

What is will be new in GUDHI library version 1.4.0

Jean-Daniel Boissonnat, Paweł Dłotko, Marc Glisse, François Godi, Clément Jamin, Siargey Kachanovich, Clément Maria, Vincent Rouvreau and David Salinas

DataShape, Inria Saclay and Sophia-Antipolis

GUDHI is a five years project supported by a Grant of the European Research Council and hosted by INRIA

- develop and understand geometrical data structures

- develop associated statistical, geometric and topological functions

W Topological data an × +	
< 🛈 🔒 https://en.wikipedia.org/wiki/Topolog	jical_data_analysis 🗊 C 🔍 Search 🏠 🖻 🛡 🖡 🎓 🐗 🐵 🗸 🚍
Workflow[edit]The basic workflow ipoint cloud1. If X is a point	n TDA is: ^[14] ested complexes $ ightarrow$ persistence module $ ightarrow$ barcode or diagram t cloud, replace X with a nested family of simplicial complexes X_r (such as the Čech or
Vietoris-Rips o ${ m Taking}$ the ho $H_i(X_{r_0})$	complex). This process converts the point cloud into a filtration of simplicial complexes. mology of each complex in this filtration gives a persistence module $ o H_i(X_{r_1}) o H_i(X_{r_2}) o \cdots$
2. Apply the stru diagram, or a	acture theorem to provide a parameterized version of Betti number, persistence equivalently, barcode.
Graphically speaking	J, Build geometric Metric data set Build geometric filtered complex on top of data Build geometric filtered top of data
	A usual use of persistence in TDA ^[15]

Wikipedia - TDA workflow

by Clément Maria

Distance Geometric filtered complex

Geometric filtered complex – Rips from a distance matrix

- Suppose we have a set of points sampled from a manifold.
- For every point construct tangent space at that every $p \in L$.
- For every $p \in L$, construct its star and glue the stars of neighbouring points if they agree.
- Based on Jean-Daniel Boissonnat and Arijit Ghosh Manifold reconstruction using Tangential Delaunay Complexes.

by Clément Jamin

- For large point clouds, select small, representative collection of points L called landmarks.
- Build a complex on landmark points. Add a simplex if a witness exists.
- Version with and without filtration.

by Siargey Kachanovich

+ Periodic alpha complexes in dimension 3.

by Marc Glisse & Vincent Rouvreau

Geometric filtered complex -Geometric Point filtered complex Delaunay from a point cloud cloud CGAL Point cloud Delaunay triangulation Delaunay complex o 6 6 6 4. 2. o 3 3 3 0° 0 °ı 0

by Marc Glisse & Vincent Rouvreau

- Represented as a vector of filtration values.
- (Co)boundary computed based on the position in this vector.
- Used in analysis of grid-type data.

by Paweł Dłotko

- Memory and time-efficient data structure to store simplicial complexes.
- Every simplex is a word stored in the tree.
- The nodes corresponding to simplices of the same dimension having the same maximal vertex are stored in a cyclic list.

- It is a base of all algorithms to compute persistence of weighted simplicial complexes in GUDHI.

by Clément Maria

- A data structure for very large simplicial complexes.
- We store the 1-skeleton and the minimal simplices which are not present in the complex.
- The rest is generated from cliques in the 1-skeleton.
- Used in edge contraction toolbox (details later).

by David Salinas

Toolbox – edge contraction

Edge

Point cloud sampling SO3 (points are in R⁹but projected into R³ for vizualization)

Rips complex built uppon these points 20 millions simplices

Simplicial complex obtained after simplification 714 simplices

- Efficient on a skeleton blocker data structure.

by David Salinas

- Standard persistence cohomology computations by using compressed annotation matrix.

- Multi-field persistence (detection of torsion coefficients).

by Clément Maria

- Computing persistence with Phat (Phat by Ulrich Bauer, Michael Kerber, Jan Reininghaus and Hubert Wagner).

by Paweł Dłotko

- Statistics on persistence diagrams
- Distance to measure

by Paweł Dłotko

Our website: http://gudhi.gforge.inria.fr

Documentation will be available here: http://gudhi.gforge.inria.fr/doc/latest/

Third party libraries

Installing GUDHI: http://gudhi.gforge.inria.fr/doc/latest/installation.html

If you want to join the GUDHI users community: http://gudhi.gforge.inria.fr/getinvolved/

ਗੁਫੀ GUDHI Geometry Understanding in Higher Dimensions

Get involved

Please help us improving the quality of the GUDHI library. You may <u>contact us</u> to report bugs or suggestions.

Gudhi is open to external contributions. If you want to join our development team, please contact us.

Subscribe to the GUDHI users mailing-list >

GUDHI downloads:

Month

GUDHI is open to external contributions.

- Examples driven development
- Documentation is required
- Unitary tests are required
- Some conventions to write code
- Peer review process
- All the packages come with the names of their authors

1 Idle

Geometric Understanding in Higher Dimensions

😫 Dashboard [Jenkins] 🗙 🕂							
🗲 🛈 🔒 https://ci.inria.fr/gudhi/			C	♀ Search	☆ 自 ♥	↓ ⋒ ∢	@ ~ ≡
🧕 Jenkins				Qsearch	l vi	ncent.rouvreau@inria.f	r ∣log out
Jenkins						ENABLE /	AUTO REFRESH
🖀 New Item							dd description
Neople	Tous	+					
Build History	S	w	Name ↓	Last Success	Last Failure	Last Duration	
💥 Manage Jenkins	Q -	۰	BRANCH build-and-test-centOS764-cgal49	5 days 22 hr - <u>#2</u>	N/A	18 min	\bigotimes
Credentials	Q (*	BRANCH build-and-test-centOS764-random-cgal	6 days 2 hr - <u>#1</u>	N/A	25 min	\bigotimes
🌇 My Views		۲	BRANCH build-and-test-MacOS	14 days - <u>#39</u>	N/A	11 min	\bigotimes
Build Queue		۲	BRANCH build and test win32	14 days - <u>#53</u>	N/A	4 min 51 sec	\bigotimes
No builds in the queue.		*	BRANCH build and test win64	14 days - <u>#55</u>	28 days - <u>#51</u>	24 min	\bigotimes
Build Executor Status		۴	BRANCH generate-and-build-centOS764	6 days 5 hr - <u>#267</u>	6 days 6 hr - <u>#258</u>	2 min 4 sec	\bigotimes
💻 gudhi-centos764		*	build-and-test-centOS764-cgal49	12 hr - <u>#588</u>	N/A	59 min	\bigotimes
1 Idle		*	build-and-test-centOS764-random-cgal	13 hr - <u>#585</u>	4 days 22 hr - <u>#576</u>	4 min 55 sec	\bigotimes
E gudhi-fedora32		*	build-and-test-MacOS	10 hr - <u>#541</u>	N/A	28 min	\bigotimes
1 Idle		۲	build and test win32	10 hr - <u>#589</u>	3 days 23 hr - <u>#583</u>	21 min	\bigotimes
≥ guani-osx109 1 Idle		۲	build and test win64	1 hr 32 min - <u>#348</u>	4 days 10 hr - <u>#341</u>	28 min	\bigotimes
💻 gudhi-win764		*	generate-and-build-centOS764	14 hr - <u>#599</u>	N/A	30 min	\bigotimes
1 idle	lcon: <u>S M</u>	L		Legend 🔊	RSS for all 🔊 RSS for fai	lures 🔊 RSS for just la	atest builds

Interfaces

Dim2: random cubical complex 400×400 to 3600×3600 , dx = 400Dim3: random cubical complex $20 \times 20 \times 20$ to $180 \times 180 \times 180$, dx = 20

- Documentation will be available here.

What will arrive after GUDHI 1.4.0?

- S.A.L.

Thank you !