^c)}{(\varepsilon n/2)^{c+1}}\right) = O\left(\frac{\varphi(1/\varepsilon)}{\varepsilon}\right).$

Doesn't work: Too many sets in packing! :(

Idea: Do random sampling,

then use a maximal ε n-shallow, ε n/2-packing $\mathcal P$ for correction sets (only if required!).

Proof

Note: by Shallow Packing lemma, $(\varepsilon n, \varepsilon n/2)$ -packing has size $O\left(\frac{n\varphi(n/(\varepsilon n/2))((\varepsilon n/2)^c)}{(\varepsilon n/2)^{c+1}}\right) = O\left(\frac{\varphi(1/\varepsilon)}{\varepsilon}\right).$

Doesn't work: Too many sets in packing! :(

Idea: Do random sampling,

then use a *maximal* ε *n*-shallow, ε *n*/2-packing \mathcal{P} for correction sets (only if required!).

Proof

Note: by Shallow Packing lemma, $(\varepsilon n, \varepsilon n/2)$ -packing has size $O\left(\frac{n\varphi(n/(\varepsilon n/2))((\varepsilon n/2)^c)}{(\varepsilon n/2)^{c+1}}\right) = O\left(\frac{\varphi(1/\varepsilon)}{\varepsilon}\right).$

Doesn't work: Too many sets in packing! :(

Idea: Do random sampling,

then use a *maximal* ε *n*-shallow, ε *n*/2-packing \mathcal{P} for correction sets (only if required!).

Proof

Note: by Shallow Packing lemma, $(\varepsilon n, \varepsilon n/2)$ -packing has size $O\left(\frac{n\varphi(n/(\varepsilon n/2))((\varepsilon n/2)^c)}{(\varepsilon n/2)^{c+1}}\right) = O\left(\frac{\varphi(1/\varepsilon)}{\varepsilon}\right).$

Doesn't work: Too many sets in packing! :(

Idea: Do random sampling,

then use a *maximal* ε *n*-shallow, ε *n*/2-packing \mathcal{P} for correction sets (only if required!).

< ロ > < 同 > < 回 > < 回 >

Proof: Random sampling step

Randomly sample each element in *X* with probability: $\frac{4}{(1/2)\varepsilon n}\log 2\varphi\left(\frac{1}{\varepsilon}\right) + \frac{8d}{(1/2)\varepsilon n}\log\frac{8d}{(1/2)}$.

By Haussler-Welzl theorem, get a (1/2)-net for each $S \in \mathcal{P}$, with probability at least $1 - \frac{1}{\varphi(1/\varepsilon)}$.

< ロ > < 同 > < 回 > < 回 > .

Proof: Random sampling step

Randomly sample each element in *X* with probability: $\frac{4}{(1/2)\varepsilon n}\log 2\varphi\left(\frac{1}{\varepsilon}\right) + \frac{8d}{(1/2)\varepsilon n}\log\frac{8d}{(1/2)}$.

By Haussler-Welzl theorem, get a (1/2)-net for each $S \in \mathcal{P}$, with probability at least $1 - \frac{1}{\varphi(1/\varepsilon)}$.

< ロ > < 同 > < 回 > < 回 > .

Proof: Correction step

Compute the expected size of the union of the correction sets:

$$\mathbb{E}[|M|] = \sum_{S \in \mathcal{P}} \Pr[N \text{ is not a } (1/2) \text{-net for } S] \cdot (\text{size of } (1/2) \text{-net for } S)$$
$$\leq \sum_{S \in \mathcal{P}} \frac{1}{\varphi(1/\varepsilon)} \cdot O(1) = O\left(\frac{1}{\varepsilon}\right).$$

Therefore
$$\mathbb{E}[H] = \mathbb{E}[N] + \mathbb{E}[M] = O\left(\frac{\log(\varphi(1/\varepsilon))}{\varepsilon} + \frac{1}{\varepsilon}\right).$$

Consequences: Some well-known results

	Set System	Primal/Dual	Size of ϵ -nets	
F	falfspaces in \mathbb{R}^d , $d = 2, 3$	P	$O(\frac{1}{\epsilon})$	Pach-Woegir
	Pseudodisks in \mathbb{R}^2	P	$O(\frac{1}{\epsilon})$	
	Union complexity $\varphi(.)$	D	$O(\frac{1}{\varepsilon}\log\varphi(\frac{1}{\varepsilon}))$	Clark
	Axis parallel rectangles	Р	$O(\frac{1}{\varepsilon}\log\log(\frac{1}{\varepsilon}))$	

< 口 > < 同 >

A B > A B >

- 2 Lower Bounds on Shallow Packings
- 3) ε -nets from Shallow Packings
- Remarks and Open Questions

< 口 > < 同 >

→ 3 → 4 3

Also prove existence of Mnets in terms of shallow cell complexity.

Easier proof of Haussler's theorem?

Other applications?

Thanks!

Kunal Dutta Shallow Packings and their Applications

æ