The DTM signature for a test of isomorphism between mm-spaces

Claire Brécheteau

Université Paris-Sud 11, Laboratoire de Mathématiques d'Orsay and Inria Select Team and Inria Saclay, Data Shape Team

Under the supervision of Pascal Massart (Université Paris-Sud 11) and Frédéric Chazal (Inria Saclay)

11 octobre 2016

Claire Brécheteau The DTM signature for a test of isomorphism between mm-spaces

Can a dragon pretend to be a bunny and vice versa?

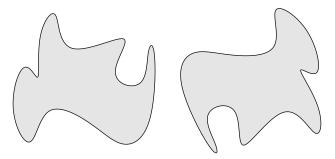
Bunny

Dragon

Data from the Stanford 3D Scanning Repository

A metric measure space (mm-space) is a triple (\mathcal{X}, d, μ) s.t. : (\mathcal{X}, d) is a metric space and μ a borel measure supported on \mathcal{X} .

A metric measure space (mm-space) is a triple (\mathcal{X}, d, μ) s.t. : (\mathcal{X}, d) is a metric space and μ a borel measure supported on \mathcal{X} .



Two mm-spaces (\mathscr{X}, d, μ) and (\mathscr{Y}, d', ν) are **isomorphic** if : $\exists \phi : \mathscr{X} \mapsto \mathscr{Y}$ a one-to-one isometry, s.t. for all borel set *A*,

 $\nu(\phi(A))=\mu(A).$

How to build a test of level $\alpha > 0$ to test the null

 H_0 : "(\mathscr{X} , d, μ) and (\mathscr{Y} , d', ν) are isomorphic"?

 $(\mathcal{Y}, \mathbf{d}', v)$

The **Gromov-Wasserstein distance** is defined for two mm-spaces (\mathscr{X}, d, μ) and (\mathscr{Y}, d', ν) by :

$$GW(\mathscr{X},\mathscr{Y}) = \inf_{\pi \in \Pi(\mu,\nu)} \frac{1}{2} \mathbb{E}_{\pi \otimes \pi} \left[\left| d(X_1, X_2) - d'(Y_1, Y_2) \right| \right]$$

with $\Pi(\mu, v)$ the set of distributions on $\mathscr{X} \times \mathscr{Y}$ of (X, Y) with $X \sim \mu$ and $Y \sim v$.

b) 4 (E) b

The **Gromov-Wasserstein distance** is defined for two mm-spaces (\mathscr{X}, d, μ) and (\mathscr{Y}, d', ν) by :

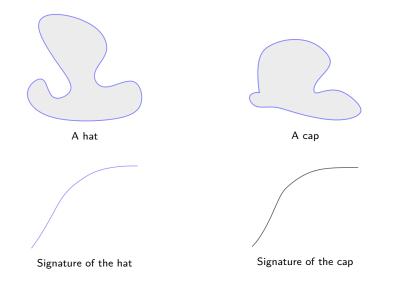
$$GW(\mathscr{X},\mathscr{Y}) = \inf_{\pi \in \Pi(\mu,\nu)} \frac{1}{2} \mathbb{E}_{\pi \otimes \pi} \left[\left| d(X_1, X_2) - d'(Y_1, Y_2) \right| \right]$$

with $\Pi(\mu, \nu)$ the set of distributions on $\mathscr{X} \times \mathscr{Y}$ of (X, Y) with $X \sim \mu$ and $Y \sim \nu$.

▲ Too high computational cost.

b) 4 (E) b

A second idea : the signatures



3 x 3

The shape distribution :

 $\mathscr{L}(d(X_1, X_2))$ for X_1 , X_2 i.i.d. from μ .

The **shape distribution** : $\mathscr{L}(d(X_1, X_2))$ for X_1, X_2 i.i.d. from μ .

The eccentricity : $\mathscr{L}(\mathbb{E}_{\mu}[d(.,X)](X'))$ for X' from μ . The **shape distribution** : $\mathscr{L}(d(X_1, X_2))$ for X_1, X_2 i.i.d. from μ .

The eccentricity : $\mathscr{L}(\mathbb{E}_{\mu}[d(.,X)](X'))$ for X' from μ .

The **local distribution of distances** : $\mathscr{L}(\mu(\overline{B}(X, r)))$ for X from μ .

The **shape distribution** : $\mathscr{L}(d(X_1, X_2))$ for X_1, X_2 i.i.d. from μ .

The eccentricity : $\mathscr{L}(\mathbb{E}_{\mu}[d(.,X)](X'))$ for X' from μ .

The **local distribution of distances** : $\mathscr{L}(\mu(\overline{B}(X, r)))$ for X from μ .

Persistence diagrams, Reeb graphs etc.

The method

Sample on the hat

Empirical signature for the hat

Sample on the cap

Empirical signature for the cap

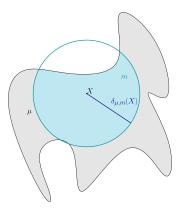
Test statistic

The distance to a measure

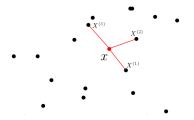
The distance to a measure [Chazal, Cohen-Steiner, Mérigot 2009] is defined for all $x \in \mathcal{X}$ and $m \in [0,1]$ by :

$$d_{\mu,m}(x) = \frac{1}{m} \int_0^m \delta_{\mu,l}(x) dl$$

with $\delta_{\mu,l}(x) = \inf\{r > 0 \mid \mu(\overline{B}(x,r)) > m\}.$



The distance to a measure – The discrete case



Let $\hat{\mu}_N = \sum_{i=1}^N \frac{1}{N} \delta_{X_i}$ be some empirical measure in some metric space (\mathcal{Z}, d) and k = Nm.

Proposition

If $X^{(1)}$, $X^{(2)}$,... $X^{(k)}$ are the k nearest neighbours of x in $\{X_1, X_2, ..., X_N\}$, then :

$$d_{\hat{\mu}_N, \frac{k}{N}}(x) = \frac{1}{k} \sum_{i=1}^k d(X^{(i)}, x).$$

The function $d_{\mu,m}$ is 1-Lipschitz.

The function $d_{\mu,m}$ is 1-Lipschitz.

The L_1 -Wasserstein distance between two measures μ and ν over the same metric space (\mathcal{Z}, d) is defined by :

 $W_1(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{\pi}[d(X, Y)].$

The function $d_{\mu,m}$ is 1-Lipschitz.

The L_1 -Wasserstein distance between two measures μ and ν over the same metric space (\mathcal{Z}, d) is defined by :

$$W_1(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{\pi}[d(X, Y)].$$

Proposition (Chazal, Cohen-Steiner, Mérigot)

$$\|\mathbf{d}_{\boldsymbol{\mu},m}-\mathbf{d}_{\boldsymbol{\nu},m}\|_{\infty,\mathcal{Z}}\leq \frac{1}{m}\mathbf{W}_{1}(\boldsymbol{\mu},\boldsymbol{\nu}).$$

Definition

If $X \sim \mu$, the **DTM signature** $d_{\mu,m}(\mu)$, is the distribution of $d_{\mu,m}(X)$.

э

Definition

If $X \sim \mu$, the **DTM signature** $d_{\mu,m}(\mu)$, is the distribution of $d_{\mu,m}(X)$.

The L_1 -Wasserstein distance between two real-valued measures of cdf F_μ and F_ν is equal to :

$$W_1(\mu, \nu) = \int_{\mathbb{R}} \left| F_{\mu}(t) - F_{\nu}(t) \right| \, \mathrm{d}t$$

∃ ► < ∃ ►</p>

Definition

If $X \sim \mu$, the **DTM signature** $d_{\mu,m}(\mu)$, is the distribution of $d_{\mu,m}(X)$.

The $L_1\text{-}\mathbf{Wasserstein}$ distance between two real-valued measures of cdf F_μ and F_ν is equal to :

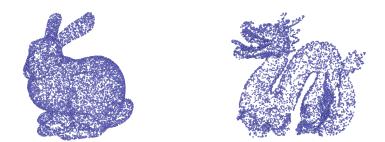
$$W_1(\mu, \nu) = \int_{\mathbb{R}} \left| F_{\mu}(t) - F_{\nu}(t) \right| \, \mathrm{d}t$$

Proposition

$$W_1(\mathrm{d}_{\mu,m}(\mu),\mathrm{d}_{\nu,m}(\nu)) \leq \frac{1}{m} GW(\mathcal{X},\mathcal{Y})$$

通 ト イ ヨ ト イ ヨ ト

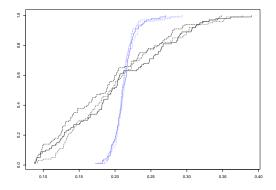
The empirical DTM signature



N-samples on the Bunny and the Dragon

Definition

The **empirical DTM signature** is defined by $d_{\hat{\mu}_{N-n},m}(\hat{\mu}_n)$ from two independent (N-n) and *n*-samples of law μ .



Empirical DTM signatures for the Bunny and the Dragon $N=10000,\;n=100,\;m=0.1$

Our test statistic : $T = \sqrt{n}W_1(d_{\hat{\mu}_{N-n},m}(\hat{\mu}_n), d_{\hat{\nu}_{N-n},m}(\hat{\nu}_n)).$

Bootstrap approximation

Under the null, we approximate

 $\mathcal{L}_{N,n,m}(\mu,\nu) = \mathcal{L}(\sqrt{n}W_1(\mathrm{d}_{\hat{\mu}_{N-n},m}(\hat{\mu}_n),\mathrm{d}_{\hat{\nu}_{N-n},m}(\hat{\nu}_n)))$

A 32 b

э

Bootstrap approximation

Under the null, we approximate $\mathscr{L}_{N,n,m}(\mu,\nu) = \mathscr{L}(\sqrt{n}W_1(\mathrm{d}_{\hat{\mu}_{N-n},m}(\hat{\mu}_n),\mathrm{d}_{\hat{\nu}_{N-n},m}(\hat{\nu}_n)))$

by the bootstrap law

$$\begin{split} &\frac{1}{2}\mathscr{L}^*_{N,n,m}(\hat{\mu}_N)\oplus\frac{1}{2}\mathscr{L}^*_{N,n,m}(\hat{v}_N),\\ \text{with }\mathscr{L}^*_{N,n,m}(\hat{\mu}_N)=\mathscr{L}^*(\sqrt{n}W_1(\mathbf{d}_{\hat{\mu}_N,m}(\boldsymbol{\mu}_n^*),\mathbf{d}_{\hat{\mu}_N,m}(\boldsymbol{\mu}_n^{*\prime}))|\hat{\mu}_N). \end{split}$$

4 建市

Bootstrap approximation

Under the null, we approximate $\mathscr{L}_{N,n,m}(\mu,\nu) = \mathscr{L}(\sqrt{n}W_1(\mathrm{d}_{\hat{\mu}_{N-n},m}(\hat{\mu}_n),\mathrm{d}_{\hat{\nu}_{N-n},m}(\hat{\nu}_n)))$

by the bootstrap law

Assume $N = n + cn^{\rho}$ and $m = c'n^{-\sigma}$ with c, c', ρ , σ positive constants.

Lemma

The quantity
$$W_1\left(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N)\right)$$
 is upper bounded by :

$$2\sqrt{n} \Big(\mathbb{E}[\|\mathbf{d}_{\hat{\mu}_{N-n},m} - \mathbf{d}_{\mu,m}\|_{\infty,\mathcal{X}}] + W_{I}(\mathbf{d}_{\mu,m}(\mu),\mathbf{d}_{\mu,m}(\hat{\mu}_{N})) + \|\mathbf{d}_{\mu,m} - \mathbf{d}_{\hat{\mu}_{N},m}\|_{\infty,\mathcal{X}} \Big),$$

きょうきょう

Assume $N = n + cn^{\rho}$ and $m = c'n^{-\sigma}$ with c, c', ρ , σ positive constants.

Lemma

The quantity
$$W_1\Bigl(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N)\Bigr)$$
 is upper bounded by :

$$2\sqrt{n} \Big(\mathbb{E}[\|\mathbf{d}_{\hat{\mu}_{N-n},m} - \mathbf{d}_{\mu,m}\|_{\infty,\mathcal{X}}] + W_I(\mathbf{d}_{\mu,m}(\mu),\mathbf{d}_{\mu,m}(\hat{\mu}_N)) + \|\mathbf{d}_{\mu,m} - \mathbf{d}_{\hat{\mu}_N,m}\|_{\infty,\mathcal{X}} \Big),$$

which is upper bounded by

$$2\frac{\sqrt{n}}{m}\mathbb{E}\left[W_1\left(\hat{\mu}_{N-n},\mu\right)\right]+2\sqrt{n}\left(1+\frac{1}{m}\right)W_1(\hat{\mu}_N,\mu).$$

ヨト イヨト

Let μ and ν be two borel probability measure supported on a compact subset of euclidean \mathbb{R}^d .

Proposition

For some positive constant C, we have,

$$\mathbb{E}[W_1(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N))] \le CN^{\frac{1}{2\rho} + \frac{\sigma}{\rho} - \frac{1}{\max\{d,2\}}} [\log(1+N)]^{\mathbb{I}_{d=2}}.$$

Proof: Lemma + Rates of convergence in \mathbb{R}^d for $\mathbb{E}[W_1(\hat{\mu}_N, \mu)]$ from [Fournier, Guillin 2015].

Let μ and ν be two borel probability measure supported on a compact subset of euclidean \mathbb{R}^d .

Proposition

For some positive constant C, we have,

$$\mathbb{E}[W_1(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N))] \le CN^{\frac{1}{2\rho} + \frac{\sigma}{\rho} - \frac{1}{\max\{d,2\}}} [\log(1+N)]^{\mathbb{1}_{d=2}}.$$

Proof: Lemma + Rates of convergence in \mathbb{R}^d for $\mathbb{E}[W_1(\hat{\mu}_N, \mu)]$ from [Fournier, Guillin 2015].

Proposition

$$\text{If } \sigma < \frac{\rho}{\max\{d,2\}} - \frac{1}{2}, \text{ then } : W_1(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N)) \to 0 \text{ a.e. when } N \to \infty.$$

Proof: Lemma + Bounds in probability for $W_1(\hat{\mu}_N, \mu)$ from [Fournier, Guillin 2015] + Borel-Cantelli lemma.

Let $(\mathscr{X}, \delta, \mu)$ be a mm-space with \mathscr{X} a nonempty bounded subset of \mathbb{R}^d , $\delta = \|\cdot - \cdot\|_2$ and μ some **Ahlfors** *b*-regular measure with parameters (a, ∞) , that is a Borel probability measure satisfying :

 $\forall x \in \mathcal{X}, \forall r \in \mathbb{R}_+, 1 \wedge ar^b \le \mu(\mathbb{B}(x, r)) \le \infty r^b.$

Let $(\mathscr{X}, \delta, \mu)$ be a mm-space with \mathscr{X} a nonempty bounded subset of \mathbb{R}^d , $\delta = \|\cdot - \cdot\|_2$ and μ some **Ahlfors** *b*-regular measure with parameters (a, ∞) , that is a Borel probability measure satisfying :

$$\forall x \in \mathcal{X}, \forall r \in \mathbb{R}_+, 1 \land ar^b \le \mu(\mathbb{B}(x, r)) \le \infty r^b.$$

Let $N = n + cn^{\rho}$ and m = c' for c, c' and ρ positive constants.

Proposition

Up to a logarithmic term, $\mathbb{E}[W_1(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}^*_{N,n,m}(\hat{\mu}_N))]$ is bounded by $N^{\frac{1}{2\rho}-\frac{1}{2}}$.

Proof: Lemma + Rates of convergence in \mathbb{R} for $\mathbb{E}[W_1(\hat{\mu}_N, \mu)]$ from [Bobkov, Ledoux 2014] + Rates of convergence for $\mathbb{E}[||d_{\mu,m} - d_{\hat{\mu}_N,m}||_{\infty}]$ from [Chazal, Massart, Michel 2015].

Asymptotic convergence of $\mathscr{L}_{N,n,m}(\mu,\mu)$ and $\mathscr{L}_{N,n,m}^*(\hat{\mu}_N)$ to some fixed law

Let μ be a borel probability measure supported on a compact set of a metric space; n and N go to ∞ together.

Lemma

$$\begin{split} & If \sqrt{n} \mathbb{E}[\|\mathbf{d}_{\mu,m} - \mathbf{d}_{\hat{\mu}_{N-n},m}\|_{\infty,\mathscr{X}}] \to 0 \text{ or more specifically } \frac{\sqrt{n}}{m} \mathbb{E}[W_1(\mu, \hat{\mu}_{N-n})] \to 0. \\ & Then, \\ & \mathscr{L}_{N,n,m}(\mu, \mu) \rightsquigarrow \mathscr{L}\Big(\|\mathbb{G}_{\mu,m} - \mathbb{G}'_{\mu,m}\|_1\Big). \end{split}$$

Moreover, if $\sqrt{n}W_1(d_{\mu,m}(\mu), d_{\mu,m}(\hat{\mu}_N)) \to 0$ a.e. and $\sqrt{n} \|d_{\mu,m} - d_{\hat{\mu}_N,m}\|_{\infty,\mathscr{X}} \to 0$ a.e., then for almost every sample $X_1, X_2, \ldots X_N \ldots$:

$$\mathcal{L}_{N,n,m}^{*}(\hat{\mu}_{N}) \leadsto \mathcal{L}\left(\|\mathbb{G}_{\mu,m}-\mathbb{G}_{\mu,m}'\|_{1}\right),$$

with $\mathbb{G}_{\mu,m}$ and $\mathbb{G}'_{\mu,m}$ two independent gaussian processes with covariance kernel $\kappa(s,t) = F_{\mathrm{d}_{\mu,m}(\mu)}(s) \left(1 - F_{\mathrm{d}_{\mu,m}(\mu)}(t)\right)$ for $s \leq t$.

Proof: $W_1(\mathscr{L}_{N,n,m}(\mu,\mu),\mathscr{L}(W_1(d_{\mu,m}(\hat{\mu}_n),d_{\mu,m}(\hat{\mu}'_n)))) \to 0$ and $W_1(\mathscr{L}^*_{N,n,m}(\hat{\mu}_N),\mathscr{L}(W_1(d_{\mu,m}(\hat{\mu}_n),d_{\mu,m}(\hat{\mu}'_n)))) \to 0$ + Donsker + [de Acosta, Giné 79]

Here, $N = n + cn^{\rho}$.

Proposition

The two convergence in law occur,

- in the general case in \mathbb{R}^d , if $\rho > \frac{\max\{d,2\}}{2}$,
- in the Ahlfors regular case, if $\rho > 1$.

Proof : Lemma + Rates of convergence, in [Chazal, Massart, Michel 2015], [Bobkov, Ledoux 2014] and [Fournier, Guillin 2015].

Here, $N = n + cn^{\rho}$.

Proposition

The two convergence in law occur,

- in the general case in \mathbb{R}^d , if $\rho > \frac{\max\{d,2\}}{2}$,
- in the Ahlfors regular case, if $\rho > 1$.

Proof : Lemma + Rates of convergence, in [Chazal, Massart, Michel 2015], [Bobkov, Ledoux 2014] and [Fournier, Guillin 2015].

 \rightsquigarrow If $\mathscr{L}(\|\mathbb{G}_{\mu,m} - \mathbb{G}'_{\mu,m}\|_1)$ is atomless : Asymptotic level α for the test.

We choose $N = n + n^{\rho}$ with $\rho > 1$.

Let μ and v be two Borel measures supported on $\mathscr X$ and $\mathscr Y,$ two compact subsets of $\mathbb R^d.$

Assume that $W_1(d_{\mu,m}(\mu), d_{\nu,m}(\nu)) > 0$.

Proposition

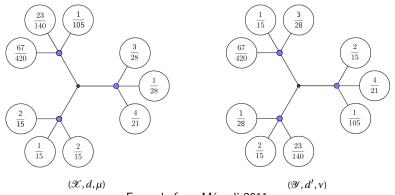
There is $n_0(\mu, \nu)$ such that $\forall n \ge n_0$, the error of second type

$$\mathbb{P}_{(\mu,\nu)}\left(\sqrt{n}W_1\left(\mathrm{d}_{\hat{\mu}_{N-n},m}(\hat{\mu}_n),\mathrm{d}_{\hat{\nu}_{N-n},m}(\hat{\nu}_n)\right) < \hat{\mathbf{q}}_{\alpha}\right)$$

is upper bounded by

$$4\exp\left(-\frac{W_1^2\left(\mathrm{d}_{\mu,m}(\mu),\mathrm{d}_{\nu,m}(\nu)\right)}{3\max\left\{\mathrm{Diam}_{\mu}^2,\mathrm{Diam}_{\nu}^2\right\}}n\right).$$

Proof: Upper bound for $W_1(\mathscr{L}^*_{N,n,m}(\hat{\mu}_N), \mathscr{L}(\|\mathbb{G}_{\mu,m} - \mathbb{G}'_{\mu,m}\|_1))$ and then of \hat{q}_{α} by a fixed constant with high probability + inequalities with W_1 , DTM... + DKW-Massart inequality



Example from Mémoli 2011

э



∧ $d_{\mu,m}(\mu) = d_{\nu,m}(\nu)$ but (\mathscr{X}, d, μ) and (\mathscr{Y}, d', ν) are not isomorphic.

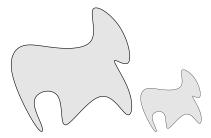
Dilatation of parameter λ , for $0 < \lambda \neq 1$.

Proposition

Let $(\mathscr{X}, \delta, \mu)$ and $(\mathscr{Y}, \gamma, \nu) = (\mathscr{X}, \lambda \delta, \mu)$ be two mm-spaces. We have

$$W_1(d_{\mu,m}(\mu), d_{\nu,m}(\nu)) = |1 - \lambda| \mathbb{E}_{\mu}[d_{\mu,m}(X)],$$

for X a random variable of law μ .

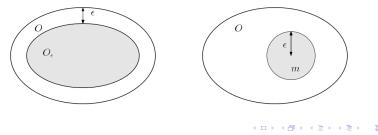


Uniform measures over two nonempty bounded open subsets O and O' of \mathbb{R}^d with different Lebesgue volume.

Proposition

If
$$O = \left(\overline{O}\right)^{\circ}$$
 and $O' = \left(\overline{O'}\right)^{\circ}$. A lower bound for $W_1(d_{\mu,m}(\mu), d_{\nu,m}(\nu))$ is given by :

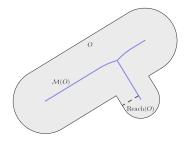
$$\min\left(\mu\left(O_{\epsilon(m,O)}\right), \mu\left(O'_{\epsilon(m,O')}\right)\right) \frac{d}{d+1} \left(\frac{m}{\omega_d}\right)^{\frac{1}{d}} \left|\operatorname{Leb}_d(O)^{\frac{1}{d}} - \operatorname{Leb}_d(O')^{\frac{1}{d}}\right|.$$
Here, $O_{\epsilon} = \left\{x \in O \mid \inf_{y \in \partial O} \|x - y\|_2 \ge \epsilon\right\}$, and $\epsilon(m, O) = \left(\frac{m\operatorname{Leb}_d(O)}{\omega_d}\right)^{\frac{1}{d}}.$



Let $(O, \|\cdot - \cdot\|_2, \mu_O)$ and $(O, \|\cdot - \cdot\|_2, \nu)$ be two mm-spaces with open $\emptyset \neq O \subset \mathbb{R}^d$, $\nu \ll \mu_O$, with $\mu_O = \frac{\operatorname{Leb}_d(. \cap O)}{\operatorname{Leb}_d(O)}$, f the Radon-Nikodym density s.t. :

$$\forall x, y \in O, |f(x) - f(y)| \le L ||x - y||_2^{\chi}.$$

We assume that $\operatorname{Reach}(O) > 0$.



Medial Axis and Reach of an open set

wi

Under the previous assumptions, if one of the following conditions is satisfied, then the quantity $W_1(d_{\mu_O,m}(\mu_O), d_{\nu,m}(\nu))$ is positive :

$$* m < \frac{\omega_d}{\operatorname{Leb}_d(O)} \min \left\{ \operatorname{Reach}(O)^d, \left(\frac{\|f\|_{\infty,O} - 1}{2L}\right)^{\frac{d}{\chi}} \right\};$$

$$* m \in \left[\frac{\omega_d}{\operatorname{Leb}_d(O)} (\operatorname{Reach}(O))^d, \left(\|f\|_{\infty,O} - 2L(\operatorname{Reach}(O))^{\chi}\right) (\operatorname{Reach}(O))^d \frac{\omega_d}{\operatorname{Leb}_d(O)} \right);$$

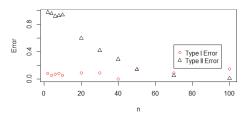
$$* m \in \left[\frac{\omega_d}{\operatorname{Leb}_d(O)} \left(\frac{d}{\chi}\right)^{\frac{d}{\chi}} (2L)^{-\frac{d}{\chi}}, \min \left\{ m_0, \frac{\omega_d}{\operatorname{Leb}_d(O)} (\operatorname{Reach}(O))^{d+\chi} \frac{\chi}{d} 2L \right\} \right],$$

$$th m_0 = \|f\|_{\infty,O}^{\frac{d}{\chi} + 1} \frac{\omega_d}{\operatorname{Leb}_d(O)} \left(\frac{d}{\chi}\right)^{\frac{d}{\chi}} (2L)^{-\frac{d}{\chi}} \left(\frac{\chi}{d+\chi}\right)^{\frac{\chi}{d+\chi}}.$$

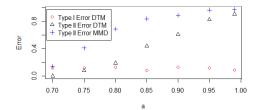
Moreover, a lower bound for $W_1(d_{\mu_O,m}(\mu_O), d_{\nu,m}(\nu))$ is given by :

$$\frac{1}{1+d}\frac{1}{\operatorname{Leb}_{d}(O)}\left(\frac{m\operatorname{Leb}_{d}(O)}{\omega_{d}}\right)^{\frac{1}{d}}\int_{\lambda=1}^{\infty}\frac{1}{\lambda^{\frac{1}{d}}}\max_{\lambda'\geq\lambda}\operatorname{Leb}_{d}\left(\{f\geq\lambda'\}_{\left(\frac{m}{\omega_{d}}\frac{\operatorname{Leb}_{d}(O)}{\lambda'}\right)^{\frac{1}{d}}}\right)d\lambda.$$

Bunny vs Dragon $N = 500, m = 0.5, \alpha = 0.05, N_{MC} = 1000$; 100 times



Ball vs Ellipse(1,a) $N = 200, n = 40, m = 0.5, \alpha = 0.05, N_{MC} = 1000; 100 \text{ times}$



Claire Brécheteau The DTM signature for a test of isomorphism between mm-spaces

The choice of parameters?

 $\mathit{N}\,{=}\,400,\;\mathit{N}_{MC}\,{=}\,1000,\;\alpha\,{=}\,0.05,$ experiment replicated 10000 times

m	2	5	10	20	50
0.02	0.0941	0.1029	0.1123	0.1329	0.1730
0.1	0.0557	0.0627	0.0686	0.0801	0.1332
0.2	0.0547	0.0587	0.0632	0.0748	0.1113
0.5	0.0514	0.0586	0.0560	0.0614	0.0896
0.8	0.0534	0.0527	0.0539	0.0671	0.0730

Approximate error of type I, $\hat{\alpha}_0$

★ ∃ ► < ∃ ►</p>

The choice of parameters?

 $\mathit{N}\,{=}\,400,\;\mathit{N}_{MC}\,{=}\,1000,\;\alpha\,{=}\,0.05,$ experiment replicated 10000 times

m	2	5	10	20	50
0.02	0.0941	0.1029	0.1123	0.1329	0.1730
0.1	0.0557	0.0627	0.0686	0.0801	0.1332
0.2	0.0547	0.0587	0.0632	0.0748	0.1113
0.5	0.0514	0.0586	0.0560	0.0614	0.0896
0.8	0.0534	0.0527	0.0539	0.0671	0.0730

Approximate error of type I, $\hat{\alpha}_0$

m	2	5	10	20	50
0.02	0.1453	0.1755	0.2105	0.2522	0.4058
0.1	0.0652	0.0752	0.0866	0.1103	0.2092
0.2	0.0603	0.0671	0.0687	0.0903	0.2021
0.5	0.0518	0.0586	0.0622	0.0781	0.1334
0.8	0.0516	0.0581	0.0666	0.0730	0.1153

Majoration of the error of type I by permutation, α_0^*

A 34 b

Thank you!

Claire Brécheteau The DTM signature for a test of isomorphism between mm-spaces

A 10

æ