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Introduction

* Exact and approximate nearest neighbor search
* Essential tool for many applications
* Huge bibliography

* [In GUDHI:
* High ambient dimension
* Low to medium intrinsic dimension
=» We need algorithms whose complexity depends on the intrinsic dimension.



Spaces

* Most general case :
* Set of points P
e Distance function D(x,y) defined forany x, y € P

e Adding a few constraints, a metric space qualifies a space where the
following conditions are satisfied:
* Non-negativity: D(x, y) >0
Small self-distance: D(x, x) =0
Isolation: x !=y implies D(x, y) >0
Symmetry: D(x, y) = D(y, x)
The triangle inequality: D(x, z) < D(x, y) + D(y, z)

* The Euclidean distance is of particular interest since a lot of (A)NN methods
are relying on it.



Spaces

* Dimension

* The complexity of most algorithms depends on it.
* Intrinsic vs ambient dimension.

* Abstract metric spaces = implicit structure of the metric?
* Try and define an analogous notion of dimensionality
* Most common: Assouad (or doubling) dimension

A metric space X with metric d is said to be doubling if there is some constant M > 0 such
that for any xin Xand r > 0, it is possible to cover the ball B(x, r) with the union of at most

M many balls of radius r/2. The base-2 logarithm of M is often referred to as the doubling
dimension of X.

 Example: Euclidean space Rd
=>» doubling space where M depends on the dimension



Approximate nearest neighbor?

* e-approximation
* A data point pis a (1 + €)-approximate nearest neighbor of g if its distance from g is
within a factor of (1 + €) of the distance to the true nearest neighbor.

* More generally, for 1 £k <n, a kth (1 + €)-approximate nearest neighbor of g is a data
point whose relative error from the true kth nearest neighbor of g is €.

* Recall
* The recall is the fraction of true nearest neighbors returned:
Number of correct answers / (k * number of queries)

 Example for a 10-NN search: for each query, count the number of neighbors (among
the 10 returned) than are among the true 10 nearest neighbors.

* This approach is thus a statistical approach, which does not give an actual control on
how big the error is, but only on the probability of an error.



Tree-based methods

* Widely used
* Organize data in a way that allow fast queries

* Numerous variants:

e kd-tree
Balanced Box-Decomposition trees (BBD trees) [Arya et al. 1994]
Vantage-point trees (also called Metric trees) [Uhlmann 1991; Yianilos 1993]
Random Projection trees (RP trees) [Dasgupta and Freund 2008; Hyvonen et

al. 2015]
 RKD-trees [Muja and Lowe 2009]
* kd-GeRaF [Avrithis, Emiris, and Samaras 2016] In green: e-approximation
* Randomly-oriented RKD-trees [Nicolopoulos 2014] In orange: recall

Spill trees [Liu et al. 2004]



Searching in trees
* Query point g

* The easy way: defeatist search strategy
* Recursively visit the subtree containing g, ending up in the leaf where q lies.
* Hopefully with a few of its closest data points.
* Fast, but may fail: the nearest neighbors might lie in neighboring cells.
* No way to guarantee an e-approximation of the problem.



Searching in trees

* The e-accurate way 1: descending (or standard) search
 The bounded set N of current closest neighbors is maintained, along with their distance to g
* The tree is explored in depth-first manner
* At each node, the branch whose bounding box is the closest to g is first explored

 When done, only explore the other branch if its bounding box might contain a point closer
than the current “worst” element of N

* Note: this is where € is taken into account

e E.g.: Flann, CGAL Spatial Searching.

* The e-accurate way 2: priority search
* Subtrees are not visited in the order they are encountered
* Maintain a priority queue
* While descending the tree:

* Not-visited children are possibly enqueued
* Priority is inversely proportional to their distance to g



Searching in trees

* Only trees where the splits are orthogonal to an axis are usually
qgueried using the descending or priority search
e kd-tree
* BDD-tree

 Randomly-oriented RKD-trees [Nicolopoulos 2014]
* Forest of randomized kd-trees
* All trees queried at the same time: priority search with only one common priority queue
=>» e-approximation with better performance than a single kd-tree

* Note: we could not find any paper or implementation attempting to
adapt such strategies to other kind of trees such as RP trees.



Searching in trees

* In trees that cut space in other ways (random projections, etc.):
» Defeatist searches = relatively high probability of failure

* Balanced by the use of multiple randomized trees, often called forest of trees
[O’Hara and Draper 2013; Avrithis, Emiris, and Samaras 2016]

* Trees are built so that they are as different as possible from each other
e E.g. by randomly drawing the position of the split

* The recall mainly depends on the number of trees

* |n the kd-GeRaF [Avrithis, Emiris, and Samaras 2016], this strategy is used
with kd-trees (with randomized cutting position).



Trees and the curse of dimensionality

* Tree-based methods are affected by the curse of dimensionality
* Exponential complexities
e Sparse data

* The difference in one coordinate is no longer a good lower bound for the
distance.

=» For high dimension, it is difficult to outperform the linear scan

* Possible solution: having complexities depend on the intrinsic
dimension rather than ambient dimension.



Trees and the curse of dimensionality

e [Vempala 2012]

 Starts from the fact that kd-trees remain popular
* Even though they are supposed to be struck by the curse of dimensionality

 How to get rid of pathological cases?
* E.g. when points are distributed along n orthogonal lines, one parallel to each axis.
=» Random rotation of the data points

* Shows that kd-trees on randomly rotated data adapts to the intrinsic
dimension

+ fast traversal time
+ most real-life cases are randomly oriented
=>» explains why kd-trees remain popular.



Trees and the curse of dimensionality

e [Verma, Kpotufe, and Dasgupta 2009]

* “Which Spatial Partition Trees Are Adaptive to Intrinsic Dimension?”

* Define the diameter of a tree cell =»

* Measure how the average data diameter decreases
when going down the tree.

=» kd-trees, RP trees, PCA trees, 2-means trees
adapt to the intrinsic dimension
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In practice

* Experiments:
* Synthetic datasets = control on intrinsic and ambient dimensions
Points on d-sphere and d-plane where d is the intrinsic dimension
Embedded in ambient space of dimension D...
... with a random rotation in ambient space
Query points: lying close to existing points
Examples:
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Impact of generate_plane: avg. query time vs Intrinsic dim
Intrinsic 500000 points, Ambient dim = 50, K=10
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Impact of  generate_sphere_d:avg. query time vs ambient dim
ambient 500000 points, Intrinsicdim = 14, K=10
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|mpaCt of generate plane: avg. query time vs #P
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Conclusion

* Practical complexity of kd-tree search
* Exponential in intrinsic dimension d
* Linear in ambient dimension D
* Logarithmic in the number of points n

 For GUDHI, we focus on:
* Low to medium intrinsic dimension
 Medium to high ambient dimension
* Exact and e-approximated searches

=>» The kd-tree is a good candidate



Conclusion

* We need:
* CGAL's genericity:
e Custom data points
* Several splitting techniques

* Flann’s speed

=>» Short-term perspective:
optimize CGAL to match up with Flann’s speed.

guyoplotw !



