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Introduction

• Exact and approximate nearest neighbor search

• Essential tool for many applications

• Huge bibliography

• In GUDHI: 
• High ambient dimension

• Low to medium intrinsic dimension

We need algorithms whose complexity depends on the intrinsic dimension.



Spaces

• Most general case : 
• Set of points P
• Distance function D(x,y) defined for any x, y ∈ P

• Adding a few constraints, a metric space qualifies a space where the 
following conditions are satisfied:
• Non-negativity: D(x, y) ≥ 0
• Small self-distance: D(x, x) = 0
• Isolation: x != y implies D(x, y) > 0
• Symmetry: D(x, y) = D(y, x)
• The triangle inequality: D(x, z) ≤ D(x, y) + D(y, z)

• The Euclidean distance is of particular interest since a lot of (A)NN methods 
are relying on it.



Spaces

• Dimension
• The complexity of most algorithms depends on it.

• Intrinsic vs ambient dimension.

• Abstract metric spaces  implicit structure of the metric?
• Try and define an analogous notion of dimensionality

• Most common: Assouad (or doubling) dimension

• Example: Euclidean space ℝd
 doubling space where M depends on the dimension

A metric space X with metric d is said to be doubling if there is some constant M > 0 such 
that for any x in X and r > 0, it is possible to cover the ball B(x, r) with the union of at most 
M many balls of radius r/2. The base-2 logarithm of M is often referred to as the doubling 
dimension of X.



Approximate nearest neighbor?

• ϵ-approximation
• A data point p is a (1 + ϵ)-approximate nearest neighbor of q if its distance from q is 

within a factor of (1 + ϵ) of the distance to the true nearest neighbor.

• More generally, for 1 ≤ k ≤ n, a kth (1 + ϵ)-approximate nearest neighbor of q is a data 
point whose relative error from the true kth nearest neighbor of q is ϵ.

• Recall
• The recall is the fraction of true nearest neighbors returned:

Number of correct answers / (k * number of queries)

• Example for a 10-NN search: for each query, count the number of neighbors (among 
the 10 returned) than are among the true 10 nearest neighbors.

• This approach is thus a statistical approach, which does not give an actual control on 
how big the error is, but only on the probability of an error.



Tree-based methods

• Widely used

• Organize data in a way that allow fast queries

• Numerous variants:
• kd-tree
• Balanced Box-Decomposition trees (BBD trees) [Arya et al. 1994]
• Vantage-point trees (also called Metric trees) [Uhlmann 1991; Yianilos 1993]
• Random Projection trees (RP trees) [Dasgupta and Freund 2008; Hyvönen et 

al. 2015]
• RKD-trees [Muja and Lowe 2009]
• kd-GeRaF [Avrithis, Emiris, and Samaras 2016]
• Randomly-oriented RKD-trees [Nicolopoulos 2014]
• Spill trees [Liu et al. 2004]
• …

In green: ϵ-approximation
In orange: recall



Searching in trees

• Query point q

• The easy way: defeatist search strategy
• Recursively visit the subtree containing q, ending up in the leaf where q lies.

• Hopefully with a few of its closest data points.

• Fast, but may fail: the nearest neighbors might lie in neighboring cells.

• No way to guarantee an ϵ-approximation of the problem.



Searching in trees

• The ϵ-accurate way 1: descending (or standard) search
• The bounded set N of current closest neighbors is maintained, along with their distance to q
• The tree is explored in depth-first manner
• At each node, the branch whose bounding box is the closest to q is first explored
• When done, only explore the other branch if its bounding box might contain a point closer 

than the current “worst” element of N
• Note: this is where ϵ is taken into account

• E.g.: Flann, CGAL Spatial Searching.

• The ϵ-accurate way 2: priority search
• Subtrees are not visited in the order they are encountered
• Maintain a priority queue
• While descending the tree:

• Not-visited children are possibly enqueued
• Priority is inversely proportional to their distance to q



Searching in trees

• Only trees where the splits are orthogonal to an axis are usually 
queried using the descending or priority search
• kd-tree

• BDD-tree

• Randomly-oriented RKD-trees [Nicolopoulos 2014]
• Forest of randomized kd-trees 

• All trees queried at the same time: priority search with only one common priority queue

 ϵ-approximation with better performance than a single kd-tree

• Note: we could not find any paper or implementation attempting to 
adapt such strategies to other kind of trees such as RP trees.



Searching in trees

• In trees that cut space in other ways (random projections, etc.):
• Defeatist searches = relatively high probability of failure

• Balanced by the use of multiple randomized trees, often called forest of trees 
[O’Hara and Draper 2013; Avrithis, Emiris, and Samaras 2016]

• Trees are built so that they are as different as possible from each other 
• E.g. by randomly drawing the position of the split

• The recall mainly depends on the number of trees

• In the kd-GeRaF [Avrithis, Emiris, and Samaras 2016], this strategy is used 
with kd-trees (with randomized cutting position).



• Tree-based methods are affected by the curse of dimensionality
• Exponential complexities

• Sparse data

• The difference in one coordinate is no longer a good lower bound for the 
distance.

 For high dimension, it is difficult to outperform the linear scan

• Possible solution: having complexities depend on the intrinsic 
dimension rather than ambient dimension.

Trees and the curse of dimensionality



• [Vempala 2012]
• Starts from the fact that kd-trees remain popular

• Even though they are supposed to be struck by the curse of dimensionality

• How to get rid of pathological cases?
• E.g. when points are distributed along n orthogonal lines, one parallel to each axis.

 Random rotation of the data points

• Shows that kd-trees on randomly rotated data adapts to the intrinsic 
dimension

+ fast traversal time 

+ most real-life cases are randomly oriented

 explains why kd-trees remain popular.

Trees and the curse of dimensionality



• [Verma, Kpotufe, and Dasgupta 2009]
• “Which Spatial Partition Trees Are Adaptive to Intrinsic Dimension?”

• Define the diameter of a tree cell 

• Measure how the average data diameter decreases 
when going down the tree.

 kd-trees, RP trees, PCA trees, 2-means trees 
adapt to the intrinsic dimension

Trees and the curse of dimensionality



In practice

• Experiments:
• Synthetic datasets control on intrinsic and ambient dimensions

• Points on d-sphere and d-plane where d is the intrinsic dimension

• Embedded in ambient space of dimension D…

• … with a random rotation in ambient space

• Query points: lying close to existing points

• Examples:

d=2
D=3

d=1
D=3
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Linear search
(brute-force)
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Conclusion

• Practical complexity of kd-tree search
• Exponential in intrinsic dimension d
• Linear in ambient dimension D
• Logarithmic in the number of points n

• For GUDHI, we focus on:
• Low to medium intrinsic dimension
• Medium to high ambient dimension
• Exact and ϵ-approximated searches

The kd-tree is a good candidate



Conclusion

• We need: 
• CGAL’s genericity:

• Custom data points

• Several splitting techniques

• Flann’s speed

Short-term perspective: 
optimize CGAL to match up with Flann’s speed.

ευχαριστώ !


