
Multi-parameter persistent homology:
applications and algorithms

Nina Otter

Mathematical Institute, University of Oxford

Gudhi/Top Data Workshop

Porquerolles, 18 October 2016

Multi-parameter persistent homology pipeline

Data
depending on
r parameters

Multi-filtered
space

Multi-
parameter
persistence

module

(1) (2)

Step (1): from data to multi-filtered spaces

Define the following partial order on Nr :
(u1, . . . , ur) ≤ (v1, . . . , vr) iff ui ≤ vi for all i = 1, . . . , r .

A multi-filtered space K is a set of spaces {Ku}u∈Nr such that
Ku ⊆ Kv if u ≤ v for all u, v ∈ Nr .

Map f : X → Rr

digital image with
color vectors of

length r

−→

−→

r -filtered simplicial complex

r -filtered cubical
complex

Step (1): from data to multi-filtered spaces

Define the following partial order on Nr :
(u1, . . . , ur) ≤ (v1, . . . , vr) iff ui ≤ vi for all i = 1, . . . , r .

A multi-filtered space K is a set of spaces {Ku}u∈Nr such that
Ku ⊆ Kv if u ≤ v for all u, v ∈ Nr .

Map f : X → Rr

digital image with
color vectors of

length r

−→

−→

r -filtered simplicial complex

r -filtered cubical
complex

Step (1): from data to multi-filtered spaces: example

−→

0.25 0.5 0.75

0.25

0.5

0.75

R

G

• • •

• • •

•

•

•

•

•

•

• • •

• • •

•

•

•

•

•

•

• • •

• • •

•

•

•

•

•

•

• • •

• • •

•

•

•

•

•

•

•

• • • • •

• • • • •

•

•

•

•

•

•

•

•

•

•

•

• • • • •

• • • •

•

•

•

•

•

•

•

•

•

Step (2): from multi-filtered spaces to multi-parameter
persistence modules

r -filtered space Hi−→ r -parameter
persistence module

An r -parameter persistence module is a tuple
({Mi}i∈Nr , {φi ,j}i≤j∈Nr) where:

I for each i ∈ Nr we have that Mi is a k-module

I for every i ≤ j we have that φi ,j : Mi → Mj is a k-module
homomorphism such that whenever i ≤ k ≤ j we have

φk,j ◦ φi ,k = φi ,j .

In other words, an r -parameter persistence module is a functor
F : Nr → kMod.

Interlude: representation theory of quivers

A quiver Q = (Q0,Q1, s, t) consists of two non-empty sets Q0,Q1

and two maps s, t : Q1 → Q0. A quiver is finite if both Q0 and Q1

are finite.

Whenever s(u) = x and t(u) = y we write x
u−→ y . For example,

the following are finite quivers:

x
u v

y w

s

t

h

Interlude: representation theory of quivers

A quiver Q = (Q0,Q1, s, t) consists of two non-empty sets Q0,Q1

and two maps s, t : Q1 → Q0. A quiver is finite if both Q0 and Q1

are finite.

Whenever s(u) = x and t(u) = y we write x
u−→ y . For example,

the following are finite quivers:

x
u v

y w

s

t

h

Representations of quivers

Let k be a field. A representation of a quiver (V , φ) consists of a
family of k-vector spaces V = {Vi}i∈Q0 together with a family of
k-linear maps φ = {φe : Vs(e)→Vt(e)|e∈Q1

}. A representation (V , φ)
is finite-dimensional if for all i ∈ Q0 the vector space Vi is
finite-dimensional.

A morphism of representations f : (V , φ)→ (V ′, φ′) is given by
k-linear maps fi : Vi → V ′i for all i ∈ Q0 such that the following
diagram

Vs(e) Vt(e)

V ′s(e) V ′t(e)

φe

fs(e)

φ′t(e)

ft(e)

commutes for all e ∈ Q1.

Examples of quiver representations

x yu

Two
finite-dimensional
representations
φ : V ′ → V and
ψ : W ′ →W are
isomorphic iff
dimV ′ = dimW ′

and dimV = dimW
and rankφ = rankψ.

x

u

Two
finite-dimensional
representations
φ : V → V and
ψ : W →W are
isomorphic iff φ and
ψ have the same
Jordan normal form.

x
u v

Studying
isomorphism classes
of representations of
this quiver amounts
to studying pairs of
quadratic matrices
up to simultaneous
conjugation.

Indecomposable representations

The direct sum of two representations (φ,V) and (ψ,W) is the
representation (φ⊕ ψ,V ⊕W) where V ⊕W = Vi ⊕Wi for all

i ∈ Q0 and (φ⊕ ψ)e =

(
φe 0
0 ψe

)
.

We say that a representation (φ,V) is indecomposable if it is
non-zero and not isomorphic to a direct sum of two non-zero
representations.

Example: indecomposable representations of the loop quiver are
given by the Jordan blocks.

Theorem (Krull, Remak, Schmidt) Assume that Q is finite, then
any finite-dimensional representation (V , φ) of Q can be written as
a direct sum (V , φ) = (V1, φ1)⊕ · · · ⊕ (Vr , φr) where each (Vi , φi)
is indecomposable, and the decomposition is unique up to
isomorphism and permutation of the terms.

Indecomposable representations

The direct sum of two representations (φ,V) and (ψ,W) is the
representation (φ⊕ ψ,V ⊕W) where V ⊕W = Vi ⊕Wi for all

i ∈ Q0 and (φ⊕ ψ)e =

(
φe 0
0 ψe

)
.

We say that a representation (φ,V) is indecomposable if it is
non-zero and not isomorphic to a direct sum of two non-zero
representations.

Example: indecomposable representations of the loop quiver are
given by the Jordan blocks.

Theorem (Krull, Remak, Schmidt) Assume that Q is finite, then
any finite-dimensional representation (V , φ) of Q can be written as
a direct sum (V , φ) = (V1, φ1)⊕ · · · ⊕ (Vr , φr) where each (Vi , φi)
is indecomposable, and the decomposition is unique up to
isomorphism and permutation of the terms.

Indecomposable representations

The direct sum of two representations (φ,V) and (ψ,W) is the
representation (φ⊕ ψ,V ⊕W) where V ⊕W = Vi ⊕Wi for all

i ∈ Q0 and (φ⊕ ψ)e =

(
φe 0
0 ψe

)
.

We say that a representation (φ,V) is indecomposable if it is
non-zero and not isomorphic to a direct sum of two non-zero
representations.

Example: indecomposable representations of the loop quiver are
given by the Jordan blocks.

Theorem (Krull, Remak, Schmidt) Assume that Q is finite, then
any finite-dimensional representation (V , φ) of Q can be written as
a direct sum (V , φ) = (V1, φ1)⊕ · · · ⊕ (Vr , φr) where each (Vi , φi)
is indecomposable, and the decomposition is unique up to
isomorphism and permutation of the terms.

Indecomposable representations

The direct sum of two representations (φ,V) and (ψ,W) is the
representation (φ⊕ ψ,V ⊕W) where V ⊕W = Vi ⊕Wi for all

i ∈ Q0 and (φ⊕ ψ)e =

(
φe 0
0 ψe

)
.

We say that a representation (φ,V) is indecomposable if it is
non-zero and not isomorphic to a direct sum of two non-zero
representations.

Example: indecomposable representations of the loop quiver are
given by the Jordan blocks.

Theorem (Krull, Remak, Schmidt) Assume that Q is finite, then
any finite-dimensional representation (V , φ) of Q can be written as
a direct sum (V , φ) = (V1, φ1)⊕ · · · ⊕ (Vr , φr) where each (Vi , φi)
is indecomposable, and the decomposition is unique up to
isomorphism and permutation of the terms.

Classification of (representations of) quivers

Dynkin
(n ≥ 2)

• • . . . • •

1 2 n − 1 n

• • . . . •

•

•1 2

n

n − 1

• • •

•

• •

. . .

Extended Dynkin
(n ≥ 2)

•

0

• •

0 1

• • . . . • •

•

1 2 n − 1 n

0

•

•

• . . . •

•

•

0

1

2

n

n − 1

• • •

•

•

• •

. . .

Wild

Everything else. For
example:

•

Classification of representations of quivers
Suppose that k is algebraically closed. The number of isomorphism
classes of indecomposable representations is:

Dynkin

Finite.

Extended Dynkin

Infinite; depends on
one parameter.

Wild

Infinite; depends on
N > 1 parameters,

where N depends on
the quiver.

G. Kac, Infinite root systems, representations of graphs and invariant theory I - II,
1980-2 and P. Gabriel, Unzerlegbare darstellungen I, 1972.

Classification of indecomposable representations of quivers:
example

Conside again the loop quiver:

•

Recall that two finite-dimensional representations φ : V → V and
ψ : W →W are isomorphic iff φ and ψ have the same Jordan
normal form, and the isomorphism classes of indecomposable
representations of the loop quiver are given by the Jordan blocks.

Each Jordan block depends on a continuous parameter given by
the eigenvalue.

Classification of indecomposable representations of quivers:
example

Conside again the loop quiver:

•

Recall that two finite-dimensional representations φ : V → V and
ψ : W →W are isomorphic iff φ and ψ have the same Jordan
normal form, and the isomorphism classes of indecomposable
representations of the loop quiver are given by the Jordan blocks.

Each Jordan block depends on a continuous parameter given by
the eigenvalue.

Back to multi-parameter persistent homology

A multi-parameter persistence module is a representation of a
quiver of the following form:

• • •

• • •

• • •

. . .

. . .

. . .

.

Such quivers are wild.

Our motivation/goal: find computable invariants for applications.

Back to multi-parameter persistent homology

A multi-parameter persistence module is a representation of a
quiver of the following form:

• • •

• • •

• • •

. . .

. . .

. . .

.

Such quivers are wild.

Our motivation/goal: find computable invariants for applications.

Back to multi-parameter persistent homology

A multi-parameter persistence module is a representation of a
quiver of the following form:

• • •

• • •

• • •

. . .

. . .

. . .

.

Such quivers are wild.

Our motivation/goal: find computable invariants for applications.

Application: Time evolution of blood vessel growth in
presence of tumors

Roche, Oxford Oncology (B. Markelc), Mathematical Biology, University of Oxford (B. Stolz, H. Byrne, J. Grogan)

Persistence modules are modules

I Recall that an Nr -graded (or multi-graded) ring is a ring A
together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr]-modules and
module homomorphisms respecting the grading.

Persistence modules are modules
I Recall that an Nr -graded (or multi-graded) ring is a ring A

together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr]-modules and
module homomorphisms respecting the grading.

Persistence modules are modules
I Recall that an Nr -graded (or multi-graded) ring is a ring A

together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr]-modules and
module homomorphisms respecting the grading.

Persistence modules are modules
I Recall that an Nr -graded (or multi-graded) ring is a ring A

together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr]-modules and
module homomorphisms respecting the grading.

Persistence modules are modules
I Recall that an Nr -graded (or multi-graded) ring is a ring A

together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr]-modules and
module homomorphisms respecting the grading.

Any persistence module is the homology of a filtered space

The homology of a multi-filtered space is a persistence module.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)
For any finite persistence module M there exists a multi-filtered
space K and a positive natural number i such that M is the
homology in degree i of K .

Therefore, studying the homology of r -filtered spaces amounts to
studying graded modules over k[x1, . . . , xr].

Any persistence module is the homology of a filtered space

The homology of a multi-filtered space is a persistence module.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)
For any finite persistence module M there exists a multi-filtered
space K and a positive natural number i such that M is the
homology in degree i of K .

Therefore, studying the homology of r -filtered spaces amounts to
studying graded modules over k[x1, . . . , xr].

Any persistence module is the homology of a filtered space

The homology of a multi-filtered space is a persistence module.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)
For any finite persistence module M there exists a multi-filtered
space K and a positive natural number i such that M is the
homology in degree i of K .

Therefore, studying the homology of r -filtered spaces amounts to
studying graded modules over k[x1, . . . , xr].

Free resolutions and presentations

Let M be a finitely generated graded k[x1, . . . , xr]-module. By the
Hilbert Syzygy Theorem there is a free resolution by finitely
generated Nr -graded free k[x1, . . . , xr]-modules of length at most r :

0 −→ Fm
φm−→ Fm−1 −→ . . . −→ F1

φ1−→ F0 −→ M −→ 0

with image(φi) = kernel(φi−1) and each Fi is a finitely generated
graded free k[x1, . . . , xr]-module and m ≤ r .

The first part

F1
φ1−→ F0 −→ M −→ 0

of a free resolution of a module is called presentation. If we are
given a presentation of M, we can then explicitly write M as the
quotient F0/imφ1.

Free resolutions and presentations

Let M be a finitely generated graded k[x1, . . . , xr]-module. By the
Hilbert Syzygy Theorem there is a free resolution by finitely
generated Nr -graded free k[x1, . . . , xr]-modules of length at most r :

0 −→ Fm
φm−→ Fm−1 −→ . . . −→ F1

φ1−→ F0 −→ M −→ 0

with image(φi) = kernel(φi−1) and each Fi is a finitely generated
graded free k[x1, . . . , xr]-module and m ≤ r .

The first part

F1
φ1−→ F0 −→ M −→ 0

of a free resolution of a module is called presentation. If we are
given a presentation of M, we can then explicitly write M as the
quotient F0/imφ1.

Minimal presentations and resolutions

Resolutions and presentations are in general not unique.

Example:1 Let M = (x1x2, x1x3) ⊂ k[x1, x2, x3] = S . The
following are two free resolutions of M:

0 −→ S

 x3
−x2

−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

0

−x2
1

−−−−−→ S2

 x3 x2x3
−x2 −x22

−−−−−−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

However, minimal presentations of modules over local or graded
rings are unique up to isomorphism.

Minimal presentations and resolutions

Resolutions and presentations are in general not unique.

Example:1 Let M = (x1x2, x1x3) ⊂ k[x1, x2, x3] = S . The
following are two free resolutions of M:

0 −→ S

 x3
−x2

−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

0

−x2
1

−−−−−→ S2

 x3 x2x3
−x2 −x22

−−−−−−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

However, minimal presentations of modules over local or graded
rings are unique up to isomorphism.

1Bulletin of the AMS, July 2016

Invariants from resolutions and presentations

Minimal presentations are invariants of a module, and one can
compute many invariants from minimal presentations and
resolutions, such as:

I Betti numbers

I (Multi-graded) Hilbert series

I . . .

Presentation of a persistence module: näıve Algorithm

Since the ith homology of the ith chain complex of a multi-filtered
simplicial complex is defined as

Hi = kernel(di)/image(di+1),

an algorithm to compute a presentation of Hi is given by the
following steps:

1. Compute a presentation of image(di+1).

2. Compute a presentation of kernel(di).

3. Compute a presentation of the quotient Hi .

Problem: the known algorithms to compute image(di+1) are
exponential in time and space1.

1G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a persistence module: näıve Algorithm

Since the ith homology of the ith chain complex of a multi-filtered
simplicial complex is defined as

Hi = kernel(di)/image(di+1),

an algorithm to compute a presentation of Hi is given by the
following steps:

1. Compute a presentation of image(di+1).

2. Compute a presentation of kernel(di).

3. Compute a presentation of the quotient Hi .

Problem: the known algorithms to compute image(di+1) are
exponential in time and space1.

1G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a persistence module: näıve Algorithm

Since the ith homology of the ith chain complex of a multi-filtered
simplicial complex is defined as

Hi = kernel(di)/image(di+1),

an algorithm to compute a presentation of Hi is given by the
following steps:

1. Compute a presentation of image(di+1).

2. Compute a presentation of kernel(di).

3. Compute a presentation of the quotient Hi .

Problem: the known algorithms to compute image(di+1) are
exponential in time and space1.

1G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a module: algorithm by Carlsson, Singh
and Zomorodian

In 2010 Carlsson, Singh and Zomorodian2 put forward an
optimisation of the algorithm to compute a presentation of
homology of ‘one-critical’ multi-filtered complexes.

Let K = {Ku}u∈Nr be a multi-filtered simplicial complex. We
assume that there exists v ∈ Nr such that Kv is a finite simplicial
complex, and Ku = Kv for all u ≥ v . We denote the simplicial
complex Kv by Ktot.

For any σ ∈ Ktot define the set of generators of σ to be

gen(σ) = min{v ∈ Nr | σ ∈ K (v)}.

A multi-filtered simplicial complex is one-critical if the set of
generators of every simplex has cardinality one.

2G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a module: algorithm by Carlsson, Singh
and Zomorodian

In 2010 Carlsson, Singh and Zomorodian2 put forward an
optimisation of the algorithm to compute a presentation of
homology of ‘one-critical’ multi-filtered complexes.

Let K = {Ku}u∈Nr be a multi-filtered simplicial complex. We
assume that there exists v ∈ Nr such that Kv is a finite simplicial
complex, and Ku = Kv for all u ≥ v . We denote the simplicial
complex Kv by Ktot.

For any σ ∈ Ktot define the set of generators of σ to be

gen(σ) = min{v ∈ Nr | σ ∈ K (v)}.

A multi-filtered simplicial complex is one-critical if the set of
generators of every simplex has cardinality one.

2G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a module: algorithm by Carlsson, Singh
and Zomorodian

In 2010 Carlsson, Singh and Zomorodian2 put forward an
optimisation of the algorithm to compute a presentation of
homology of ‘one-critical’ multi-filtered complexes.

Let K = {Ku}u∈Nr be a multi-filtered simplicial complex. We
assume that there exists v ∈ Nr such that Kv is a finite simplicial
complex, and Ku = Kv for all u ≥ v . We denote the simplicial
complex Kv by Ktot.

For any σ ∈ Ktot define the set of generators of σ to be

gen(σ) = min{v ∈ Nr | σ ∈ K (v)}.

A multi-filtered simplicial complex is one-critical if the set of
generators of every simplex has cardinality one.

2G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional
persistence, 2010.

Presentation of a module: algorithm by Carlsson, Singh
and Zomorodian

In 2010 Carlsson, Singh and Zomorodian2 put forward an
optimisation of the algorithm to compute a presentation of
homology of ‘one-critical’ multi-filtered complexes.

Let K = {Ku}u∈Nr be a multi-filtered simplicial complex. We
assume that there exists v ∈ Nr such that Kv is a finite simplicial
complex, and Ku = Kv for all u ≥ v . We denote the simplicial
complex Kv by Ktot.

For any σ ∈ Ktot define the set of generators of σ to be

gen(σ) = min{v ∈ Nr | σ ∈ K (v)}.

A multi-filtered simplicial complex is one-critical if the set of
generators of every simplex has cardinality one.

2G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional
persistence, 2010.

One-critical multi-filtered simplicial complex: example

One-critical:

(0, 0)
• •

•

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•

Not one-critical:

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•

One-critical multi-filtered simplicial complex: example

One-critical:

(0, 0)
• •

•

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•

Not one-critical:

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•

Optimization

For a one-critical multifiltered simplicial complex K :

I the chain modules are free modules, hence one can choose
bases for them

I The standard basis is the basis of simplices in degree given by
their generator

I The boundary maps can be written as homogeneous matrices
with monomial entries

I Carlsson, Singh and Zomorodian show that this gives a
polynomial bound on complexity.

I The resulting presentation is not an invariant, as it depends
on a choice of basis.

Presentation of a module: algorithm by
Chacholski-Scolamiero-Vaccarino (CSV)

In 2014 Chacholski, Scolamiero and Vaccarino3 put forward a
polynomial-time algorithm to compute a presentation of homology
of arbitrary multi-filtered simplicial complexes.

I For any u ∈ Nr , denote by Kn,u the set of n-simplices in Ku;
the assignment u 7→ Kn,u induces a functor Kn : Nr → Sets,
where Sets is the category of sets.

I For any v ∈ Nr and any i ∈ {0, . . . , n + 1} define the
following map

di : Kn+1,v −→ Kn,v : {x0, . . . , xn+1} 7→ {x0, . . . , x̂i , . . . , xn+1}

where x̂i means that we omit the vertex xi . The maps di give
natural transformations Kn+1 → Kn.

3W. Chacholski, M. Scolamiero, and F. Vaccarino, Combinatorial presentation of
multidimensional persistent homology, 2014.

Presentation of a module: algorithm by
Chacholski-Scolamiero-Vaccarino (CSV)

In 2014 Chacholski, Scolamiero and Vaccarino3 put forward a
polynomial-time algorithm to compute a presentation of homology
of arbitrary multi-filtered simplicial complexes.

I For any u ∈ Nr , denote by Kn,u the set of n-simplices in Ku;
the assignment u 7→ Kn,u induces a functor Kn : Nr → Sets,
where Sets is the category of sets.

I For any v ∈ Nr and any i ∈ {0, . . . , n + 1} define the
following map

di : Kn+1,v −→ Kn,v : {x0, . . . , xn+1} 7→ {x0, . . . , x̂i , . . . , xn+1}

where x̂i means that we omit the vertex xi . The maps di give
natural transformations Kn+1 → Kn.

3W. Chacholski, M. Scolamiero, and F. Vaccarino, Combinatorial presentation of
multidimensional persistent homology, 2014.

CSV algorithm

Let S = k[x1, . . . , xr].There exists a sequence of free graded
S-modules

RKKn ⊕RGKn+1

π⊕d
−−−−−−−→ RGKn

α
−−−−−−−→ RDn−1

such that α ◦ (π ⊕ d) is trivial, and the k[x1, . . . , xr]-module
kernel(α)/im(π ⊕ d) is isomorphic to the homology in degree n of
the multi-filtered simplicial complex K ,

where

I RKKn =
⊕

σ∈Ktot,n

⊕
v0 6=v1∈gen(σ)

xmax{v0,v1}S ,

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ)

xvS , and

I RDn−1 =
⊕

σ∈Ktot,n−1

S .

with the notation xu := xu11 . . . xurr .

CSV algorithm

Let S = k[x1, . . . , xr].There exists a sequence of free graded
S-modules

RKKn ⊕RGKn+1

π⊕d
−−−−−−−→ RGKn

α
−−−−−−−→ RDn−1

such that α ◦ (π ⊕ d) is trivial, and the k[x1, . . . , xr]-module
kernel(α)/im(π ⊕ d) is isomorphic to the homology in degree n of
the multi-filtered simplicial complex K , where

I RKKn =
⊕

σ∈Ktot,n

⊕
v0 6=v1∈gen(σ)

xmax{v0,v1}S ,

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ)

xvS , and

I RDn−1 =
⊕

σ∈Ktot,n−1

S .

with the notation xu := xu11 . . . xurr .

CSV algorithm

The homomorphisms are defined as follows:

(π) For any σ ∈ Kn and v0 6= v1 ∈ gen(σ), the homomorphism
π : RKKn → RGKn sends xmax{v0,v1} to xv0 − xv1 .

(d) For any σ ∈ Kn+1 and v ∈ gen(σ), the homomorphism

d : RGKn+1 → RGKn sends xv to
∑n+1

i=0 (−1)ix d̃i (σ), where

d̃i (σ) is the minimal element in the set
{w ∈ gen(di (σ)) | w ≤ v} with respect to the lexicographical
order.

(α) For any σ ∈ Kn and v ∈ gen(σ), the homomorphism
α : RGKn → RDn−1 sends xv to

∑n
i=0(−1)idi (σ).

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c

We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}

gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}

gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}

gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}

gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}

gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}

gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S

, so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS

, so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S , so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr], so

RDK0 = S ⊕ S ⊕ S

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to
∑n+1

i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ)

, so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t

I α : RGK1 → RD0 sends xv to
∑n

i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ)

, so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =

x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2

I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

CSV algorithm: example

By using a computational algebra software package one can then
compute the following minimal presentation:

0 −→ S2

x1 0
0 x2

−−−−−−−→ S2

(
x2 x1

)
−−−−−−→ H1(K) −→ 0

and thus

H1(K) =
x1S

(x1x2)
⊕ x2S

(x1x2)
.

CSV algorithm: example

• •

•

• •

•

• •

•

H1(K) =
x1S

(x1x2)
⊕ x2S

(x1x2)
.

Conclusions

I Need efficient implementation of algorithm by Chacholski,
Scolamiero and Vaccarino.

I Computational algebra libraries are not efficient.

I How complex is the problem in practice?

I Insight from geometric invariant theory?

Conclusions

I Need efficient implementation of algorithm by Chacholski,
Scolamiero and Vaccarino.

I Computational algebra libraries are not efficient.

I How complex is the problem in practice?

I Insight from geometric invariant theory?

