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3 Our mission

“. . . to boldly
compute what no
topologists has
computed before.”

Algorithmic foundations, implementations, and
software in computational topology and geometry.
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4 The algorithmic pipeline

1. Turn input into multi-scale representation

2. Compute topological invariants

3. Draw conclusions about the input
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5 Čech filtrations

Nested sequence of simplicial complexes

Important in topological data analysis

Vietoris-Rips complexes: Closely related

Problem: Size of k -skeleton is
( n

k+1

)
= O(nk+1)
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6 Topological approximation

Persistence diagram of the Čech filtration:

birth

d
e
a
th

Question: Can we find a small filtration whose
persistence diagram is provably close to the Čech
diagram?
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7 Previous work

Sparse Rips complex [Sheehy 2012]

(1 + ε)-approximation of size

n ·
(

1
ε

)O(∆k)

with ∆ the doubling dimension of the point set

Various related approaches [Dey, Fan, Wang 2012]

[K., Sharathkumar 2013] [Botnan, Spreemann 2015]

[Buchet et al. 2015] [Cavanna, Jahanseir, Sheehy 2015]
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8 Our contributions [Choudhary,K.,Raghvendra, SoCG 2016]

6(d + 1)-approximation of size

n · 2O(d log k)

per scale for n points in Rd .

Combined with dimension reduction:
O(log3/2 n)-approximation of size nO(1).
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9 Approximation by lattices I

Diameter of a cell: α ·
√

d

Two non-adjacent cells are
at least α apart

⇒
√

d-approximation!

But highly degenerate: 2d

cells intersect in a point
(leads to size n · 2O(dk))
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10 Approximation by lattices II

Hexagonal grid

How to generalize in higher
dimensions?
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11 The permutahedron

Voronoi region of A∗d -lattice

Diameter: O(α ·
√

d)

Lemma: Non-intersecting
cells are at least
α ·
√

2/(d + 1) apart.

Size of the dual k -skeleton:
n2O(d log k)
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12 Interleaving

φ

φ

φ

φ

ψ

ψ

φ

· · · //Rβ2(d+1)

φ

&&

g //Rβ8(d+1)3 // · · ·

· · · // Xβ

ψ
;;

θ // Xβ4(d+1)2

ψ
88

// · · ·
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13 The Johnson-Lindenstrauss Lemma

For a point set S ⊂ Rd of n points and 0 < ε < 1, there
is a map

f : Rd → Rm

with m = O( log n
ε2 ) such that for any two points s, t ∈ S:

(1− ε)‖s − t‖ ≤ ‖f (s)− f (t)‖ ≤ (1 + ε)‖s − t‖.

Moreover, a random (scaled) projection from Rd to
Rm has that property with a probability of at least 1

2 .
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14 Dimension reduction

Size per scale n · 2O(d log k)

[Johnson, Lindenstrauss 1984]: d ≈ log n (constant distortion)
⇒ size nO(log k), total distortion O(log n)

[Matoušek 1990]: d ≈ log n
log log n ((log n)-distortion)

⇒ size nO(1), total distortion O(log2 n)

[Bourgain 1985]: General metric space: Embed to
O(log2 n) dimensions with distortion O(log n)

⇒size nO(1) and total distortion O(log3 n)
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15 Our contributions [Choudhary,K.,Raghvendra, SoCG 2016]

6(d + 1)-approximation of size

n · 2O(d log k)

per scale for n points in Rd .

Combined with dimension reduction:
O(log3/2 n)-approximation of size nO(1).

Lower bound: Any (1 + δ)-approximation scheme has
to be of size nΩ(log log n) if δ < 1

96 log1.001 n
.
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16 The algorithmic pipeline

1. Turn input into multi-scale representation
2. Compute topological invariants
3. Draw conclusions about the input
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17 Distances between persistence diagrams

A1 A2 · · · An

A1 A2 . . . An−1 An

A1
A2
... d(Ai ,Aj)

An−1
An

n diagrams⇒
(n

2

)
distances

Often the computational
bottleneck
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18 Distance measures

One-to-one pairing of points

Every point must be paired

Pairing with diagonal allowed

Cost of a pair (p,q): ‖p − q‖∞
Bottleneck distance: Minimize maximal cost
1-Wasserstein distance: Minimize Σ of the costs
Stability [Cohen-Steiner et al. 2007]

Other distances
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19 From diagram distance to graph matching

Weighted complete bipartite graph G
Weight of an edge: L∞ distance of the points
EXCEPT: weight is zero if both points are on diagonal
Use graph matching algorithm (Hopcroft-Karp,
Hungarian,. . .)
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20 Does geometry help?

G is “almost” metric (modulo diagonal)
Asymptotically faster algorithms are known for this
case
[Efrat, Itai, Katz: Geometry Helps in Bottleneck Matching... 2001]

[Vaidya: Geometry Helps in Matchings. 1989] (opt. assignment)
Adaption to persistence diagrams straight-forward
[Folklore? Mentioned in Edelsbrunner, Harer 2010]

Answer
Yes, in theory
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21 Does geometry help?

Our contribution
Yes, also in practice! [K., Morozov, Nigmetov, ALENEX 2016]

We compare geometric and non-geometric
implementations of bottleneck matchings and optimal
assignment (for R2)
We show experimentally that geometry improves
performance
We outperform Dionysus, the only publically available
software for distances of persistence diagrams
Our code is freely available:
https://bitbucket.org/grey_narn/hera

Gudhi workshop, Porquerolles, France, Oct 19, 2016
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22 The bottleneck case

Let G[α] be the graph G with all edges of weight > α
deleted

Observation: If G[α] has a perfect matching, the
bottleneck distance is at most α.
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23 The Wasserstein case

Assignment problem: Find
perfect matching with minimal
sum of costs.

Discrete optimal transport

Hungarian algorithm
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24 The auction algorithm [Bertsekas 1988]

n bidders (left), n objects (right)

Maintain (partial) matching
Objects have (global) prices
Bidders have (individual) appreciations

Repeat:

Pick an unassigned bidder
Value of object: appreciation - price
Pick best and 2nd-best valued objects
Assign bidder to best valued object
Increase price by difference of values,
plus ε > 0
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25 Why auction?

Theorem [Bertsekas 1988]

Let opt denote the cost of the optimal assignment, and d
the cost returned by the auction. Then

opt− nε ≤ d ≤ opt

Large ε: Fast, rough approximation
Small ε: Slow, accurate approximation
ε-scaling [Bertsekas, Castanon 1991]

Remark: Getting exact result possible, but very slow
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26 How geometry helps

−8

−5
−3

−5
−4

Appreciation = -distance to object

Crucial query: Find the best and
second best object for an unassigned
bidder.

Our approach

k-d-tree with weight per node

Weight=minimal price

Prune search in subtrees if better
candidates are known
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27 Experimental comparison
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non-geom.

geom.

Linear space (geometric) vs quadratic space
(non-geometric)
Exact distance (Dionysus) vs relative
1%-approximation
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28 The Hera library

URL: https://bitbucket.org/
grey_narn/hera

Code for bottleneck (LGPL) and
Wasserstein (BSD)

Supports q-Wasserstein distance
and different choice of inner
metric (instead of L∞)

Download it! Use it! Tell us your
experience!
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