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Problem Definition

Definition (Clustering)

Given a set of objects partition them into disjoint sets such that objects
within a group are more “similar” compared to those in other groups.

Definition (k-means Clustering)

Given a pointset X ⊂ Rd of n points and a parameter k, find k point
centers C ∗ = {c1, c2, . . . , ck} ⊂ Rd such that the sum of squared distances
of each point in X to its nearest center is minimized.

Objective function:

min
∑
x∈X
||x − c(x)||2,

where c(x) ∈ C ∗ is the center closest to x.
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Figure: A k-means clustering example. Notice how the cluster regions correspond
to a a Voronoi diagram of the centroids.
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Base Algorithm (Lloyd’s)

Input: X s.t. |X | = n, k, j optional
Output: C ∗

Initialize C ∗ to k points selected uniformly at random from X .

Until convergence (or for j iterations)
▶ Assignment step:

Assign each point to its nearest center
▶ Update step:

Compute the mean µi of each cluster i , and assign that as the new
center ci

Complexity: O(nkd(j))

Evangelos Anagnostopoulos (National and Kapodistrian University of Athens)IQ-Means March 31, 2017 5 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Related work

Approximate k-means
[Philbin et al. ’07]
Replace assignment step with approximate nearest neighbor (ANN)
from points to centers.

Binary k-means
[Gong et. al ’15]
Binarize points and centers, followed by ANN in Hamming space

Ranked Retrieval
[Broder et al. ’14]
ANN queries from centroids to points
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Related work cont.

Dimensionality-Recursive Vector Quantization (DRVQ)
[Avrithis ’13]
Centroids to point queries on a two-dimensional grid

Expanding Gaussian Mixtures (EGM)
[Avrithis et al. ’12]
On the fly estimation of the number of clusters by a statistical
approach.
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IQ-Means

Goal: Web scale clustering (i.e. hundreds of millions of points into
millions of clusters)
IQ-Means combined with powerful deep learned representations, achieves
clustering of a 100 million image collection on a single machine in less
than one hour.[Avrithis ’15].
Compare to distributed k-means on 300 machines which takes 2.2 hours
per iteration on average, i.e. one order of magnitude slower.
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IQ-Means idea

Adopt subspace quantization from DRVQ.

Modify search algorithm to imitate Ranked Retrieval’s approach.

Estimate k dynamically by purging clusters, as in EGM.

Figure: Different k-means variants.

Evangelos Anagnostopoulos (National and Kapodistrian University of Athens)IQ-Means March 31, 2017 10 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Vector Quantization

Given a pointset X ⊂ Rd , where |X | = n and assuming that d is even:

Dimension Decomposition

Rd is expressed as the Cartesian product of two orthogonal subspaces
S1,S2. In the simplest form S1 = S2 = Rd/2, i.e.

x = (x1, x2),where x1 ∈ S1 = Rd/2, x2 ∈ S2 = Rd/2

This can continue recursively until we reach R and then we can perform a
one-dimensional clustering.
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Vector Quantization cont.
X ⊂ Rd , |X | = n; Rd = S1 × S2

Representation of Points

Assume two clusters U1,U2 trained indepedently on the projection of P
onto S1 and S2, where each cluster contains s centroids.
Then, U = U1 × U2 contains s × s centroids and partitions Rd into s × s
cells.
We view U as a two-dimensional grid and map each p ∈ P to cell
q(x) = (q1(x1), q2(x2)), where qi (x i ) is the closest centroid to x i in U i .

Quantization

For each cell uα, α ∈ I = [s]× [s], compute:

Empirical frequency: pα = |Xα|/n, where Xα = {x ∈ X | q(x) = uα}.
Mean: µα = 1

|Xα|
∑

x∈Xα
x

We can now discard X.
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Figure: Example of a two-dimensional grid U, composed of the Cartesian product
of two sub-codebooks U1,U2. The points can now be mapped onto this grid and
be discarded.
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IQ-Means Algorithm - I

Start with an arbirtrary set C of k centroids.

Update Step

For all centroids cm ∈ C :

cm ←
1

Pm

∑
α∈Am

pαµα,

Am = {α ∈ I | q̂(uα) = m} and q̂(u) = argmin
cm∈C

||u − cm|| and

Pm =
∑

α∈Am
pα
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IQ-Means Algorithm - II

Assignment Step

For each centroid ci the w nearest sub-centroids are found in U1,U2 and
ordered by ascending distance to ci .
The w × w cells are then visited in order via a priority queue.
Upon visiting a cell a function f is called. In this case, it updates the
curent assignment α and lowest distance dist found for each cell uα. It
also terminates upon visiting a specified target T of points.
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Figure: Example assignment step. For the centroids c1, c2 we have computed the
w × w nearest cells and re-arranged them such that nearest cells appear in the
top left corner.
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Small Scale Experiments I

Figure: Average distortion and total time for 20 iterations on SIFT1M for varying
number of clusters k. Time for IQ-means includes encoding of data points that is
constant in k, but not codebook learning, which is performed on a different
dataset.
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Small Scale Experiments II

Figure: Average distortion and total time for 20 iterations on SIFT1M for k = 104

and varying number of data points n. Time for IQ-means includes encoding of
data points that is linear in n, but not codebook learning.
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Large Scale Experiments

Figure: Mining example: subsets of similar clusters for (a) Paris and (b)
Paris+YFCC100M. Images in red outline are from the Paris ground truth.
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1 Preliminaries

2 IQ-Means

3 Dynamic IQ-Means
Experiments

Evangelos Anagnostopoulos (National and Kapodistrian University of Athens)IQ-Means March 31, 2017 20 / 25



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dynamic IQ-Means

No-cost purging

Quantize centroids by assigning each centroid ci to cell uα by using the
nearest sub-centroids returned in the assignment step above.
Maintain a list for each centroid keeping the other centroids encountered
in search.
Model the distribution of points assigned to a centroid cm by an isotropic
normal density N (x |cm, σm), where

σ2
m ←

1

Pm

∑
αinAm

pα||µα − cm||2

Iterate over all centroids in descending order of population and purge
clusters that overlap too much with previous ones.
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Dynamic IQ-Means Experiments

Figure: Final k ′ versus initial k number of centroids on SIFT1M for varying
overlap threshold τ .
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Thank you!
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