Approximation and Geometry of the Reach

Eddie Aamari

INRIA SACLAY, UNIVERSITÉ D'ORSAY

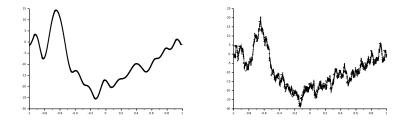
Gudhi/TopData Workshop 2016, Porquerolles

10/20/2016

WITH J. KIM, F. CHAZAL, B. MICHEL, A. RINALDO, L. WASSERMAN

Regularity

Regularity and **scale** parameters are crucial in approximations problems, and in actual implementation for estimation.



Classical regularity classes: Hölder, Sobolev, Besov, ...? Such classes allow to control variations in the form of increments

$$||f(x) - f(y)|| \le K ||x - y||^{\alpha}.$$

 \rightarrow Drives the difficulty of the statistical problem.

Regularity Without Coordinates?

Without natural coordinates, usual increments "||f(x) - f(y)||" no longer make sense.

Need for an intrinsic way to describe the difficulty of a problem.

Some computational geometers and statisticians use the **reach**.

Bibliography

First introduced by H. Federer (1957), the reach is a regularity and scale parameter that has recently grown popular in the geometric inference literature.

- Homology Inference: Niyogi, Smale, Weinberger, Dey, Lieutier
- Manifold Reconstruction: Boissonnat, Ghosh, CMU TopStat group
- Volume Estimation: Cuevas, Fraiman, Pateiro-López, Rodríguez-Casal
- Manifold Clustering: Arias-Castro, Lerman, Zhang

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is the set of points that have at least two nearest neighbors on M.

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\},\$

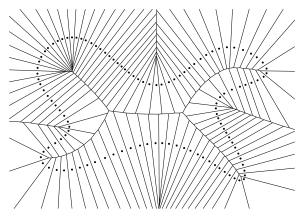


Figure : Voronoi diagram of a point cloud

Medial Axis

The **medial axis** of $M \subset \mathbb{R}^D$ is the set of points that have at least two nearest neighbors on M.

 $Med(M) = \{z \in \mathbb{R}^D, z \text{ has several nearest neighbors on } M\},\$

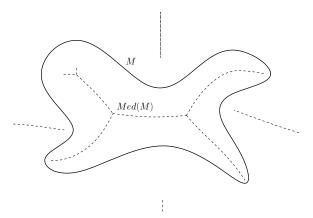
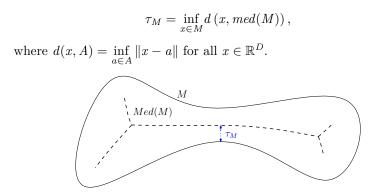


Figure : Medial axis of a continuous subset

Reach

For a closed subset $M \subset \mathbb{R}^D$, the **reach** τ_M of M is the least distance to its medial axis.



One can also flip the formula, in the sense that

$$\tau_M = \inf_{z \in Med(M)} d(z, M).$$

Global Regularity

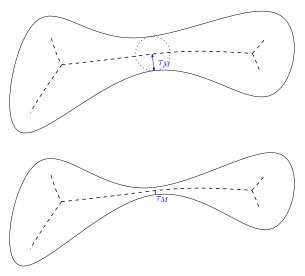


Figure : The smaller τ_M , the tighter a bottleneck structure is possible.

Local Regularity

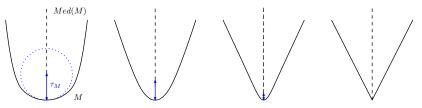


Figure : High curvature \equiv Small radius of curvature $\equiv \tau_M \rightarrow 0$.

Proposition (Nyiogi, Smale, Weinberger — 2006)

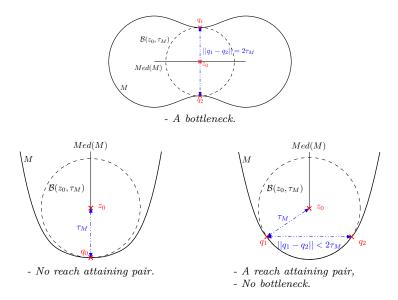
Let II denote the second fundamental form of M. For all unit tangent vector $v \in T_x M$, $II_x(v, v) \leq 1/\tau_M$.

Proposition (Dey, Li - 2009)

The sectional curvatures κ satisfy $|\kappa| \leq 2/\tau_M^2$.

Theorem (A,K,C,M,R,W - 2016?)

For a closed \mathcal{C}^3 submanifold $M \subset \mathbb{R}^D$, the reach can be attained with:



Global and Local Reach

Corollary

Let $M \subset \mathbb{R}^D$ be a closed \mathcal{C}^3 submanifold with reach τ_M . At least one of the following two assertions holds.

- (Global case) M has a bottleneck $(q_1, q_2) \in M^2$, i.e. there exists $z_0 \in Med(M)$ such that $q_1, q_2 \in \partial \mathcal{B}(z_0, \tau_M)$ and $||q_1 q_2|| = 2\tau_M$.
- (Local case) There exists $q_0 \in M$ and an arc-length parametrized geodesic $\gamma_0 = \gamma_{q_0,v_0}$ such that $\gamma_0(0) = q_0$ and $\|\gamma_0''(0)\| = \frac{1}{\tau_M}$.

Global and Local Reach

Corollary

Let $M \subset \mathbb{R}^D$ be a closed \mathcal{C}^3 submanifold with reach τ_M . At least one of the following two assertions holds.

- (Global case) M has a bottleneck $(q_1, q_2) \in M^2$, i.e. there exists $z_0 \in Med(M)$ such that $q_1, q_2 \in \partial \mathcal{B}(z_0, \tau_M)$ and $||q_1 q_2|| = 2\tau_M$.
- (Local case) There exists $q_0 \in M$ and an arc-length parametrized geodesic $\gamma_0 = \gamma_{q_0,v_0}$ such that $\gamma_0(0) = q_0$ and $\|\gamma_0''(0)\| = \frac{1}{\tau_M}$.

In view of estimation: we do not know a priori which case the underlying M belongs to.

 \rightarrow An estimator should handle both cases in discriminately.

Geometric and Statistical Model

Definition (Geometric Model)

We let $\mathcal{M}^{d,D}_{\tau_{\min},L}$ denote the set of connected compact submanifolds $M \subset \mathbb{R}^D$ without boundary, such that $\tau_M \geq \tau_{\min} > 0$, and for which every arc-length parametrized geodesic $\gamma_{p,v}$ is \mathcal{C}^3 and satisfies

 $\left\|\gamma_{p,v}^{\prime\prime\prime}(0)\right\| \le L.$

Definition (Statistical Model) We let $\mathcal{Q}^{d,D}_{\tau_{min},L,f_{min}}$ denote the set of distributions Q having support $M \in \mathcal{M}^{d,D}_{\tau_{min},L}$ and with a density $f = \frac{\mathrm{d}Q}{\mathrm{d}vol_M} \ge f_{min} > 0$ on M.

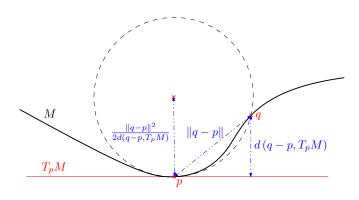
From now on, we assume that the tangent spaces are known at observed points. Data takes the form $(X_1, T_{X_1}M), \ldots, (X_n, T_{X_n}M)$.

In these models, estimating τ_M is equivalent to estimate $1/\tau_M$.

A (Crucial) Local Formulation

Proposition (Federer — 1957) For all closed submanifold $M \subset \mathbb{R}^D$,

$$\tau_M = \inf_{p \neq q \in M} \frac{\left\| q - p \right\|^2}{2d\left(q - p, \frac{T_p M}{T_p M}\right)}.$$



A (Crucial) Local Formulation

Proposition (Federer — 1957) For all closed submanifold $M \subset \mathbb{R}^D$,

$$\tau_M = \inf_{p \neq q \in M} \frac{\|q - p\|^2}{2d(q - p, T_p M)}.$$

Plugin Estimator: Let $\mathbb{X} = \{x_1, \ldots, x_n\} \subset M$ be a finite point cloud. Define

$$\hat{\tau} (\mathbb{X}) = \inf_{x_i \neq x_j \in \mathbb{X}} \frac{\|x_j - x_i\|^2}{2d(x_j - x_i, T_{x_i}M)}.$$

A (Crucial) Local Formulation

Proposition (Federer — 1957) For all closed submanifold $M \subset \mathbb{R}^D$,

$$\tau_M = \inf_{p \neq q \in M} \frac{\|q - p\|^2}{2d(q - p, T_p M)}.$$

Plugin Estimator: Let $\mathbb{X} = \{x_1, \ldots, x_n\} \subset M$ be a finite point cloud. Define

$$\hat{\tau}\left(\mathbb{X}\right) = \inf_{x_i \neq x_j \in \mathbb{X}} \frac{\|x_j - x_i\|^2}{2d(x_j - x_i, T_{x_i}M)}.$$

 $\hat{\tau}$ is decreasing for inclusion: if $\mathbb{Y} \subset \mathbb{X} \subset M$,

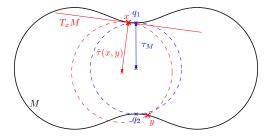
$$\hat{\tau}(\mathbb{Y}) \geq \hat{\tau}(\mathbb{X}) \geq \hat{\tau}(M) = \tau_M.$$

Global Case

Proposition (A,K,C,M,R,W - 2016?)

Let $M \subset \mathbb{R}^D$ be a submanifold with reach τ_M that has a bottleneck $q_1, q_2 \in M$. Let $\mathbb{X} \subset M$. If there exist $x, y \in \mathbb{X}$ with $||q_1 - x|| < \tau_M$ and $||q_2 - y|| < \tau_M$,

$$\frac{1}{\tau_M} \ge \frac{1}{\hat{\tau}(\mathbb{X})} \ge \frac{1}{\hat{\tau}(\{x,y\})} \ge \frac{1}{\tau_M} - \frac{9}{2\tau_M^2} \max\left\{ d_M(q_1,x), d_M(q_2,y) \right\}.$$



Minimax Estimate in the Global Case

If $\mathbb{X}_n = \{X_1, \ldots, X_n\}$ is a i.i.d. sample, the integrated bound follows by lower bounding the probability to get two points X_i and X_j close to q_1 and q_2 .

Corollary

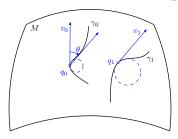
Let $P \in \mathcal{P}_{\tau_{\min},L,f_{\min}}^{d,D}$ and M = supp(P). Assume M has a bottleneck $q_1, q_2 \in M$. Then,

$$\mathbb{E}_{P^n}\left[\left|\frac{1}{\hat{\tau}(\mathbb{X}_n)} - \frac{1}{\tau_M}\right|^p\right] \le C_{p,d,\tau_{min},L,f_{min}}n^{-\frac{p}{d}},$$

where $C_{p,d,\tau_{\min},L,f_{\min}}$ depends only on p, d, τ_{\min},L and f_{\min} .

Local Case

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\left\|\gamma_{q_0,v_0}'(0)\right\| = 1/\tau_M$.

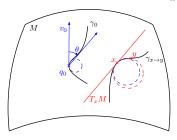


• (Principal Curvature Stability). If $d_M(q_0, q_1)$ and $\theta = \angle(v_0, v_1)$ are small,

$$\left\|\gamma_{q_1,v_1}'(0)\right\| \simeq \left\|\gamma_{q_0,v_0}''(0)\right\| = 1/\tau_M.$$

Local Case

Assume there exist $q_0 \in M$ and $v_0 \in T_{q_0}M$ with $\|\gamma_{q_0,v_0}'(0)\| = 1/\tau_M$.



• (Principal Curvature Stability). If $d_M(q_0, q_1)$ and $\theta = \angle(v_0, v_1)$ are small,

$$\left\|\gamma_{q_1,v_1}'(0)\right\| \simeq \left\|\gamma_{q_0,v_0}''(0)\right\| = 1/\tau_M.$$

• (Directional Curvature Estimation). Write $\gamma_{x \to y}$ for the geodesic joining x to y. If ||y - x|| is small,

$$\frac{\left\|y-x\right\|^{2}}{2d\left(y-x,T_{x}M\right)} \simeq \left\|\gamma_{x\to y}^{\prime\prime}(0)\right\|.$$

Local Case

Proposition (A,K,C,M,R,W - 2016?)

Let $M \in \mathcal{M}^{d,D}_{\tau_{\min},L}$ be such that there exist $q_0 \in M$ and a geodesic γ_0 with $\gamma_0(0) = q_0$ and $\|\gamma_0''(0)\| = \frac{1}{\tau_M}$. Let $\mathbb{X} \subset M$ and $x, y \in \mathbb{X}$ be such that $x, y \in \mathcal{B}_M\left(q_0, \frac{\tau_M}{4}\right)$. Let $\gamma_{x \to y}$ be the geodesic joining x and y and $\theta = \angle \left(\gamma_0'(0), \gamma_{x \to y}'(0)\right)$.

$$\frac{1}{\tau_M} \ge \frac{1}{\hat{\tau}(\mathbb{X})} \ge \frac{1}{\hat{\tau}(\{x,y\})} \ge \frac{1}{\tau_M} - \left\{ \frac{4\sin^2\theta}{\tau_M} + \frac{37d_M(x,y)^2}{\tau_M^3} + \left(\frac{8}{\tau_M^3} + L\right)d_M(x,y) + \frac{2}{3}Ld_M(q_0,x) \right\}.$$

Minimax Estimate in the Local Case

If $\mathbb{X}_n = \{X_1, \ldots, X_n\}$ is a i.i.d. sample, the integrated bound follows by lower bounding the probability to get two points X_i, X_j close to q_0 and almost aligned with v_0 .

Corollary (A,K,C,M,R,W – 2016?) Let $P \in \mathcal{P}_{\tau_{\min},L,f_{\min}}^{d,D}$ and M = supp(P). Suppose there exists $q_0 \in M$ and a geodesic γ_0 such that $\gamma_0(0) = q_0$ and $\|\gamma_0''(0)\| = \frac{1}{\tau_M}$. Then,

$$\mathbb{E}_{P^n}\left[\left|\frac{1}{\hat{\tau}(\mathbb{X}_n)} - \frac{1}{\tau_M}\right|^p\right] \le C_{\tau_{\min},L,f_{\min}} n^{-\frac{4p}{5d-1}}$$

where $C_{\tau_{\min},L,f_{\min}}$ depends only on τ_{\min} , L and f_{\min} .

Minimax Risk

Let us denote by R_n the minimax risk over $\mathcal{P}^{d,D}_{\tau_{\min},L;f_{\min}}$.

$$R_n^p = \inf_{\hat{\tau}_n} \sup_{P \in \mathcal{P}_{\tau_{\min},L,f_{\min}}^{d,D}} \mathbb{E}_{P^n} \left| \frac{1}{\tau_P} - \frac{1}{\hat{\tau}_n} \right|^p$$

,

where the infimum is taken over all the estimators $\hat{\tau}_n$ computed over an *n*-sample $(X_1, T_{X_1}), \ldots, (X_n, T_{X_n})$.

Minimax Risk

Let us denote by R_n the minimax risk over $\mathcal{P}^{d,D}_{\tau_{\min},L,f_{\min}}$.

$$R_n^p = \inf_{\hat{\tau}_n} \sup_{P \in \mathcal{P}_{\tau_{\min},L,f_{\min}}^{d,D}} \mathbb{E}_{P^n} \left| \frac{1}{\tau_P} - \frac{1}{\hat{\tau}_n} \right|^p,$$

where the infimum is taken over all the estimators $\hat{\tau}_n$ computed over an *n*-sample $(X_1, T_{X_1}), \ldots, (X_n, T_{X_n})$.

Corollary

For n large enough,

$$R_n^p \le C_{p,\tau_{\min},L,f_{\min}} n^{-\frac{4p}{5d-1}},$$

for some constant $C_{p,\tau_{\min},L,f_{\min}}$ depending only on p,τ_{\min},L and f_{\min} .

Minimax Risk

Let us denote by R_n the minimax risk over $\mathcal{P}^{d,D}_{\tau_{\min},L,f_{\min}}$.

$$R_n^p = \inf_{\hat{\tau}_n} \sup_{P \in \mathcal{P}_{\tau_{\min},L,f_{\min}}^{d,D}} \mathbb{E}_{P^n} \left| \frac{1}{\tau_P} - \frac{1}{\hat{\tau}_n} \right|^p$$

,

where the infimum is taken over all the estimators $\hat{\tau}_n$ computed over an *n*-sample $(X_1, T_{X_1}), \ldots, (X_n, T_{X_n})$.

Proposition (A,K,C,M,R,W – 2016?) Assume that $(4\pi)^d \tau^d_{min} \leq f^{-1}_{min}/2$, $L \geq \frac{1}{2\tau^2_{min}}$ and $D \geq 2d$. Then,

$$c_{p,\tau_{\min}} n^{-p/d} \le R_n^p \le C_{p,\tau_{\min},L,f_{\min}} n^{-\frac{4p}{5d-1}},$$

for n large enough.

Le Cam's Lemma

For two probability distributions Q, Q' on \mathbb{R}^D , the **total variation** distance between them is

$$TV(Q, Q') = \sup_{B \in \mathcal{B}(\mathbb{R}^D)} |Q(B) - Q'(B)|.$$

Theorem (L. Le Cam)

Let $Q, Q' \in \mathcal{Q}_{\tau_{\min}, L, f_{\min}}^{d, D}$ with respective supports M and M'. Then for all $n \geq 1$,

$$R_n^p \ge c_p \left| \frac{1}{\tau_M} - \frac{1}{\tau_{M'}} \right|^p (1 - TV(Q, Q'))^{2n}.$$

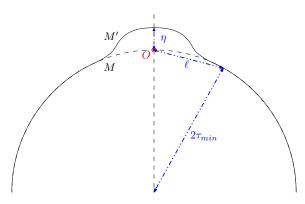
Deriving a minimax lower bound amounts to find Q, Q' such that:

- $\left|\frac{1}{\tau_M} \frac{1}{\tau_{M'}}\right|$ is large,
- TV(Q, Q') is small.

Le Cam's Lemma Heuristic

For $\eta \approx \ell^3$ and $\ell^d \approx 1/n$,

- $\left|\frac{1}{\tau_M} \frac{1}{\tau_{M'}}\right| \gtrsim \left(\frac{1}{n}\right)^{1/d},$
- with high probability, a *n*-sample does not separate M and M'.



What if Tangent Spaces are Unknown?

Given a point cloud $\mathbb{X} \subset \mathbb{R}^D$ and a family $T = \{T_x\}_{x \in \mathbb{X}}$ of linear subspaces of \mathbb{R}^D indexed by \mathbb{X} , the plug-in estimator is defined as

$$\hat{\tau}(\mathbb{X}, T) = \inf_{x \neq y \in \mathbb{X}} \frac{\|y - x\|^2}{2d(y - x, T_x)}$$

This generalises the previous estimator $\hat{\tau}(\mathbb{X}) = \hat{\tau}(\mathbb{X}, TM)$. Notice that,

$$\tau_M = \inf_{x \neq y \in M} \frac{\|y - x\|^2}{2d(y - x, T_x M)} = \hat{\tau}(M, TM).$$

Tangent Space Stability

For two linear subspaces $U, V \in \mathbb{G}^{d,D}$, let $\angle (U, V) = ||\pi_U - \pi_V||_{op}$ denote their principal angle.

Proposition

Let X be a subset of \mathbb{R}^D and $T = \{T_x\}_{x \in \mathbb{X}}$, $\tilde{T} = \{\tilde{T}_x\}_{x \in \mathbb{X}}$ be two families of linear subspaces of \mathbb{R}^D indexed by X. Assume X to be δ -sparse, T and \tilde{T} to be θ -close, in the sense that

$$\inf_{x \neq y \in \mathbb{X}} \|y - x\| \ge \delta \quad and \quad \sup_{x \in \mathbb{X}} \angle (T_x, \tilde{T}_x) \le \theta.$$

Then,

$$\left|\frac{1}{\hat{\tau}(\mathbb{X},\,T)}-\frac{1}{\hat{\tau}(\mathbb{X},\,\tilde{T})}\right|\leq \frac{2\theta}{\delta}.$$

Corollary

All the previous deterministic upper bounds hold for $\hat{\tau}(\mathbb{X}, \tilde{T})$ with an extra error term $2\theta/\delta$.

Yet to Be Done

- Finish to write the paper...
- Make the minimax upper and lower bounds match.
- Include noise. For this, it could boil down to prove that the model $\mathcal{M}^{d,D}_{\tau_{\min},L}$ is stable under the action of \mathcal{C}^3 -diffeomorphisms.
- Give minimax upper bounds with unknown tangent spaces.
- Tackle related regularity parameters such as $\lambda\text{-reach},\,\mu\text{-reach}$ or local feature size.

Yet to Be Done

- Finish to write the paper...
- Make the minimax upper and lower bounds match.
- Include noise. For this, it could boil down to prove that the model $\mathcal{M}^{d,D}_{\tau_{\min},L}$ is stable under the action of \mathcal{C}^3 -diffeomorphisms.
- Give minimax upper bounds with unknown tangent spaces.
- Tackle related regularity parameters such as $\lambda\text{-reach},\,\mu\text{-reach}$ or local feature size.

Thanks