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Synchronisation, informally

Synchronisation problems deal with questions regarding aligning a

collection of objects in a consistent manner.

Given a sequence of objects (o1, ..., on) and a group (or collection

of groups) G the objective is to learn a collection of group

elements ρij that would transform object oi to oj .

If it is possible to find a sequence of group elements that allow for

an accurate transformation between objects then this set can be

synchronised.
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Synchronisation, informally

The goal of our procedure is to adjust the pairwise correspondences

(often in the presence of noise or incomplete measurements) to

obtain a globally consistent arrangement of transformations.

Previous work in this direction assumed that data are sampled from

an underlying manifold, but we show that this is not necessary.

Our procedure is based more on a kind of rigidity than smoothness.
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Rotational consistency
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Cryo-Electron Microscopy

Picture from Singer, Shkolnisky via Bandeira Ten lectures and forty two

problems ...
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Shape space
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Synchronisation problems

• Group actions

• Bundle representation

• Twisted de Rham complex
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Vertex and edge potentials

Let G = (V ,E ) be a graph with vertex

set V and edge set E . Let G be a

group.

• A vertex potential is a map

f : V → G .

• An edge potential is a function

ρ : E → G which is symmetric: for

every edge (i , j) ∈ E we have

ρ(j , i) = ρ(i , j)−1

ρ(i, j)

f(i)

f(j)
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Compatible potentials

• We say that a group potential f

and an edge potential ρ are

compatible across an edge (i , j) iff

f (i) = ρ(i , j)f (j).

• We say that the two potentials ν

and ρ are compatible iff they are

compatible across every edge

(i , j) ∈ E .

• This definition also makes sense if

f takes values in a G -module M.

ρ(i, j)

f(i)

f(j)
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Synchronisation problem

Bandeira, Singer and Spielman (2013) posed the following

question:

Given an edge potential ρ : E → G , does there exits a vertex

potential f : V → G which is compatible with ρ?

Note that in this formulation the converse problem is easy. Given a

vertex potential f : V → G , one can define a compatible edge

potential ρ by

ρ(i , j) = f (i)f (j)−1.
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Paths

Let v and w be vertices in the graph

G . A path γ connecting the vertices v

and w is a sequence of edges

γ = (e1, e2, . . . , en)

where for k = 1, . . . , n, ek = (ik , jk),

v = i1, jk = ik+1 and w = jn.
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An edge potential ρ gives rise to a map

{Paths in G} −→ G , R : γ 7→ ρ(e1) . . . ρ(en).

Reversal property For e = (i , j), let e−1 = (j , i), and

γ−1 = (e−1
n , . . . , e−1

1 ).

Because the edge potential ρ is symmetric, we have that

R(γ−1) = ρ(e−1
n ) . . . ρ(e−1

1 ) = ρ(en)−1 . . . ρ(e1)−1 = R(γ)−1.

Concatenation

R(γ1 ◦ γ2) = R(γ1)R(γ2).
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Holonomy groups

Let ω is a based loop, so that v = w and the vertex v is a selected

base point on the loop ω.

Let Ωv denote the space of loops based at v together with the

trivial loop 0 = (v , v). We assume that R(0) = 1.

Then we have a natural map from the space Ωv of loops based at

v to G defined by

ω 7→ R(ω)

Lemma

For every vertex v, H(v) = R(Ωv ) is a subgroup of G, called the

holonomy group at v . If the graph G is connected, for every two

vertices v and w, the holonomy groups Ωv and Ωw are isomorphic.
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Restriction to paths

For a path γ connecting a vertex v to a vertex w , let V (γ) be the

set of vertices along γ, and let E (γ) denote the set of edges

comprising γ.

If f : V → G , then fγ is the restriction of f to V (γ). Similarly, ργ

is the restriction of ρ to E (γ).

We say that fγ is compatible with ργ along γ if and only if for

every edge e ∈ E (γ), e = (i , j), fγ(i) = ρ(i , j)fγ(j).

It follows that

fγ(v) = R(γ)fγ(w).
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Synchronisation along loops

Lemma

Let R(ω) = 1 for a based loop ω. Then there exists an edge

potential fω : Vω → G along ω which is compatible with the edge

potential ρω along ω.

Proof.

Let ω = (e1, . . . , en), where i1 = jn = v . We put fω(v) = 1, and

fω(jk) = f (ik+1) = ρ(e1) . . . ρ(ek).

Then for every edge ek = (ik , jk), fω(ik) = ρ(ik , jk)f (jk).

When k = n,

fω(jn) = ρ(e1) . . . ρ(en) = R(ω) = 1

so

fω(jn) = fω(i1) = 1
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Synchronisation and holonomy

Theorem

Let G(V ,E ) be a connected graph and let ρ be an edge potential

on G. Then there exists a vertex potential f : V → G compatible

with ρ if and only if the holonomy group H(v) of some vertex v is

trivial. It follows that the holonomy group of every other vertex is

also trivial, as is the holonomy of every loop in G.
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Sketch of proof

Assume that the holonomy of every loop is trivial. Choose a base

vertex v and put f (v) = 1. Then for every vertex w define

f (w) = R(γ)

where γ is a path connecting v to w . If γ1 is a different path

connecting v to w , then ω = γ ◦ γ−1
1 is a loop based at v , so that

1 = R(ω) = R(γ)R(γ1)−1

which shows that our definition does not depend on the choice of

γ. The group potential f is compatible with ρ by construction.
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Corollary

Let ρ ∈ P(E ,G ) be an edge potential for which the

synchronization problem has a solution, that is, there exists a

vertex potential f ∈ P(V ,G ) compatible with ρ. Then ρ satisfies

the following condition. For every triangle (v0, v1, v2) in G

ρ(v0, v1)ρ(v1, v2)ρ(v2, v0) = 1.
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Cycle consistency

In summary, the triviality of holonomy groups for a symmetric edge

potential implies the following well-known cycle consistency

conditions:

ρ(i , i) = 1 for all i ∈ V ,

ρ(i , j)ρ(j , i) = 1 for all (i , j) ∈ E ,

ρ(i , j)ρ(j , k)ρ(k, i) = 1 if (i , j) , (j , k) , (k , i) ∈ E .
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Fibre Bundles and Consistency Conditions

Bundle Existence Theorem. If G is a

topological group acting on Y , and {Ui},
{gij} is a system of coordinate

transformations in the space X satisfying

the cycle-consistency conditions, then there

exists a fibre bundle B with base space X ,

fibre Y , group G , and coordinate

transforms {ρij}.

In other words we have constructed a bundle with fibre G over

each vertex of the graph. The graph can be regarded as the nerve

of the cover in the above theorem.
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Bundle representation

Theorem

Let G be a topological group, Γ = (V ,E ) a connected undirected

graph, and ρ : E → G a map satisfying ρij = ρ−1
ji for all (i , j) ∈ E.

Write U = {Ui | 1 ≤ i ≤ |V |} for an open cover of Γ in which Ui

is the union of the singe vertex set {i} with the interior of all edges

adjacent to the vertex i . Then ρ defines a flat principal G-bundle

Bρ over Γ with a system of local trivializations defined on the open

sets in U with constant bundle transition functions ρij on

non-empty Ui ∩ Uj . Furthermore, ρ is synchronizable if and only if

Bρ is trivial.
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Synchronisation bundle

The fibre bundle Bρ associated with the connected graph Γ and

edge potential ρ is called a synchronization bundle associated with

the edge potential ρ over Γ.
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Obstruction to synchronisation

The compatibility condition on edges is

f (i) = ρ(i , j)f (j)

To construct a useful way to measure the failure to satisfy this

condition, we now consider a G -module M (equipped with an inner

product), and M-valued functions f : V → M on the vertex set V .

We want to interpret the difference

f (i)− ρ(i , j)f (j).
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Frustration

Given a graph Γ = (V ,E ) and a G -valued edge potential ρ, the

success of finding an M-valued vertex potential f compatible with

ρ is measured by

min
f :V→F

∑
(i ,j)∈E

CostF (ρij fj , fi ) , (1)

where CostF : F × F → [0,∞) is a cost function on M (e.g.

derived from a distance or a norm).
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Optimisation

The case M = G corresponds to the optimisation problem

min
f :V→G

∑
(i ,j)∈E

CostG (ρij fj , fi ) . (2)

which, in the case the CostG is G -invariant, is equivalent to

min
f :V→G

∑
(i ,j)∈E

CostG

(
ρij , fi f

−1
j

)
. (3)
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If ρ is synchronizable, a minimizer of (2) (or (1)) can be

geometrically realized as a global section of the synchronization

bundle Bρ ; such a minimizer implies the triviality of the principal

bundle Bρ
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Examples

The following examples have been studied so far:

• G = M = O(d), and G = O(d),M = Sd−1, Bandeira, Singer,

Spielman 2013;

• Synchronisation of rotations, G = M = SO(d), Boumal,

Singer, Absil, Blondel 2014;

• Orientation detection G = M = O(1), Singer, Wu 2011;

• Cryo-electron microscopy G = M = SO(2), Singer, Wu 2012;

• Global alignment of three-dimensional scans G = M = SO(3),

Tzveneva, Singer, Rusinkiewicz 2011.
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The standard graph Laplacian

Given a graph G(V ,E ) we define the gradient d : C[V ]→ C[E ] by

the formula

df (i , j) = f (i)− f (j).

The divergence operator δ : C[E ]→ C[V ] is given by

δφ(i) =
∑
j∼i

φ(i , j).

The graph Laplacian is the operator ∆ : C[V ]→ C[V ] defined by

∆ρ = δd :

∆f (i) =
∑
j :j∼i

(f (i)− f (j))
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Twisted differential

M is a G -module equipped with an inner product, and ρ a

symmetric potential as before.

dρ : C(V ,M) −→ C(E ,M)

dρf (i , j) = f (i)− ρ(i , j)f (j)

for every f ∈ C(V ,M).

A solution to the synchronisation problem is an element of the

kernel of dρ.
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Twisted Laplacian

The usual divergence:

δ : C(E ,M) −→ C(V ,M)

δφ(i) =
∑
j :j∼i

φ(i , j)

together with dρ give a twisted Laplacian

∆ρ = δdρ =
∑
j :j∼i

(f (i)− ρ(i , j)f (j))
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The Raleigh quotient

ηρ (f ) =
〈f ,∆ρf 〉
〈f , f 〉

=

∑
(i ,j)∈E

wij ‖f (i)− ρ(i , j)f (j)‖2

∑
i∈V

di ‖f (i)‖2

ηρ (f ) is defined in Bandeira et al. (2013) as the frustration
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Synchronisation and cohomology

We have defined a simple de Rham-type complex

C : 0 −→ C(V ,M)
dρ−→ Cρ(E ,M) −→ 0.

The cohomology of this complex is

H0(C, d) = ker dρ

in degree zero. In degree one, we have that

H1(C, d) = C(E ,M)/dρ(C(V ,M)).

Thus solutions to the synchronisation problem form the zeroth

cohomology group, which is the same as the kernel of dρ.
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Harmonic forms

Theorem

1. The space of solutions of the synchronisation problem given

by a unitary edge potential ρ is isomorphic to the space of

harmonic functions f , i.e., functions f with the property

∆ρf = 0. Moreover, we have the following orthogonal

decomposition:

C(V ,M) = ker dρ ⊕ Im δ.

2. The Laplace operator ∆ρ is self-adjoint and positive.
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Learning group actions

Given a group G acting on a set X , simultaneously learn a new

action of G on X and a partition of X into disjoint subsets

X1, · · · ,XK , such that the new action is as close as possible to the

given action and cycle-consistent on each Xi (1 ≤ i ≤ K ).
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Example: representations

If the set X is a vector space and we seek a direct sum

decomposition X =
⊕K

i=1 Xi , the LGA problem reduces to the

search for all irreducible G -subrepresentations of X .
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Example: spins

X = {x1, · · · , xn} equipped with S : X → {±1} that assigns to

each xi either value +1 or −1.

Let G = {±1} act on X transitively as

(gji , xi ) 7→ xj , gji = S(xj)S(xi ).

Suppose the spin of each point in X (i.e. the label map S) is

unknown, but we have full access to the group actions {gij}, we

can reconstruct S — up to flipping labels ±1 — by spectral

clustering the dataset X , viewed as vertices of a complete graph Γ

with weight wij = gij on the edge connecting xi and xj .
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Algorithm
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Synthetic data

In a graph, create two connected components S1 and S2 of equal

size.

(1) Randomly generate a vertex potential g ∈ C 0 (Γ;G ) for the

entire graph Γ;

(2) Set the value of ρ on edge (i , j) according to

ρij =

gig
−1
j if both i , j ∈ S1 or i , j ∈ S2,

a random matrix in O (d) otherwise.
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Synthetic data

A scatter plot of the correlation between the number of

inter-component links and the spectral gap in our random graph

model, with N = 100 vertices and the (integer) number of

inter-component links uniformly distributed between 100 and 250.

39



Simulation
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Spin point cloud

• A simple example: a set of

particles with ‘spin’

pointing up or down

• First approximation:

similarity between points

is zero if spins point in the

same direction, 1

otherwise.

• Spectral clustering using

the associated Laplacian

reveals the original spin

clusters.
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Lemurs

• We use a dataset that contains 116

second mandibular molars of simian and

prosimian mammals, each discretized into

a triangular mesh with 5,000 vertices and

10,000 faces.

• Molars in this dataset come with

landmarks specified manually by

evolutionary anthropologists at Duke

University.

• Each tooth comes with 16 such

landmarks, of which the order indicates

correspondence across the entire dataset.
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Lemurs
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Geometric clustering

• It is clear that there are left molars and right molars; as

indicated by the orientation of the landmarks. Our first step is

to the teeth into two distinct (left/right) groups based on

pairwise comparisons.

• Extending the idea of Procrustes similarity, for each pair of

teeth we compute an orthogonal transformation in O(3) that

best aligns this pair;

• The determinant of each transformation is a measure of

similarity. This corresponds to synchronisation with G = Z2

as in the spin example.

• Using other groups, like the Euclidean group E (3) reveals

more information.
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Lemurs

As expected, teeth 1, 2, 7, 8 belong to one cluster, while 3, 4, 5, 6

belong to the other cluster.
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Higher dimensions: Oriented simplicial complexes

Let K be a simplicial complex of dimension n. We denote by Kp

the set of p-simplices in K . Let G be a group and let M be a

G -module equipped with an inner product 〈−,−〉. We assume that

the simplices in K are oriented, and an orientation of a p-simplex

S in K is represented by an ordering of its vertices:

[v0, v1, . . . , vp].

Two presentations are equivalent if they differ by an even

permutation of the vertices of K .
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Forms

A p-form ω on K with values in M is a map ω : Kp → M which is

skew-symmetric in the sense that ω(−S) = −ω(S), where −S is

the simplex S with opposite orientation.

Alternatively, ω can be viewed as a skew-symmetric M-valued

function ω : V p+1 → M.
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Given an edge potential ρ we construct a differential complex

Ω0(K ,M)
dρ−→ Ω1(K ,M)

dρ−→ · · · dρ−→ Ωn(K ,M)

equipped with a twisted differential dρ associated with the edge

potential ρ.

First note that there is a very natural operation

ρ∧ : Ωp(K ,M)→ Ωp+1(K ,M) defined by

(ρ ∧ ω)[v0, v1, . . . , vp+2]

=
∑

σ∈Σp+2

sgn (σ)ρ(vσ(0), vσ(1))ω[vσ(1), . . . , vσ(p+2)]
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Definition

Let K be a simplicial complex of dimention n, and let ρ : K 1 → G

be a symmetric edge potential. Then the twisted differential dρ is

a map

dρ : Ωp(K ,M)→ Ωp+1(K ,M)

defined by

dρ(ω) = dω + ρ ∧ ω.

Here d is the usual simplicial differential defined for every

ω ∈ Ωp(K ,M) by

dω[v0, . . . , vp+2] =

p+1∑
i=1

(−1)iω[v0, . . . , v̂i , . . . , vp].
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Theorem

The operator dρ : Ωp(K ,M)→ Ωp+1(K ,M) is a differential, that

is, d2
ρ = 0, if and only if the edge potential ρ satisfies the equation

d(ρ ∧ ω) + ρ ∧ dω + ρ ∧ ρ ∧ ω = 0

for every p-form ω.
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Remark

Using the Leibniz rule purely formally we can write

d(ρ ∧ ω) = dρ ∧ ω − ρ ∧ dω.

Hence the expression d(ρ ∧ ω) + ρ ∧ dω plays the role of the term

dρ ∧ ω.

Using this formal analogy, the condition derived in the theorem can

be written as

dρ+ ρ ∧ ρ = 0

which is a familiar condition defining a flat connection in the

theory of vector bundles.
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Higher twisted differential

Theorem

Let K be a simplicial complex, and G a group. Assume that ρ is a

G-valued edge potential with the property that

ρ[v0, v1] = ρ[v1, v0]−1 for every edge [v0, v1] in K. Let us assume

that and that the synchronization problem has a solution for ρ. So

in particular, ρ satisfies the cocycle condition:

ρ(i , j)ρ(j , k) = ρ(i , k).

for every three edges [i , j ], [j , k], and [i , k] that form a triangle in

K. Then d2
ρ = 0.
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