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Regularity

Regularity and scale parameters are crucial in approximations
problems, and in actual implementation for estimation.

Classical regularity classes: Holder, Sobolev, Besov, ...7
Such classes allow to control variations in the form of increments

If () = f)ll < K [l =yl

— Drives the difficulty of the statistical problem.



Regularity Without Coordinates?

Without natural coordinates, usual increments ” [|f(z) — f(y)|| ” no
longer make sense.
Need for an intrinsic way to describe the difficulty of a problem.

Some computational geometers and statisticians use the reach.
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Medial Axis

The medial axis of M C R is the set of points that have at least
two nearest neighbors on M.

Med(M) = {z € RP, 2 has several nearest neighbors on M},

Figure : Voronoi diagram of a point cloud



Medial Axis

The medial axis of M C R is the set of points that have at least
two nearest neighbors on M.

Med(M) = {z € RP, 2 has several nearest neighbors on M},
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Figure : Medial axis of a continuous subset



Reach

For a closed subset M C R”, the reach 73, of M is the least distance
to its medial axis.

™ = mlél[f\‘/[d (z, med(M)),

where d(z, A) = in:f4 |z — a| for all z € RP.
ac

One can also flip the formula, in the sense that

™= inf d(z,M).
z€Med (M)



Global Regularity

Figure : The smaller 7y, the tighter a bottleneck structure is possible.



Local Regularity

Med(M)

Figure : High curvature = Small radius of curvature = 7)s — 0.

Proposition (Nyiogi, Smale, Weinberger — 2006)

Let II denote the second fundamental form of M. For all unit tangent
vector v € T, M, II;(v,v) < 1/7p.

Proposition (Dey, Li — 2009)

The sectional curvatures k satisfy || < 2/73;.



Theorem (A,K,C,M,R,W — 20167)

For a closed C® submanifold M C RP, the reach can be attained with:

Med(M)

- No reach attaining pair. - A reach attaining pair,
- No bottleneck.



Global and Local Reach

Corollary

Let M C RP be a closed C® submanifold with reach Ty;. At least one
of the following two assertions holds.

e (Global case) M has a bottleneck (qi, g2) € M?, i.e. there exists
20 € Med(M) such that q1, g2 € 0B(z0, ;) and |1 — 2| = 270

e (Local case) There exists qo € M and an arc-length parametrized
geodesic Yo = Ygo.0, Such that v0(0) = qo and |7 (0)|| = X

™ '
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In view of estimation: we do not know a priori which case the
underlying M belongs to.
— An estimator should handle both cases indiscriminately.



Geometric and Statistical Model

Definition (Geometric Model)

We let Mf,’,ﬁ,L denote the set of connected compact submanifolds

M C RP without boundary, such that Ta > Tpmin > 0, and for which
every arc-length parametrized geodesic v, , is C* and satisfies

IO < L.

Definition (Statistical Model)
We let Q%P denote the set of dz’strz’butz’ons Q having support

TW” L, fmin

M e /\/ld 1 and with a density f = duol > fmin >0 on M.

From now on, we assume that the tangent spaces are known at
observed points. Data takes the form (X1, Tx, M), ..., (X,, Tx, M).

In these models, estimating 7 is equivalent to estimate 1/7p;.



A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M C RP,
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A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M C RP,
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Plugin Estimator: Let X = {z1,...,z,} C M be a finite point
cloud. Define
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A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M C RP,

2
= in lg —p
p£eeM 2d (¢ — p, T, M)

Plugin Estimator: Let X = {z1,...,z,} C M be a finite point
cloud. Define
. . |2 — @)
X) = f .
T( ) mﬁflﬁrzleX Qd(.fL'] — Ty, TzLM)

7 is decreasing for inclusion: if Y C X C M,
F(Y) > #(X) > #(M) = 7.



Global Case

Proposition (A K,C,M,R,W — 20167)

Let M C RP be a submanifold with reach Ty that has a bottleneck
Q1,92 € M. Let X C M.
If there exist v,y € X with ||q — z|| < Tar and [|g2 — yl| < 7ar,

1 1 1 1
— 2

9
2 700 > oD S ﬁmax{quh:ﬁ), du(g2,9)} -




Minimax Estimate in the Global Case

IfX, ={Xi,...,X,} is a iid. sample, the integrated bound follows
by lower bounding the probability to get two points X; and X; close
to ¢; and ¢o.

Corollary

Let P € Pf,;ﬁ,L,fmm and M = supp(P). Assume M has a bottleneck
q1,q2 € M. Then,

1 1
?(Xn) TM™

p
:| < Cp,dﬂ'mm,lufmmn )

als

Epn |:

where Cp g roin,Lfmia depends only on p, d, Tpin,L and fiyin.



Local Case

Assume there exist go € M and vy € Tyo M with ||7 |, (0)|| = 1/7a.

q0,v0

e (Principal Curvature Stability). If dp(qo, ¢1) and 0 = Z(vg, v1)
are small,

H’thvl (O)H = H’Y:JIO’UO(O)H = 1/TM-



Local Case

Assume there exist qo € M and vy € T, M with H’qu w(0)]| =1/7ar.

e (Principal Curvature Stability). If dp(qo, ¢1) and 0 = Z(vg, v1)

are small,
ny‘h’vl H = ny‘]O"UO )H = 1/TM-

e (Directional Curvature Estimation). Write ~,_,, for the geodesic
joining z to y. If ||y — || is small,

240y —z, L) = MOl



Local Case

Proposition (A K,C,M,R,W — 20167)

Let M € /\/lmen 1, be such that there ewist go € M and a geodesic o
with ~0(0) = go and [l (0)[| = 7

Let X C M and x,y € X be such that z,y € By (qo, TTM) Let vg—y be
the geodesic joining x and y and 6 = £ (((0),7;_,,,(0)) .

3

1 1 1 S 1 {4sin29 n 37dp (1, y)?
™™ Ty

+ (i + L) du(z,y) + ngM(qO’z)}'

™




Minimax Estimate in the Local Case

If X, ={Xi,...,X,} is a i.id. sample, the integrated bound follows
by lower bounding the probability to get two points X;, Xj close to qg
and almost aligned with .

Corollary (A, K,C,M,R,W — 20167)

Let P € Pi;iL,ﬁmn and M = supp(P). Suppose there exists qo € M
and a geodesic o such that vo(0) = qo and || (0)|| = . Then,

™
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where Cr, . L fuin depends only on Tmin, L and fin.



Minimax Risk

Let us denote by R,, the minimax risk over pdD Lofouin”

Tmin s

1 1

P Tn

R = inf sup Epn
Tn PEPd’D

Tmin> Lo fmin

where the infimum is taken over all the estimators 7, computed over
an n-sample (X1, Tx, ), ..., (Xn, Tx,)-



Minimax Risk

Let us denote by R,, the minimax risk over pLb

Tmin s Lsfmin *
. 1 1)
R = inf sup Epn -,
Tn PErPd,D Tp Tn

Tmin> Lo fmin

where the infimum is taken over all the estimators 7, computed over
an n-sample (X1, Tx, ), ..., (Xn, Tx,)-

Corollary
For n large enough,

__4p

P —
Rn < OvaminyLyflninn sd=l,

for some constant Cp 7, . 1 #.. depending only on p, Tmin, L and fin.



Minimax Risk

Let us denote by R,, the minimax risk over pLb

Tmin s Ls fmin *
. 1 1)
R = inf sup Epn -,
Tn PE»Pd,D Tp Tn

Tmin> Lo fmin

where the infimum is taken over all the estimators 7, computed over
an n-sample (X1, Tx, ), ..., (Xn, Tx,)-

Proposition (A K,C,M,R,W — 20167)
Assume that (4m)¢rl. < f-1 /2 [ > =4~ and D > 2d. Then,

272

min

4p
—-p/d P — 50
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i

for n large enough.



Le Cam’s Lemma

For two probability distributions @, Q' on R”, the total variation
distance between them is

TV(Q, Q)= sup [Q(B)-Q'(B).

BeB(RD)
Theorem (L. Le Cam)
Let Q,Q € QfD Lofoin with respective supports M and M'.
Then for all n > 1,
D 1 1 P N\ 21N
RV > ¢p|— — 1-TV(Q, Q")) .
™ TM

Deriving a minimax lower bound amounts to find @, Q' such that:
1 1

T™ T’

o TV(Q, Q') is small.

is large,



Le Cam’s Lemma Heuristic

For n =~ (3 and ¢¢ ~ 1/n,

~ n

1 1

™ Typ!

® )

e with high probability, a n-sample does not separate M and M’.




What if Tangent Spaces are Unknown?

Given a point cloud X C R? and a family T = {T,},ex of linear
subspaces of R” indexed by X, the plug-in estimator is defined as

A : ly — =
X,T)= inf
(X, 1) shyex 2d(y — =z, Ty)

This generalises the previous estimator 7(X) = 7(X, TM). Notice
that,

. ly — =|* .
— inf — I sy M.
= Sy —a o M TM)



Tangent Space Stability

For two linear subspaces U, V € G4P let Z(U, V) = |1y — mv|lop
denote their principal angle.

Proposition

Let X be a subset of RP and T = {T,}sex, T = {Tz}mGX be two
families of linear subspaces of RDjndea:ed by X.
Assume X to be d-sparse, T and T to be 0-close, in the sense that

inf -zl >d6 and sup”Z TI,TI <.
Jnt lly— s > sup £(,. 7,)

Then,

Corollary

All the previous deterministic upper bounds hold for (X, T) with an
extra error term 20/9.



Yet to Be Done

¢ Finish to write the paper...
o Make the minimax upper and lower bounds match.

e Include noise. For this, it could boil down to prove that the
model MfD ;, is stable under the action of C3-diffeomorphisms.

e Give minimax upper bounds with unknown tangent spaces.

e Tackle related regularity parameters such as A-reach, p-reach or
local feature size.
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