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Regularity
Regularity and scale parameters are crucial in approximations
problems, and in actual implementation for estimation.

Classical regularity classes: Hölder, Sobolev, Besov, ...?
Such classes allow to control variations in the form of increments

‖f (x)− f (y)‖ ≤ K ‖x − y‖α .

→ Drives the difficulty of the statistical problem.
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Regularity Without Coordinates?
Without natural coordinates, usual increments ” ‖f (x)− f (y)‖ ” no
longer make sense.
Need for an intrinsic way to describe the difficulty of a problem.

Some computational geometers and statisticians use the reach.
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Medial Axis
The medial axis of M ⊂ RD is the set of points that have at least
two nearest neighbors on M .

Med(M ) = {z ∈ RD, z has several nearest neighbors on M},

Figure : Voronoi diagram of a point cloud
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Medial Axis
The medial axis of M ⊂ RD is the set of points that have at least
two nearest neighbors on M .

Med(M ) = {z ∈ RD, z has several nearest neighbors on M},

M

Med(M)

Figure : Medial axis of a continuous subset
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Reach
For a closed subset M ⊂ RD, the reach τM of M is the least distance
to its medial axis.

τM = inf
x∈M

d (x,med(M )) ,

where d(x,A) = inf
a∈A
‖x − a‖ for all x ∈ RD.

τM

M

Med(M)

One can also flip the formula, in the sense that

τM = inf
z∈Med(M)

d (z,M ) .
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Global Regularity

τM

τM

Figure : The smaller τM , the tighter a bottleneck structure is possible.
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Local Regularity

M

Med(M)

τM

Figure : High curvature ≡ Small radius of curvature ≡ τM → 0.

Proposition (Nyiogi, Smale, Weinberger — 2006)
Let II denote the second fundamental form of M. For all unit tangent
vector v ∈ TxM, IIx(v, v) ≤ 1/τM .

Proposition (Dey, Li — 2009)
The sectional curvatures κ satisfy |κ| ≤ 2/τ2

M .
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Theorem (A,K,C,M,R,W — 2016?)
For a closed C3 submanifold M ⊂ RD, the reach can be attained with:

q1

q2

B(z0, τM )

Med(M)

M

||q1 − q2|| = 2τM

z0

- A bottleneck.

q0

z0

τM

M

Med(M)

B(z0, τM )

- No reach attaining pair.

q1 q2

z0
τM

M

Med(M)

B(z0, τM )

||q1 − q2|| < 2τM

- A reach attaining pair,
- No bottleneck.
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Global and Local Reach

Corollary
Let M ⊂ RD be a closed C3 submanifold with reach τM . At least one
of the following two assertions holds.
• (Global case) M has a bottleneck (q1, q2) ∈ M 2, i.e. there exists
z0 ∈ Med(M ) such that q1, q2 ∈ ∂B(z0, τM ) and ‖q1 − q2‖ = 2τM .

• (Local case) There exists q0 ∈ M and an arc-length parametrized
geodesic γ0 = γq0,v0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
.

In view of estimation: we do not know a priori which case the
underlying M belongs to.
→ An estimator should handle both cases indiscriminately.
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Geometric and Statistical Model

Definition (Geometric Model)
We letMd,D

τmin ,L denote the set of connected compact submanifolds
M ⊂ RD without boundary, such that τM ≥ τmin > 0, and for which
every arc-length parametrized geodesic γp,v is C3 and satisfies∥∥γ′′′p,v(0)

∥∥ ≤ L.

Definition (Statistical Model)
We let Qd,D

τmin ,L,fmin
denote the set of distributions Q having support

M ∈Md,D
τmin ,L and with a density f = dQ

dvolM ≥ fmin > 0 on M.

From now on, we assume that the tangent spaces are known at
observed points. Data takes the form (X1,TX1M ), . . . , (Xn,TXnM ).

In these models, estimating τM is equivalent to estimate 1/τM .
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A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M ⊂ RD,

τM = inf
p 6=q∈M

‖q − p‖2

2d (q − p,TpM ) .

M

TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

q

p
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A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M ⊂ RD,

τM = inf
p 6=q∈M

‖q − p‖2

2d (q − p,TpM ) .

Plugin Estimator: Let X = {x1, . . . , xn} ⊂ M be a finite point
cloud. Define

τ̂ (X) = inf
xi 6=xj∈X

‖xj − xi‖2

2d(xj − xi ,TxiM ) .

M

TpM

d (q − p, TpM)
‖q − p‖‖q−p‖2

2d(q−p,TpM)

q

p 15 / 31



A (Crucial) Local Formulation

Proposition (Federer — 1957)
For all closed submanifold M ⊂ RD,

τM = inf
p 6=q∈M

‖q − p‖2

2d (q − p,TpM ) .

Plugin Estimator: Let X = {x1, . . . , xn} ⊂ M be a finite point
cloud. Define

τ̂ (X) = inf
xi 6=xj∈X

‖xj − xi‖2

2d(xj − xi ,TxiM ) .

τ̂ is decreasing for inclusion: if Y ⊂ X ⊂ M ,
τ̂(Y) ≥ τ̂(X) ≥ τ̂(M ) = τM .
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Global Case

Proposition (A,K,C,M,R,W — 2016?)
Let M ⊂ RD be a submanifold with reach τM that has a bottleneck
q1, q2 ∈ M. Let X ⊂ M.
If there exist x, y ∈ X with ‖q1 − x‖ < τM and ‖q2 − y‖ < τM ,

1
τM
≥ 1
τ̂(X) ≥

1
τ̂({x, y}) ≥

1
τM
− 9

2τ2
M

max {dM (q1, x), dM (q2, y)} .

q1

M

y

τM
τ̂(x, y)

TxM
x

q2
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Minimax Estimate in the Global Case

If Xn = {X1, . . . ,Xn} is a i.i.d. sample, the integrated bound follows
by lower bounding the probability to get two points Xi and Xj close
to q1 and q2.

Corollary
Let P ∈ Pd,D

τmin,L,fmin
and M = supp(P). Assume M has a bottleneck

q1, q2 ∈ M. Then,

EPn

[∣∣∣∣ 1
τ̂(Xn) −

1
τM

∣∣∣∣p]
≤ Cp,d,τmin ,L,fminn−

p
d ,

where Cp,d,τmin,L,fmin depends only on p, d, τmin,L and fmin.
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Local Case
Assume there exist q0 ∈ M and v0 ∈ Tq0M with

∥∥γ′′q0,v0
(0)

∥∥ = 1/τM .

q0

v0

q1

v1

θ

M
γ0

γ1

• (Principal Curvature Stability). If dM (q0, q1) and θ = ∠(v0, v1)
are small, ∥∥γ′′q1,v1

(0)
∥∥ ' ∥∥γ′′q0,v0

(0)
∥∥ = 1/τM .

• (Directional Curvature Estimation). Write γx→y for the geodesic
joining x to y. If ‖y − x‖ is small,

‖y − x‖2

2d (y − x,TxM ) '
∥∥γ′′x→y(0)

∥∥ .
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Local Case
Assume there exist q0 ∈ M and v0 ∈ Tq0M with

∥∥γ′′q0,v0
(0)

∥∥ = 1/τM .

q0

v0

θ

M
γ0

γx→yx
y

TxM

• (Principal Curvature Stability). If dM (q0, q1) and θ = ∠(v0, v1)
are small, ∥∥γ′′q1,v1

(0)
∥∥ ' ∥∥γ′′q0,v0

(0)
∥∥ = 1/τM .

• (Directional Curvature Estimation). Write γx→y for the geodesic
joining x to y. If ‖y − x‖ is small,

‖y − x‖2

2d (y − x,TxM ) '
∥∥γ′′x→y(0)

∥∥ .
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Local Case

Proposition (A,K,C,M,R,W — 2016?)
Let M ∈Md,D

τmin,L be such that there exist q0 ∈ M and a geodesic γ0

with γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

.
Let X ⊂ M and x, y ∈ X be such that x, y ∈ BM

(
q0,

τM
4

)
. Let γx→y be

the geodesic joining x and y and θ = ∠
(
γ′0(0), γ′x→y(0)

)
.

1
τM
≥ 1
τ̂(X) ≥

1
τ̂({x, y}) ≥

1
τM
−

{
4 sin2 θ

τM
+ 37dM (x, y)2

τ3
M

+
(

8
τ3

M
+ L

)
dM (x, y) + 2

3LdM (q0, x)
}
.

q0

v0

θ

M
γ0

γx→yx
y

TxM
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Minimax Estimate in the Local Case

If Xn = {X1, . . . ,Xn} is a i.i.d. sample, the integrated bound follows
by lower bounding the probability to get two points Xi ,Xj close to q0
and almost aligned with v0.

Corollary (A,K,C,M,R,W — 2016?)
Let P ∈ Pd,D

τmin,L,fmin
and M = supp(P). Suppose there exists q0 ∈ M

and a geodesic γ0 such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

. Then,

EPn

[∣∣∣∣ 1
τ̂(Xn) −

1
τM

∣∣∣∣p]
≤ Cτmin,L,fminn−

4p
5d−1 ,

where Cτmin,L,fmin depends only on τmin, L and fmin.
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Minimax Risk

Let us denote by Rn the minimax risk over Pd,D
τmin ,L,fmin

.

Rp
n = inf

τ̂n
sup

P∈Pd,D
τmin ,L,fmin

EPn

∣∣∣∣ 1
τP
− 1
τ̂n

∣∣∣∣p
,

where the infimum is taken over all the estimators τ̂n computed over
an n-sample (X1,TX1), . . . , (Xn,TXn ).
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Minimax Risk

Let us denote by Rn the minimax risk over Pd,D
τmin ,L,fmin

.

Rp
n = inf

τ̂n
sup

P∈Pd,D
τmin ,L,fmin

EPn

∣∣∣∣ 1
τP
− 1
τ̂n

∣∣∣∣p
,

where the infimum is taken over all the estimators τ̂n computed over
an n-sample (X1,TX1), . . . , (Xn,TXn ).

Corollary
For n large enough,

Rp
n ≤ Cp,τmin,L,fminn−

4p
5d−1 ,

for some constant Cp,τmin,L,fmin depending only on p, τmin,L and fmin.
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Minimax Risk

Let us denote by Rn the minimax risk over Pd,D
τmin ,L,fmin

.

Rp
n = inf

τ̂n
sup

P∈Pd,D
τmin ,L,fmin

EPn

∣∣∣∣ 1
τP
− 1
τ̂n

∣∣∣∣p
,

where the infimum is taken over all the estimators τ̂n computed over
an n-sample (X1,TX1), . . . , (Xn,TXn ).

Proposition (A,K,C,M,R,W — 2016?)
Assume that (4π)dτd

min ≤ f−1
min/2, L ≥ 1

2τ2
min

and D ≥ 2d. Then,

cp,τminn−p/d ≤ Rp
n ≤ Cp,τmin,L,fminn−

4p
5d−1 ,

for n large enough.
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Le Cam’s Lemma

For two probability distributions Q,Q′ on RD, the total variation
distance between them is

TV (Q,Q′) = sup
B∈B(RD)

|Q(B)−Q′(B)| .

Theorem (L. Le Cam)
Let Q,Q′ ∈ Qd,D

τmin ,L,fmin
with respective supports M and M ′.

Then for all n ≥ 1,

Rp
n ≥ cp

∣∣∣∣ 1
τM
− 1
τM ′

∣∣∣∣p
(1− TV (Q,Q′))2n

.

Deriving a minimax lower bound amounts to find Q,Q′ such that:
•

∣∣∣ 1
τM
− 1

τM′

∣∣∣ is large,
• TV (Q,Q′) is small.
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Le Cam’s Lemma Heuristic

For η ≈ `3 and `d ≈ 1/n,

•
∣∣∣ 1
τM
− 1

τM′

∣∣∣ & ( 1
n

)1/d ,

• with high probability, a n-sample does not separate M and M ′.

η

2τmin

`

M ′

O
M
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What if Tangent Spaces are Unknown?

Given a point cloud X ⊂ RD and a family T = {Tx}x∈X of linear
subspaces of RD indexed by X, the plug-in estimator is defined as

τ̂(X,T ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x,Tx) .

This generalises the previous estimator τ̂(X) = τ̂(X,TM ). Notice
that,

τM = inf
x 6=y∈M

‖y − x‖2

2d(y − x,TxM ) = τ̂(M ,TM ).
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Tangent Space Stability
For two linear subspaces U ,V ∈ Gd,D, let ∠(U ,V ) = ‖πU − πV‖op
denote their principal angle.

Proposition
Let X be a subset of RD and T = {Tx}x∈X, T̃ = {T̃x}x∈X be two
families of linear subspaces of RD indexed by X.
Assume X to be δ-sparse, T and T̃ to be θ-close, in the sense that

inf
x 6=y∈X

‖y − x‖ ≥ δ and sup
x∈X

∠(Tx , T̃x) ≤ θ.

Then, ∣∣∣∣ 1
τ̂(X,T ) −

1
τ̂(X, T̃ )

∣∣∣∣ ≤ 2θ
δ
.

Corollary
All the previous deterministic upper bounds hold for τ̂

(
X, T̃

)
with an

extra error term 2θ/δ.
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Yet to Be Done

• Finish to write the paper...
• Make the minimax upper and lower bounds match.
• Include noise. For this, it could boil down to prove that the
modelMd,D

τmin ,L is stable under the action of C3-diffeomorphisms.
• Give minimax upper bounds with unknown tangent spaces.
• Tackle related regularity parameters such as λ-reach, µ-reach or
local feature size.

Thanks
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