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Step (1): from data to multi-filtered spaces

Define the following partial order on Nr :
(u1, . . . , ur ) ≤ (v1, . . . , vr ) iff ui ≤ vi for all i = 1, . . . , r .

A multi-filtered space K is a set of spaces {Ku}u∈Nr such that
Ku ⊆ Kv if u ≤ v for all u, v ∈ Nr .

Map f : X → Rr

digital image with
color vectors of

length r

−→

−→

r -filtered simplicial complex

r -filtered cubical
complex
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Step (1): from data to multi-filtered spaces: example
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Step (2): from multi-filtered spaces to multi-parameter
persistence modules

r -filtered space Hi−→ r -parameter
persistence module

An r -parameter persistence module is a tuple
({Mi}i∈Nr , {φi ,j}i≤j∈Nr ) where:

I for each i ∈ Nr we have that Mi is a k-module

I for every i ≤ j we have that φi ,j : Mi → Mj is a k-module
homomorphism such that whenever i ≤ k ≤ j we have

φk,j ◦ φi ,k = φi ,j .

In other words, an r -parameter persistence module is a functor
F : Nr → kMod.



Interlude: representation theory of quivers

A quiver Q = (Q0,Q1, s, t) consists of two non-empty sets Q0,Q1

and two maps s, t : Q1 → Q0. A quiver is finite if both Q0 and Q1

are finite.

Whenever s(u) = x and t(u) = y we write x
u−→ y . For example,

the following are finite quivers:

x
u v
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Representations of quivers

Let k be a field. A representation of a quiver (V , φ) consists of a
family of k-vector spaces V = {Vi}i∈Q0 together with a family of
k-linear maps φ = {φe : Vs(e)→Vt(e)|e∈Q1

}. A representation (V , φ)
is finite-dimensional if for all i ∈ Q0 the vector space Vi is
finite-dimensional.

A morphism of representations f : (V , φ)→ (V ′, φ′) is given by
k-linear maps fi : Vi → V ′i for all i ∈ Q0 such that the following
diagram

Vs(e) Vt(e)

V ′s(e) V ′t(e)

φe

fs(e)

φ′t(e)

ft(e)

commutes for all e ∈ Q1.



Examples of quiver representations

x yu

Two
finite-dimensional
representations
φ : V ′ → V and
ψ : W ′ →W are
isomorphic iff
dimV ′ = dimW ′

and dimV = dimW
and rankφ = rankψ.

x

u

Two
finite-dimensional
representations
φ : V → V and
ψ : W →W are
isomorphic iff φ and
ψ have the same
Jordan normal form.

x
u v

Studying
isomorphism classes
of representations of
this quiver amounts
to studying pairs of
quadratic matrices
up to simultaneous
conjugation.



Indecomposable representations

The direct sum of two representations (φ,V ) and (ψ,W ) is the
representation (φ⊕ ψ,V ⊕W ) where V ⊕W = Vi ⊕Wi for all

i ∈ Q0 and (φ⊕ ψ)e =

(
φe 0
0 ψe

)
.

We say that a representation (φ,V ) is indecomposable if it is
non-zero and not isomorphic to a direct sum of two non-zero
representations.

Example: indecomposable representations of the loop quiver are
given by the Jordan blocks.

Theorem (Krull, Remak, Schmidt) Assume that Q is finite, then
any finite-dimensional representation (V , φ) of Q can be written as
a direct sum (V , φ) = (V1, φ1)⊕ · · · ⊕ (Vr , φr ) where each (Vi , φi )
is indecomposable, and the decomposition is unique up to
isomorphism and permutation of the terms.
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Classification of (representations of) quivers
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Classification of representations of quivers
Suppose that k is algebraically closed. The number of isomorphism
classes of indecomposable representations is:

Dynkin

Finite.

Extended Dynkin

Infinite; depends on
one parameter.

Wild

Infinite; depends on
N > 1 parameters,

where N depends on
the quiver.

G. Kac, Infinite root systems, representations of graphs and invariant theory I - II,
1980-2 and P. Gabriel, Unzerlegbare darstellungen I, 1972.



Classification of indecomposable representations of quivers:
example

Conside again the loop quiver:

•

Recall that two finite-dimensional representations φ : V → V and
ψ : W →W are isomorphic iff φ and ψ have the same Jordan
normal form, and the isomorphism classes of indecomposable
representations of the loop quiver are given by the Jordan blocks.

Each Jordan block depends on a continuous parameter given by
the eigenvalue.
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Back to multi-parameter persistent homology

A multi-parameter persistence module is a representation of a
quiver of the following form:
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Such quivers are wild.

Our motivation/goal: find computable invariants for applications.
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Application: Time evolution of blood vessel growth in
presence of tumors

Roche, Oxford Oncology (B. Markelc), Mathematical Biology, University of Oxford (B. Stolz, H. Byrne, J. Grogan)



Persistence modules are modules

I Recall that an Nr -graded (or multi-graded) ring is a ring A
together with a collection {Au}u∈Nr of subgroups of the
underlying abelian group of A such that A = ⊕u∈NrAu and for
all a ∈ Am and b ∈ An we have ab ∈ Am+n.

I Make the ring A = k[x1, . . . , xr ] into an Nr -graded ring by
setting

Au = kxu11 . . . xurr for all u = (u1, . . . , ur ) ∈ Nr .

I A module M over an Nr -graded ring A is graded if there is a
collection {Mi}i∈Nr of subgroups of the underlying abelian
group of M such that M = ⊕i∈NrMi and for all a ∈ Aj we
have aMi ⊂ Mi+j .

Correspondence Theorem of Persistent Homology (Carlsson,
Zomorodian ’09)
The functor category of r -parameter persistence modules is
isomorphic to the category of graded k[x1, . . . , xr ]-modules and
module homomorphisms respecting the grading.
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Any persistence module is the homology of a filtered space

The homology of a multi-filtered space is a persistence module.

On the other hand:

Theorem (Carlsson, Zomorodian, 2009)
For any finite persistence module M there exists a multi-filtered
space K and a positive natural number i such that M is the
homology in degree i of K .

Therefore, studying the homology of r -filtered spaces amounts to
studying graded modules over k[x1, . . . , xr ].
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Free resolutions and presentations

Let M be a finitely generated graded k[x1, . . . , xr ]-module. By the
Hilbert Syzygy Theorem there is a free resolution by finitely
generated Nr -graded free k[x1, . . . , xr ]-modules of length at most r :

0 −→ Fm
φm−→ Fm−1 −→ . . . −→ F1

φ1−→ F0 −→ M −→ 0

with image(φi ) = kernel(φi−1) and each Fi is a finitely generated
graded free k[x1, . . . , xr ]-module and m ≤ r .

The first part

F1
φ1−→ F0 −→ M −→ 0

of a free resolution of a module is called presentation. If we are
given a presentation of M, we can then explicitly write M as the
quotient F0/imφ1.
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Minimal presentations and resolutions

Resolutions and presentations are in general not unique.

Example:1 Let M = (x1x2, x1x3) ⊂ k[x1, x2, x3] = S . The
following are two free resolutions of M:

0 −→ S

 x3
−x2


−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

0

−x2
1


−−−−−→ S2

 x3 x2x3
−x2 −x22


−−−−−−−−−−→ S2

(
x1x2 x1x3

)
−−−−−−−−−−→ M −→ 0

However, minimal presentations of modules over local or graded
rings are unique up to isomorphism.
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1Bulletin of the AMS, July 2016



Invariants from resolutions and presentations

Minimal presentations are invariants of a module, and one can
compute many invariants from minimal presentations and
resolutions, such as:

I Betti numbers

I (Multi-graded) Hilbert series

I . . .



Presentation of a persistence module: näıve Algorithm

Since the ith homology of the ith chain complex of a multi-filtered
simplicial complex is defined as

Hi = kernel(di )/image(di+1),

an algorithm to compute a presentation of Hi is given by the
following steps:

1. Compute a presentation of image(di+1).

2. Compute a presentation of kernel(di ).

3. Compute a presentation of the quotient Hi .

Problem: the known algorithms to compute image(di+1) are
exponential in time and space1.

1G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional
persistence, 2010.
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Presentation of a module: algorithm by Carlsson, Singh
and Zomorodian

In 2010 Carlsson, Singh and Zomorodian2 put forward an
optimisation of the algorithm to compute a presentation of
homology of ‘one-critical’ multi-filtered complexes.

Let K = {Ku}u∈Nr be a multi-filtered simplicial complex. We
assume that there exists v ∈ Nr such that Kv is a finite simplicial
complex, and Ku = Kv for all u ≥ v . We denote the simplicial
complex Kv by Ktot.

For any σ ∈ Ktot define the set of generators of σ to be

gen(σ) = min{v ∈ Nr | σ ∈ K (v)}.

A multi-filtered simplicial complex is one-critical if the set of
generators of every simplex has cardinality one.

2G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional
persistence, 2010.
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One-critical multi-filtered simplicial complex: example

One-critical:

(0, 0)
• •

•

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•

Not one-critical:

(1, 0)
• •

•

(0, 1)
• •

•

(1, 1)
• •

•
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Optimization

For a one-critical multifiltered simplicial complex K :

I the chain modules are free modules, hence one can choose
bases for them

I The standard basis is the basis of simplices in degree given by
their generator

I The boundary maps can be written as homogeneous matrices
with monomial entries

I Carlsson, Singh and Zomorodian show that this gives a
polynomial bound on complexity.

I The resulting presentation is not an invariant, as it depends
on a choice of basis.



Presentation of a module: algorithm by
Chacholski-Scolamiero-Vaccarino (CSV)

In 2014 Chacholski, Scolamiero and Vaccarino3 put forward a
polynomial-time algorithm to compute a presentation of homology
of arbitrary multi-filtered simplicial complexes.

I For any u ∈ Nr , denote by Kn,u the set of n-simplices in Ku;
the assignment u 7→ Kn,u induces a functor Kn : Nr → Sets,
where Sets is the category of sets.

I For any v ∈ Nr and any i ∈ {0, . . . , n + 1} define the
following map

di : Kn+1,v −→ Kn,v : {x0, . . . , xn+1} 7→ {x0, . . . , x̂i , . . . , xn+1}

where x̂i means that we omit the vertex xi . The maps di give
natural transformations Kn+1 → Kn.

3W. Chacholski, M. Scolamiero, and F. Vaccarino, Combinatorial presentation of
multidimensional persistent homology, 2014.
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CSV algorithm

Let S = k[x1, . . . , xr ].There exists a sequence of free graded
S-modules

RKKn ⊕RGKn+1

π⊕d
−−−−−−−→ RGKn

α
−−−−−−−→ RDn−1

such that α ◦ (π ⊕ d) is trivial, and the k[x1, . . . , xr ]-module
kernel(α)/im(π ⊕ d) is isomorphic to the homology in degree n of
the multi-filtered simplicial complex K ,

where

I RKKn =
⊕

σ∈Ktot,n

⊕
v0 6=v1∈gen(σ)

xmax{v0,v1}S ,

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ)

xvS , and

I RDn−1 =
⊕

σ∈Ktot,n−1

S .

with the notation xu := xu11 . . . xurr .
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CSV algorithm

The homomorphisms are defined as follows:

(π) For any σ ∈ Kn and v0 6= v1 ∈ gen(σ), the homomorphism
π : RKKn → RGKn sends xmax{v0,v1} to xv0 − xv1 .

(d) For any σ ∈ Kn+1 and v ∈ gen(σ), the homomorphism

d : RGKn+1 → RGKn sends xv to
∑n+1

i=0 (−1)ix d̃i (σ), where

d̃i (σ) is the minimal element in the set
{w ∈ gen(di (σ)) | w ≤ v} with respect to the lexicographical
order.

(α) For any σ ∈ Kn and v ∈ gen(σ), the homomorphism
α : RGKn → RDn−1 sends xv to

∑n
i=0(−1)idi (σ).



CSV algorithm: example

We illustrate the algorithm for the computation of H1 of the
following 2-filtered simplicial complex K :

(1, 0)
•
a

•
b

•c

(0, 1)
•
a

•
b

•c

(1, 1)
•
a

•
b

•c

We have:

gen({a}) = {(0, 1), (1, 0)}
gen({b}) = {(0, 1), (1, 0)}
gen({c}) = {(0, 1), (1, 0)}
gen({a, b}) = {(0, 1), (1, 0)}
gen({b, c}) = {(0, 1), (1, 0)}
gen({a, c}) = {(0, 1), (1, 0)}
gen({a, b, c}) = {(1, 1)}
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CSV algorithm: example

Let S = k[x1, x2]. Then:

I RKK1 =
⊕

σ∈Ktot,1

⊕
v0 6=v1∈gen(σ) x

max{v0,v1}S

, so

RKK1 = x1x2S ⊕ x1x2S ⊕ x1x2S

I RGKn =
⊕

σ∈Ktot,n

⊕
v∈gen(σ) x

vS , so

RGK2 = x1x2S

RGK1 = x1S ⊕ x2S ⊕ x1S ⊕ x2S ⊕ x1S ⊕ x2S

I RD0 =
⊕

σ∈Ktot,0
k[x1, . . . , xr ], so

RDK0 = S ⊕ S ⊕ S
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CSV algorithm: example

I π : RKK1 → RGK1 sends xmax{v0,v1} to xv0 − xv1 , so

π =



x1 0 0
−x2 0 0

0 x1 0
0 −x2 0
0 0 x1
0 0 −x2


I d : RGK2 → RGK1 sends xv to

∑n+1
i=0 (−1)ix d̃i (σ), so

d =
(
0 −x2 0 −x2 0 −x2

)t
I α : RGK1 → RD0 sends xv to

∑n
i=0(−1)idi (σ), so

α =

−1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1
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CSV algorithm: example

By using a computational algebra software package one can then
compute the following minimal presentation:

0 −→ S2

x1 0
0 x2


−−−−−−−→ S2

(
x2 x1

)
−−−−−−→ H1(K ) −→ 0

and thus

H1(K ) =
x1S

(x1x2)
⊕ x2S

(x1x2)
.



CSV algorithm: example

• •

•

• •

•

• •

•

H1(K ) =
x1S

(x1x2)
⊕ x2S

(x1x2)
.



Conclusions

I Need efficient implementation of algorithm by Chacholski,
Scolamiero and Vaccarino.

I Computational algebra libraries are not efficient.

I How complex is the problem in practice?

I Insight from geometric invariant theory?
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