

Recent Algorithmic Advances in Topological Data Analysis

Michael Kerber Gudhi workshop, Porquerolles, France, Oct 19, 2016

Computational Topology@TU Graz

Arnur Nigmetov

Hannah Schreiber

Aruni Choudhary (MPI Saarbrücken)

Our mission

"... to boldly compute what no topologists has computed before."

Our mission

"... to boldly compute what no topologists has computed before."

Algorithmic foundations, implementations, and software in computational topology and geometry.

- 1. Turn input into multi-scale representation
- 2. Compute topological invariants
- 3. Draw conclusions about the input

- 1. Turn input into multi-scale representation
- 2. Compute topological invariants
- 3. Draw conclusions about the input

Čech filtrations

- Nested sequence of simplicial complexes
- Important in topological data analysis
- Vietoris-Rips complexes: Closely related
- **Problem**: Size of *k*-skeleton is $\binom{n}{k+1} = O(n^{k+1})$

5

Topological approximation

Persistence diagram of the Čech filtration:

Question: Can we find a small filtration whose persistence diagram is provably close to the Čech diagram?

Topological approximation

Persistence diagram of the Čech filtration:

Question: Can we find a small filtration whose persistence diagram is provably close to the Čech diagram?

Previous work

- Sparse Rips complex [Sheehy 2012]
- $(1 + \varepsilon)$ -approximation of size

$$n \cdot \left(\frac{1}{\varepsilon}\right)^{O(\Delta k)}$$

with Δ the doubling dimension of the point set

 Various related approaches [Dey, Fan, Wang 2012] [K., Sharathkumar 2013] [Botnan, Spreemann 2015] [Buchet et al. 2015] [Cavanna, Jahanseir, Sheehy 2015]

Our contributions [Choudhary,K.,Raghvendra, SoCG 2016]

• 6(d + 1)-approximation of size

 $n \cdot 2^{O(d \log k)}$

per scale for *n* points in \mathbb{R}^d .

Our contributions [Choudhary,K.,Raghvendra, SoCG 2016]

• 6(d+1)-approximation of size

 $n\cdot 2^{O(d\log k)}$

per scale for *n* points in \mathbb{R}^d .

 Combined with dimension reduction: O(log^{3/2} n)-approximation of size n^{O(1)}.

Approximation by lattices I

Approximation by lattices I

- Diameter of a cell: $\alpha \cdot \sqrt{d}$
- Two non-adjacent cells are at least α apart

$$\Rightarrow \sqrt{d}$$
-approximation!

ę

Approximation by lattices I

- Diameter of a cell: $\alpha \cdot \sqrt{d}$
- Two non-adjacent cells are at least α apart

 $\Rightarrow \sqrt{d}$ -approximation!

But highly degenerate: 2^d cells intersect in a point (leads to size $n \cdot 2^{O(dk)}$)

Approximation by lattices II

- Hexagonal grid
- How to generalize in higher dimensions?

The permutahedron

Voronoi region of A^{*}_d-lattice

The permutahedron

- Voronoi region of A^{*}_d-lattice
- Diameter: $O(\alpha \cdot \sqrt{d})$
- Lemma: Non-intersecting cells are at least α · √2/(d + 1) apart.

The permutahedron

- Voronoi region of A^{*}_d-lattice
- Diameter: $O(\alpha \cdot \sqrt{d})$
- Lemma: Non-intersecting cells are at least α · √2/(d + 1) apart.
- Size of the dual k-skeleton:
 n2^{O(d log k)}

Interleaving

The Johnson-Lindenstrauss Lemma

For a point set $S \subset \mathbb{R}^d$ of *n* points and $0 < \varepsilon < 1$, there is a map

$$f:\mathbb{R}^d
ightarrow\mathbb{R}^m$$

with $m = O(\frac{\log n}{c^2})$ such that for any two points $s, t \in S$:

$$(1-\varepsilon)\|\mathbf{s}-t\| \leq \|f(\mathbf{s})-f(t)\| \leq (1+\varepsilon)\|\mathbf{s}-t\|.$$

The Johnson-Lindenstrauss Lemma

For a point set $S \subset \mathbb{R}^d$ of *n* points and $0 < \varepsilon < 1$, there is a map

$$f:\mathbb{R}^d
ightarrow\mathbb{R}^m$$

with $m = O(\frac{\log n}{c^2})$ such that for any two points $s, t \in S$:

$$(1-\varepsilon)\|\mathbf{s}-t\| \le \|f(\mathbf{s})-f(t)\| \le (1+\varepsilon)\|\mathbf{s}-t\|.$$

Moreover, a random (scaled) projection from \mathbb{R}^d to \mathbb{R}^m has that property with a probability of at least $\frac{1}{2}$.

Dimension reduction

- Size per scale $n \cdot 2^{O(d \log k)}$
- [Johnson, Lindenstrauss 1984]: $d \approx \log n$ (constant distortion) \Rightarrow size $n^{O(\log k)}$, total distortion $O(\log n)$

Dimension reduction

- Size per scale $n \cdot 2^{O(d \log k)}$
- [Johnson, Lindenstrauss 1984]: $d \approx \log n$ (constant distortion) \Rightarrow size $n^{O(\log k)}$, total distortion $O(\log n)$
- [Matoušek 1990]: $d \approx \frac{\log n}{\log \log n}$ ((log *n*)-distortion) \Rightarrow size $n^{O(1)}$, total distortion $O(\log^2 n)$

Dimension reduction

- Size per scale $n \cdot 2^{O(d \log k)}$
- [Johnson, Lindenstrauss 1984]: $d \approx \log n$ (constant distortion) \Rightarrow size $n^{O(\log k)}$, total distortion $O(\log n)$
- [Matoušek 1990]: $d \approx \frac{\log n}{\log \log n}$ ((log *n*)-distortion) \Rightarrow size $n^{O(1)}$, total distortion $O(\log^2 n)$
- [Bourgain 1985]: General metric space: Embed to $O(\log^2 n)$ dimensions with distortion $O(\log n)$ \Rightarrow size $n^{O(1)}$ and total distortion $O(\log^3 n)$

⁵ Our contributions [Choudhary,K.,Raghvendra, SoCG 2016]

6(d + 1)-approximation of size

 $n \cdot 2^{O(d \log k)}$

per scale for *n* points in \mathbb{R}^d .

- Combined with dimension reduction: O(log^{3/2} n)-approximation of size n^{O(1)}.
- Lower bound: Any $(1 + \delta)$ -approximation scheme has to be of size $n^{\Omega(\log \log n)}$ if $\delta < \frac{1}{96 \log^{1.001} n}$.

- 1. Turn input into multi-scale representation
- 2. Compute topological invariants
- 3. Draw conclusions about the input

⁷ Distances between persistence diagrams

	A ₁	A_2		A_{n-1}	An
A ₁					
A_2					
:			$d(A_i,A_j)$		
A_{n-1} A_n					

- *n* diagrams $\Rightarrow \binom{n}{2}$ distances
- Often the computational bottleneck

Distance measures

- One-to-one pairing of points
- Every point must be paired
- Pairing with diagonal allowed

- Cost of a pair (p,q): $\|p-q\|_{\infty}$
- Bottleneck distance: Minimize maximal cost
- 1-Wasserstein distance: Minimize Σ of the costs
- Stability [Cohen-Steiner et al. 2007]
- Other distances

From diagram distance to graph matching

- Weighted complete bipartite graph G
- Weight of an edge: L_∞ distance of the points
- EXCEPT: weight is zero if both points are on diagonal
- Use graph matching algorithm (Hopcroft-Karp, Hungarian,...)

Does geometry help?

- G is "almost" metric (modulo diagonal)
- Asymptotically faster algorithms are known for this case
- Efrat, Itai, Katz: Geometry Helps in Bottleneck Matching... 2001]
- [Vaidya: Geometry Helps in Matchings. 1989] (Opt. assignment)
- Adaption to persistence diagrams straight-forward [Folklore? Mentioned in Edelsbrunner, Harer 2010]

Does geometry help?

- G is "almost" metric (modulo diagonal)
- Asymptotically faster algorithms are known for this case
- Efrat, Itai, Katz: Geometry Helps in Bottleneck Matching... 2001]
- [Vaidya: Geometry Helps in Matchings. 1989] (Opt. assignment)
- Adaption to persistence diagrams straight-forward [Folklore? Mentioned in Edelsbrunner, Harer 2010]

Answer

Yes, in theory

Does geometry help?

Our contribution

Yes, also in practice! [K., Morozov, Nigmetov, ALENEX 2016]

- We compare geometric and non-geometric implementations of bottleneck matchings and optimal assignment (for R²)
- We show experimentally that geometry improves performance
- We outperform Dionysus, the only publically available software for distances of persistence diagrams
- Our code is freely available: https://bitbucket.org/grey_narn/hera

The bottleneck case

- Let G[α] be the graph G with all edges of weight > α deleted
- Observation: If *G*[*α*] has a perfect matching, the bottleneck distance is at most *α*.

The Wasserstein case

- Assignment problem: Find perfect matching with minimal sum of costs.
- Discrete optimal transport
- Hungarian algorithm

23

The Wasserstein case

- Assignment prob perfect matching sum of costs.
- Discrete optimal
- Hungarian algorit

n bidders (left), n objects (right)

- *n* bidders (left), *n* objects (right)
- Maintain (partial) matching

- *n* bidders (left), *n* objects (right)
- Maintain (partial) matching
- Objects have (global) prices

- n bidders (left), n objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

- n bidders (left), n objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

- n bidders (left), n objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

- n bidders (left), n objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

Pick an unassigned bidder

24

- *n* bidders (left), *n* objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

- Pick an unassigned bidder
- Value of object: appreciation price

- *n* bidders (left), *n* objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

- Pick an unassigned bidder
- Value of object: appreciation price
- Pick best and 2nd-best valued objects

- *n* bidders (left), *n* objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

- Pick an unassigned bidder
- Value of object: appreciation price
- Pick best and 2nd-best valued objects
- Assign bidder to best valued object

- n bidders (left), n objects (right)
- Maintain (partial) matching
- Objects have (global) prices
- Bidders have (individual) appreciations

Repeat:

- Pick an unassigned bidder
- Value of object: appreciation price
- Pick best and 2nd-best valued objects
- Assign bidder to best valued object
- Increase price by difference of values, plus $\varepsilon > 0$

Theorem [Bertsekas 1988]

Let opt denote the cost of the optimal assignment, and d the cost returned by the auction. Then

$$\mathsf{opt} - \mathit{n}\varepsilon \leq \mathit{d} \leq \mathsf{opt}$$

- Large ε : Fast, rough approximation
- Small ε: Slow, accurate approximation
- *ε*-scaling [Bertsekas, Castanon 1991]
- Remark: Getting exact result possible, but very slow

How geometry helps

- Appreciation = -distance to object
- Crucial query: Find the best and second best object for an unassigned bidder.

How geometry helps

- Appreciation = -distance to object
- Crucial query: Find the best and second best object for an unassigned bidder.

Our approach

- k-d-tree with weight per node
- Weight=minimal price
- Prune search in subtrees if better candidates are known

Experimental comparison

- Linear space (geometric) vs quadratic space (non-geometric)
- Exact distance (Dionysus) vs relative 1%-approximation

The Hera library

- URL: https://bitbucket.org/ grey_narn/hera
- Code for bottleneck (LGPL) and Wasserstein (BSD)
- Supports *q*-Wasserstein distance and different choice of inner metric (instead of L_∞)
- Download it! Use it! Tell us your experience!

- 1. Turn input into multi-scale representation
- 2. Compute topological invariants
- 3. Draw conclusions about the input

