Proximity problems in high dimensions

Ioannis Psarros

National & Kapodistrian University of Athens

March 31, 2017

Ioannis Psarros

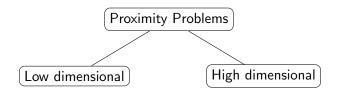
Definition (Proximity problems)

Problems in computational geometry which involve estimation of distances between geometric objects.

Examples:

- Approximate Nearest Neighbor Search,
- Closest Pair of points,
- Minimum Spanning Tree,
- etc.

We consider *n* points in \mathbb{R}^d .



"Low dimensional"

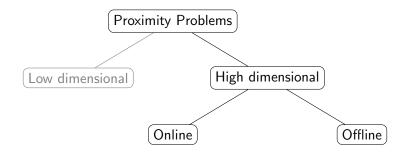
Time/space complexity: exp(d), but "good" dependence on n.

Example: $(1 + \epsilon)$ -ANN in space $\tilde{O}(dn)$ and query time $O(\frac{1}{\epsilon})^d$.

"High dimensional"

Time/space complexity: poly(d), but "worse" dependence on n.

Example: $(1 + \epsilon)$ -ANN in space $\tilde{O}(dn^{1+\rho})$ and query time $\tilde{O}(dn^{\rho})$, where $\rho = \rho(\epsilon) < 1$.



"Online"

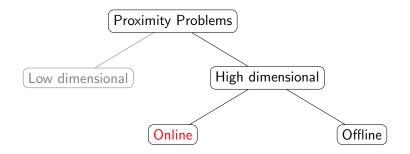
Not all points are given in advance. Query points are allowed.

Example: ANN problem.

"Offline"

All points are given as input.

Example: ANNs with red/blue points, closest pair, *r*-nets.



If not stated otherwise, $\|\cdot\|$ is $\|\cdot\|_2$.

Definition (Approximate Nearest Neighbor)

Given set $X \subset \mathbb{R}^d$, error parameter $\epsilon > 0$, an ANN of some query point q is a point $p^* \in X$ s.t.:

$$orall p \in X, \ \|p^* - q\| \leq (1 + \epsilon)\|p - q\|.$$

Definition (Approximate Nearest Neighbor Problem)

Consider set $X \subset \mathbb{R}^d$. Build a data structure on X which given a query point $q \in \mathbb{R}^d$ reports an ANN of q.

Aim for (near) linear space.

Random Projections

Johnson-Lindenstrauss lemma

Let $X \subset \mathbb{R}^d$ and |X| = n. There exists a distribution over linear maps $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ with $d' = O(\epsilon^{-2} \log n)$ s.t., for any $p, q \in X$:

$$\|f(p)-f(q)\|\in (1\pm\epsilon)\|p-q\|.$$

Low dimension + JL

- Space: O(dn).
- Query time: $(\frac{1}{\epsilon})^{\Theta(\epsilon^{-2}\log n)} = \omega(n).$

Random projections with slack

Observation

k distances are arbitrarily distorted $\implies d' = \Theta(e^{-2}\log(\frac{n}{k}))$ is sufficient.

Theorem (Anagnostopoulos, Emiris, P '15)

Consider $X \subset \mathbb{R}^d$, query $q \in \mathbb{R}^d$ and approximation error $\epsilon > 0$. Sample linear map $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ from a JL distribution, with $d' = \Theta(\epsilon^{-2} \log(\frac{n}{k}))$. Then, w.c.p. the following hold:

- if p^* is the NN of q, then $\|f(p^*) f(q)\| \in (1 \pm \epsilon) \|p^* q\|$,
- $|\{p \in X \setminus \{p^*\} : ||f(p) f(q)|| \notin (1 \pm \epsilon) ||p q||\}| \le k$

Low dimension + JL with slack

- Space: O(dn).
- Query time: $(\frac{1}{\epsilon})^{\Theta(\epsilon^{-2}\log(n/k))} + k = dn^{1-\Theta(\epsilon^2/\log(1/\epsilon))}$.

LSH + Random projections with slack

Definition (Datar et al.)

Let w > 0 be a parameter, and let t be a number distributed uniformly in [0, w]. Define:

$$h(p) = \left\lfloor rac{\langle p, v
angle + t}{w}
ight
floor, \quad p \in \mathbb{R}^d, v \in N(0, 1)^d$$

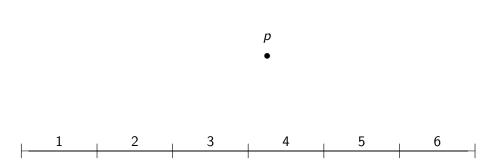
Definition (P, Avarikioti, Samaras, Emiris '17)

Define:

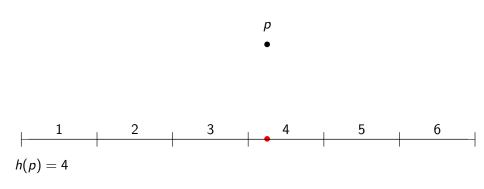
$$f(p)=(f_1(h(p)),\ldots,f_{d'}(h(p))),\quad p\in\mathbb{R}^d,$$

where $h : \mathbb{R}^d \to \mathbb{N}$ is chosen uniformly at random as above and $f_i : \mathbb{N}^d \to \{0, 1\}$ random function.

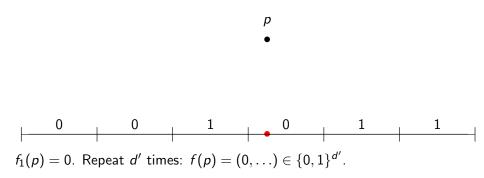
$\mathsf{LSH} + \mathsf{Random} \text{ projections with slack}$



$\mathsf{LSH} + \mathsf{Random} \text{ projections with slack}$



LSH + Random projections with slack



Random projections with slack

Theorem

Consider $X \subset \mathbb{R}^d$, query $q \in \mathbb{R}^d$ and radius r > 0, approximation error $\epsilon > 0$. Sample mapping $f : \mathbb{R}^d \to \{0,1\}^{d'}$ from a distribution as in the previous Definition, with $d' = \Theta(\epsilon^{-2} \log(\frac{n}{k}))$. Then, w.c.p. the following hold:

•
$$\|p - q\| \le r$$
 implies $\|f(p) - f(q)\|_1 \le r'$,

•
$$|\{p \in X : \|p - q\| \ge (1 + \epsilon)r \text{ and } \|f(p) - f(q)\|_1 \le r'\}| \le k$$
,

Low dimension Hamming + LSH projection with slack

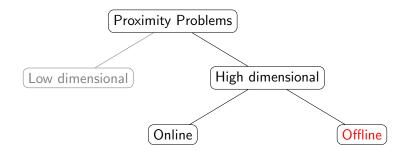
- Space: O(dn).
- Query time: $2^{\Theta(\epsilon^{-2}\log(n/k))} + k = dn^{1-\Theta(\epsilon^2)}$.

For any LSHable metric, we obtain linear space and sublinear query.

Summary

Near-linear space regime.

	Space	Query
Entropy-based LSH [Panigrahy '06]	$\tilde{O}(dn)$	$dn^{O((1+\epsilon)^{-1})}$
Entropy-based LSH [Andoni '08]	$\tilde{O}(dn)$	$dn^{O((1+\epsilon)^{-2})}$
JL with slack	$\tilde{O}(dn)$	$dn^{1-\Theta(\epsilon^2/\log(1/\epsilon))}$
LSH tradeoffs [Andoni et al. '17]	$\tilde{O}(dn)$	$O(dn^{(2(1+\epsilon)^2-1)/(1+\epsilon)^4})$
LSH-projection with slack	$\tilde{O}(dn)$	$dn^{1-\Theta(\epsilon^2)}$

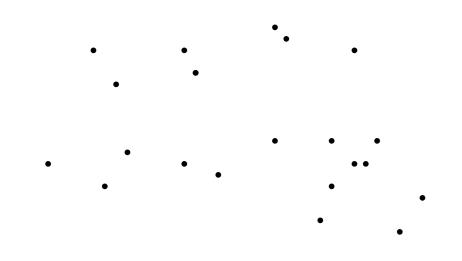


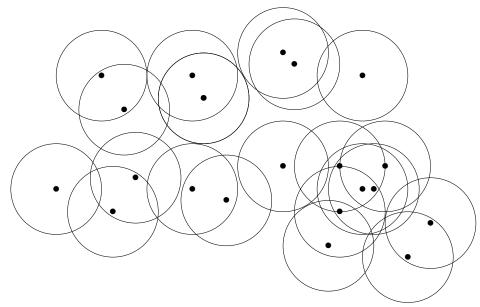
Definition

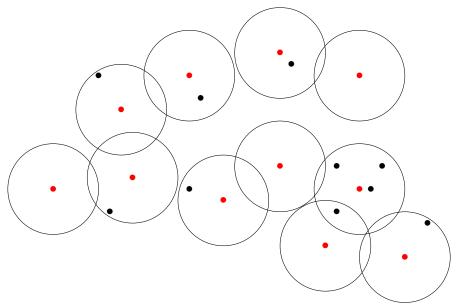
Given a pointset $X \subseteq \mathbb{R}^d$, a parameter r > 0, an r-net of X is a subset $N \subseteq X$ s.t. the following properties hold:

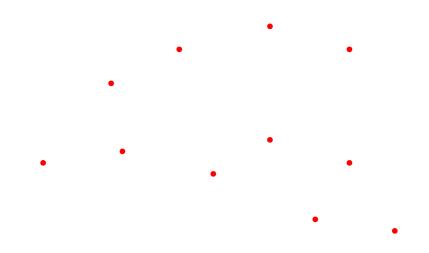
- (packing) For every $p \neq q \in N$, we have that $||p q||_2 > r$.
- (covering) For every $p \in X$, there exists $q \in N$ s.t. $||p q||_2 \le r$.

Equivalently, an *r*-net is a maximal *r*-packing subset of X, or a minimal *r*-covering subset of X.









Definition (Approximate *r*-nets)

Given a pointset $X \subseteq \mathbb{R}^d$, a parameter r > 0 and an approximation parameter $\epsilon > 0$, a $(1 + \epsilon)r$ -net of X is a subset $N \subseteq X$ s.t. the following properties hold:

- **(**packing) For every $p \neq q \in N$, we have that $||p q||_2 \ge r$.
- ② (covering) For every $p \in X$, there exists $q \in N$ s.t. $||p - q||_2 ≤ (1 + \epsilon)r$.

Computing *r*-nets is a fundamental primitive in Computational Geometry.

Recent improvements in high dimensional "offline" problems:

- LSH: Approximate closest pair in time $\tilde{O}(dn^{2-\Theta(\epsilon)})$.
- [Valiant '12]: Approximate closest pair in time $\tilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$.

Can we extend this improvement for the problem of computing *r*-nets?

High dimensional approximate *r*-nets

- Random instance
- Nets under inner product
- Nets under Euclidean distance

Previous work

Approach	Time	Output
Grid [Har-Peled '04]	$O(d^{d/2}n) \ O(dn) imes O(rac{1}{\epsilon})^d$	<i>r</i> -net
Grid (Folklore)	$O(dn) imes O(rac{1}{\epsilon})^d$	$(1+\epsilon)r$ -net
LSH [Eppstein et al. '15]	$ ilde{O}(dn^{2-\Theta(\epsilon)}) \ ilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$	$(1+\epsilon)r$ -net whp
This work	$ ilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$	$(1+\epsilon)r$ -net whp

2 High dimensional approximate r-nets

- Random instance
- Nets under inner product
- Nets under Euclidean distance

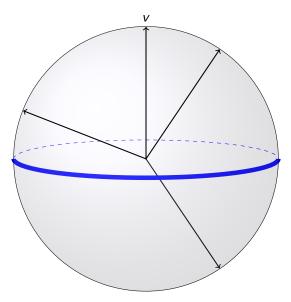
2 High dimensional approximate r-nets

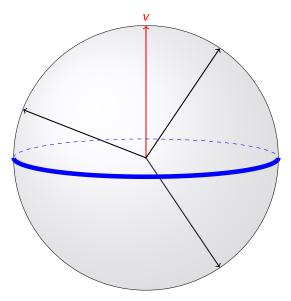
• Random instance

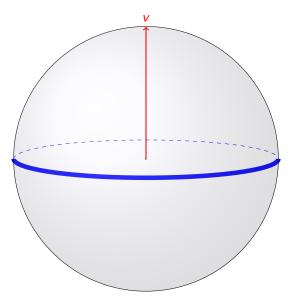
- Nets under inner product
- Nets under Euclidean distance

Random Instance

- Input: $X = [x_1, \dots, x_n], x_i \in \{-1, 1\}^d, \rho \in (0, 1].$
- For i = 1, ..., n:
 - ► either $\exists j \neq i$, $|\langle x_i, x_j \rangle| \ge \rho \cdot d$, (ρ -correlated)
 - or x_i is chosen uniformly at random.
- Objective:
 - > Packing: any two vectors in the net are not ρ -correlated,
 - Covering: any vector is ρ -correlated with some net vector.







Random instance with tight concentration

Observation

Let x be non-correlated with vectors in $S \subseteq X \subseteq \{-1,1\}^d$, where $|S| = n^{\alpha}$, $\alpha \in (0,1)$. If $d \approx n^{2\alpha}/\rho^2$, then with high probability,

$$|\langle x, \sum_{y \in S} y \rangle| = |\sum_{y \in S} \langle x, y \rangle| < \rho \cdot d.$$

RandomInstanceNet

Input: $X = [x_1, \ldots, x_n], x_i \in \{-1, 1\}^d, d \approx n^{2\alpha}/\rho^2, \alpha, \rho \in (0, 1)$ Output: ρ -net $N \subseteq \{x_1, \ldots, x_n\}$

- Repeat \sqrt{n} times: //Decrease the number of correlations
 - Choose a column x_i uniformly at random.
 - $N \leftarrow N \cup \{x_i\}$; Delete x_i from X.
 - Delete each x_j from X s.t. $|\langle x_i, x_j \rangle| \ge \rho$.
- $n \leftarrow \#$ remaining columns.
- Randomly partition vectors into disjoint subsets $S_1, \ldots, S_{n^{1-\alpha}}$.
- Set $d \times n^{1-\alpha}$ matrix Z : column $Z_k = \sum_{x_i \in S_k} x_j$. //Compress
- Compressed Gram matrix: $W = X^T Z$, size $n \times n^{1-\alpha}$.
- For W rows/vectors i = 1, ...: //Search for correlations
 - $\blacktriangleright N \leftarrow N \cup \{x_i\}$
 - ▶ For each $|w_{ik}| \ge \rho$: For each ρ -correlated $x_j \in S_k$, delete row j.

$$\alpha = 1/3 \implies$$
 time: $O(dn^{1.94})$

2 High dimensional approximate r-nets

- Random instance
- Nets under inner product
- Nets under Euclidean distance

Nets under inner product

Definition (Approximate inner product nets)

For any $X \subset \mathbb{S}^{d-1}$, an approximate ρ -net for $(X, \langle \cdot, \cdot \rangle)$, with additive approximation parameter $\epsilon > 0$, is a subset $N \subseteq X$ which satisfies the following properties:

- for any two $p \neq q \in N$, $\langle p, q \rangle < \rho$, and
- for any $x \in X$, there exists $p \in N$ s.t. $\langle x, p \rangle \ge \rho \epsilon$.

Sphere to Hypercube

MakeUniform [Charikar '02]

There exists an algorithm running in $O(\frac{dn \log n}{\delta^2})$ with the following properties.

Input:
$$X = [x_1, ..., x_n]$$
 s.t. $x_i \in \mathbb{S}^{d-1}$.
Output: $Y = [y_1, ..., y_n] \in \{-1, 1\}^{n \times d'}$, $d' = O(\log n/\delta^2)$.

With probability $1 - o(1/n^2)$, for all pairs $i, j \in [n]$,

$$\left|\frac{\langle y_i, y_j \rangle}{d'} - \left(1 - 2 \cdot \frac{\arccos(\langle x_i, x_j \rangle)}{\pi}\right)\right| \leq \delta.$$

Simulate tight concentration

ChebyshevEmbedding [Valiant '12]

There exists an algorithm with the following properties.

Input:
$$X = [x_1, \dots, x_n]$$
 s.t. $x_i \in \{-1, 1\}^d$, $\rho \in [-1, 1]$.
Output: $Y, Y' \in \{-1, 1\}^{n \times d'}$, $d' = n^{0.2}$.

With probability 1 - o(1/n), for all $i, j \in [n]$,

•
$$\langle x_i, x_j \rangle \leq \rho \cdot d \implies |\langle y_i, y_j' \rangle| \leq 3n^{0.16}$$
,

•
$$\langle x_i, x_j \rangle \ge (\rho + \delta) \cdot d \implies |\langle y_i, y'_j \rangle| \ge 3n^{0.16 + \sqrt{\delta/100}}$$

Gap amplification simulates tight concentration in random instance.

InnerProductApprxNet

Input: $X = [x_1, \ldots, x_n]$ with $x_i \in \mathbb{S}^{d-1}$, $\rho \in [-1, 1]$, $\epsilon \in (0, 1/2]$. Output: ρ -net $N \subseteq [n]$.

- $(Y, \rho') \leftarrow \texttt{MakeUniform}(X, \delta = \epsilon/2\pi).$
- $(Z, Z', \rho'') \leftarrow \texttt{ChebyshevEmbedding}(Y, \rho').$
- $N \leftarrow \text{Simulate RandomInstanceNet}(\rho'', Z, Z').$

Theorem

The algorithm InnerProductApprxNet, on input $X = [x_1, ..., x_n]$ with each $x_i \in \mathbb{S}^{d-1}$, $\rho \in [-1, 1]$ and $\epsilon \in (0, 1/2]$, computes an approximate ρ -net with additive error ϵ . The algorithm runs in time $\tilde{O}(dn + n^{2-\sqrt{\epsilon}/600})$ and succeeds with probability $1 - O(1/n^{0.2})$.

2 High dimensional approximate r-nets

- Random instance
- Nets under inner product
- Nets under Euclidean distance

We can reduce to the inner-product net problem.

Theorem (Avarikioti, Emiris, Kavouras, P '17)

Given n points in \mathbb{R}^d , a parameter r > 0 and an approximation parameter $\epsilon \in (0, 1/2]$, with probability $1 - o(1/n^{0.04})$, ApprxNet will return a $(1 + \epsilon)r$ -net, in $\tilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$ time.

Future work

- ANN for other norms or general methods for classes of norms.
- Recently, [Alman, Chan, and Williams '16] improved upon [Valiant '12] for the approximate closest pair problem. Similar improvement for *r*-nets?

Thank you!