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Problem definition

Definition (Proximity problems)

Problems in computational geometry which involve estimation of distances
between geometric objects.

Examples:
@ Approximate Nearest Neighbor Search,
@ Closest Pair of points,
@ Minimum Spanning Tree,
@ etc.

We consider n points in RY.
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Problem definition

“Low dimensional”
Time/space complexity: exp(d), but “good” dependence on n. J

Example: (1 + ¢)-ANN in space O(dn) and query time O(1).

“High dimensional”
Time/space complexity: poly(d), but “worse” dependence on n. J

Example: (14 €)-ANN in space O(dn't*) and query time O(dn”), where
p=ple) <1
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Problem definition

“Online”

Not all points are given in advance. Query points are allowed. J

Example: ANN problem.

“Offline”
All points are given as input. J

Example: ANNs with red/blue points, closest pair, r-nets.
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Problem definition

If not stated otherwise, || - || is || - ||2-

Definition (Approximate Nearest Neighbor)

Given set X C RY, error parameter € > 0, an ANN of some query point q
is a point p* € X s.t.:

Vpe X, [lp" —ql < (1+¢€)llp—qll.

Definition (Approximate Nearest Neighbor Problem)

Consider set X C RY. Build a data structure on X which given a query
point g € RY reports an ANN of q.

Aim for (near) linear space.
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Random Projections

Johnson-Lindenstrauss lemma

Let X C R? and |X| = n. There exists a distribution over linear maps
f:R? — RY with @ = O(e 2logn) s.t., for any p,q € X:

17 (p) = f(q)ll € (L + €)llp — qll-

Low dimension + JL
e Space: O(dn).
@ Query time: (%)9(6_2 logn) — y(n).
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Random projections with slack

Observation

k distances are arbitrarily distorted = d’ = ©(e2log(%)) is sufficient.

Theorem (Anagnostopoulos, Emiris, P '15)

Consider X C RY, query q € R? and approximation error € > 0. Sample
linear map f : RY — R from a JL distribution, with d' = ©(e2 log(7))-
Then, w.c.p. the following hold:

o if p* is the NN of q, then ||f(p*) — f(q)|| € (L x¢€)||p* — q

o [{p € X\ {p*} : IF(p) — F(a)ll ¢ (L £ )llp — qll}] < k

’

Low dimension + JL with slack
e Space: O(dn).
o Query time: (%)@(f’2 log(n/k)) 4 k — dnl—©(c*/log(1/€))

v
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LSH + Random projections with slack

Definition (Datar et al.)

Let w > 0 be a parameter, and let t be a number distributed uniformly in
[0, w]. Define:

h(p) = V’”—V?/HJ . peR?ve NO,1)

Definition (P, Avarikioti, Samaras, Emiris '17)
Define:
f(p) = (A(h(p)), ..., fr(h(p))), pER?,

where h : RY — N s chosen uniformly at random as above and
f; : N9 — {0,1} random function.
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LSH + Random projections with slack

| 0 | 0 | 1 | 0 | 1 | 1 |

fi(p) = 0. Repeat d’ times: f(p) = (0,...) € {0,1}¢".
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Random projections with slack

Theorem

Consider X C RY, query q € R? and radius r > 0, approximation error
€ > 0. Sample mapping f : R? — {0, 1}d, from a distribution as in the
previous Definition, with d' = ©(e~?log(})). Then, w.c.p. the following
hold:

o |lp—qll < r implies ||f(p) — f(q)llL < ',

o {peX:llp—all = (1+e)r and [£(p) — F(q)lls < '} < K,

Low dimension Hamming + LSH projection with slack
@ Space: O(dn).
o Query time: 20(clog(n/k)) 4k — dpl=O(e*)

For any LSHable metric, we obtain linear space and sublinear query.

loannis Psarros Proximity problems in high dimensions March 31, 2017 15 / 43



Summary

Near-linear space regime.

Space  Query
Entropy-based LSH [Panigrahy '06] | O(dn) dn®((1+e)™")
Entropy-based LSH [Andoni '08] | O(dn) dn®((1+97)
JL with slack O(dn) dnl—©(&/ log(1/¢))
LSH tradeoffs [Andoni et al. '17] | O(dn) O(dn(2(1+°-1)/(+4)*y
LSH-projection with slack é(dn) dnl—©(&)
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Problem definition

Definition
Given a pointset X C RY, a parameter r > 0, an r-net of X is a subset

N C X s.t. the following properties hold:

@ (packing) For every p # q € N, we have that ||p — q||2 > r.
e (covering) For every p € X, there exists g € N s.t. ||[p—ql2 <.

Equivalently, an r-net is a maximal r-packing subset of X, or a minimal
r-covering subset of X.
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Problem definition

Definition (Approximate r-nets)

Given a pointset X C RY, a parameter r > 0 and an approximation
parameter € > 0, a (1 + €)r-net of X is a subset N C X s.t. the following
properties hold:
@ (packing) For every p # q € N, we have that ||p — g2 > r.
@ (covering) For every p € X, there exists g € N s.t.
Ip—qll2 < (1+e)r. )
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Why r-nets?

Computing r-nets is a fundamental primitive in Computational Geometry.

Recent improvements in high dimensional “offline” problems:
@ LSH: Approximate closest pair in time O(dnz_@(e)).
o [Valiant '12]: Approximate closest pair in time O(dn?~©(Ve).

Can we extend this improvement for the problem of computing r-nets?
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Previous work

Approach Time Output

Grid [Har-Peled '04] O(d9/?n) r-net

Grid (Folklore) O(dn) x O(2)9 | (14 €)r-net
LSH [Eppstein et al. '15] || O(dn?>=©(9) (1 + €)r-net whp
This work O(dn?=®(V9)) | (1 4 €)r-net whp
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o High dimensional approximate r-nets
@ Random instance
@ Nets under inner product
@ Nets under Euclidean distance
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@ Previous Work

e High dimensional approximate r-nets
@ Random instance

loannis Psarros Proximity problems in high dimensions



Random instance

Random Instance
o Input: X = [x1,..., %], x; € {~1,1}9, p € (0,1].
@ Fori=1,...,nm
either 3j # i, |(x;,x;)| > p-d,  (p-correlated)
or x; is chosen uniformly at random.
@ Objective:

Packing: any two vectors in the net are not p-correlated,
Covering: any vector is p-correlated with some net vector.
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Random instance
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Random instance
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Random instance
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Random instance with tight concentration

Observation

Let x be non-correlated with vectors in S C X C {—1,1}9, where
|S| = n®, a € (0,1). Ifd =~ n®>*/p?, then with high probability,

06 =13 ey) < p-d.

YES yEeS
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RandomInstanceNet

Input: X = [x1,...,xn], xi € {—1, 1}d, d~ nza/pz, a,p€(0,1)
Output: p-net N C {x1,...,xn}

@ Repeat /n times: //Decrease the number of correlations

» Choose a column x; uniformly at random.
» N« NU/{x;}; Delete x; from X.
» Delete each x; from X s.t. |(x;, x;)| > p.

@ n < #remaining columns.
@ Randomly partition vectors into disjoint subsets Si,...,S5,1-«.
e Set d x n'=% matrix Z : column Z; = ijeskxj' //Compress
o Compressed Gram matrix: W = X' Z, size n x n1=®.
e For W rows/vectors i =1, ... //Search for correlations
» N« NU{x;}

» For each |wj| > p: For each p-correlated x; € Sk, delete row j.

a=1/3 = time: O(dn'%)
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@ Previous Work

e High dimensional approximate r-nets

@ Nets under inner product
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Nets under inner product

Definition (Approximate inner product nets)

For any X C S9=1, an approximate p-net for (X, (-,-)) , with additive
approximation parameter € > 0, is a subset N C X which satisfies the
following properties:

e foranytwop+#q€N, (p,q) <p, and
e for any x € X, there exists p € N s.t. (x,p) > p—e.
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Sphere to Hypercube

MakeUniform [Charikar '02]

There exists an algorithm running in O(%g—") with the following
properties.

Input: X = [x,...,x,] s.t. x; € S97L.
Output: Y = [y1,...,yn] € {~1,1}"%¢ d" = O(log n/5?).

With probability 1 — o(1/n?), for all pairs i,j € [n],

< 0.

‘ yi.yi) <1 ) arccos((x,-,><j>)) ‘

™

dl
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Simulate tight concentration

ChebyshevEmbedding [Valiant '12]

There exists an algorithm with the following properties.

Input: X = [x1,...,X,] s.t. x; € {1, 1}d p€[-1,1].
Output: Y, Y' € {-1,1}™¥ o' =

With probability 1 — o(1/n), for all i, € [n],
o (xi,x;) <p-d = |(ys,yl)| < 3n%1,

o (xi,x) > (p+06)-d = |{y;,y})| > 3n016+V0/100,

Gap amplification simulates tight concentration in random instance.
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InnerProductApprxNet

Input: X = [xi,...,x,] with x; € S?71, p € [-1,1], e € (0,1/2].
Output: p-net N C [n].

o (Y,p) «+MakeUniform(X, 0 = ¢/27).

e (Z,Z,p") +ChebyshevEmbedding(Y, p).

o N «+Simulate RandomInstanceNet(p”, Z, Z’).

Theorem

The algorithm InnerProductApprxNet, on input X = [x1, ..., Xx,] with
each x; € S971, p € [~1,1] and € € (0,1/2], computes an approximate
p-net with additive error €. The algorithm runs in time O(dn I n2_\ﬁ/600)
and succeeds with probability 1 — O(1/n%2).
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@ Previous Work

e High dimensional approximate r-nets

@ Nets under Euclidean distance
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Nets under Euclidean distance

We can reduce to the inner-product net problem.

Theorem (Avarikioti, Emiris, Kavouras, P '17)

Given n points in RY, a parameter r > 0 and an approximation parameter
€ € (0,1/2], with probability 1 — o(1/n%0*), ApprxNet will return a
(1 + €)r-net, in O(dn>=®(V) time.
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Future work

@ ANN for other norms or general methods for classes of norms.

@ Recently, [Alman, Chan, and Williams '16] improved upon [Valiant
'12] for the approximate closest pair problem. Similar improvement
for r-nets?
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Thank you!
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