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This is an important trend in current AI research, and one that is particularly difficult on graphs, time series, etc.
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Can the feature map be inverted?

- Right inverse (∃ preimage): interpretable AI

- Left inverse (∃! preimage): reliable interpretation

Scenarios: dictionaries, deep layers, stats, etc.

Is the feature map stable?

- continuity

- Lipschitz continuity

- differentiability



• data set / underlying space ≡ compact metric / (dis-)similarity space

ambient / extrinsic distance

intrinsic distance

Mathematical framework
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TDA for feature design
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f : X → R

persistence

dgm f

X topological space

∞

X

R

f

signature: persistence diagram

encodes the topological structure of the pair (X, f)

Persistent homology in a nutshell
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• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞

• Track the evolution of the topology (homology) throughout the family

f
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α

β

X

R

α

β

∞

• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞

• Track the evolution of the topology (homology) throughout the family

• Finite set of intervals (barcode) encodes births/deaths of topological features

f

• Alternate representation as a multiset
of points in the plane (diagram).

Persistent homology in a nutshell



6
X

R

∞

What if f is slightly perturbed?

g

• Alternate representation as a multiset
of points in the plane (diagram).

f

Persistent homology in a nutshell

• Nested family (filtration) of sublevel-sets f−1((−∞, t]) for t ranging from −∞ to +∞

• Track the evolution of the topology (homology) throughout the family

• Finite set of intervals (barcode) encodes births/deaths of topological features
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∞

Theorem (Stability): [Cohen-Steiner et al. 2005, Chazal, O. et al. 2009]
For any tame functions f, g : X → R, d∞B (dgm f, dgm g) ≤ ‖f − g‖∞.

cost of a matched pair (p, q) ∈M : ‖p− q‖∞

cost of an unmatched point s ∈ dgm f t dgm g: ‖s− s̄‖∞

cost of a matching:

max

{
sup

(p, q) matched

‖p− q‖∞, sup
s unmatched

‖s− s̄‖∞

}

bottleneck distance:

d∞B (dgm f, dgm g) = inf
M :dgm f↔dgm g

cost(M)

partial matching M : dgm f ↔ dgm g

p

q
s
s̄

Persistent homology in a nutshell
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Example: Distance Function

fP : R2 → R
x 7→ minp∈P ‖x− p‖2

4 8 12 16 20 24 28 320
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This signature reveals the structure of the metric space across scales

Input: a compact metric space (X, dX)

Descriptor: dgmF(X, dX), where F(X, dX) is some simplicial filtration over
X derived from dX (proxy for union of balls)

Global topological descriptors

8

dataset

Union of balls / Čech / Rips filtration

persistence diagram

(geometry)
(homology)



This signature reveals the structure of the metric space across scales

Input: a compact metric space (X, dX)

Descriptor: dgmF(X, dX), where F(X, dX) is some simplicial filtration over
X derived from dX (proxy for union of balls)

t

Ct(X, dX)

R2t(X, dX)

Global topological descriptors
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Descriptors of some elementary shapes (approximated from finite samples):
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This equality is fine, since both curves are isometric when equipped with the geodesic distance (their total lengths are the same). The Euclidean distance allows us to differentiate between them.

Descriptors of some elementary shapes (approximated from finite samples):
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This equality is not fine, since the two spaces are not isometric. Note that the equality does not come from the sampling itself, but from the definition of the signatures. Fortunately, the Euclidean distance allows us to differentiate between the shapes, even though by a single point.

Descriptors of some elementary shapes (approximated from finite samples):
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Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

Stability

10
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Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X, dX) and (Y, dY ),
d∞B (dgmR(X, dX), dgmR(Y, dY )) ≤ 2dGH(X,Y ).

The bound is worst-case tight:

X = 1

Y =
1 + 2ε

dGH(X,Y ) = ε

dgmR(X, dX) = {(0,∞), (0, 1)}

dgmR(Y, dY ) = {(0,∞), (0, 1 + 2ε)}

⇒ d∞B (dgmR(X, dX), dgmR(Y, dY )) = 2ε

Stability
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Toy application (unsupervised shape classification)
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Goal: associate PD to every point

choice of filtration(s)?

stability guarantees?

Local topological descriptors

12



Input: a compact length space (X, dX), a basepoint x ∈ X

Descriptor: persistence diagram of the filtration

Construction: filtration of the sublevel sets of dX(x, ·)

Local topological descriptors

12

In practice: compute descriptor from point cloud using a pair of Rips complexes
[Chazal et al. 2009]



Stability
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Thm (local stability): [Carrière, O., Ovsjanikov 2015]

Let (X, dX) and (Y, dY ) be compact length spaces with
positive convexity radius (%(X), %(Y ) > 0). Let x ∈ X and y ∈ Y .
If dGH((X,x), (Y, y)) ≤ 1

20
min{%(X), %(Y )}, then

dB(dgm dX(·, x),dgm dY (·, y)) ≤ 20 dGH((X,x), (Y, y)).

a

a

bb

dGH(T,X)
#X→∞−→ 0

dB(dgm dT (·, x), dgm dX(·, x)) > 0
x



Experimental results:

- input: shapes from the TOSCA database, in mesh form (triangulated)

- select a few base points by hand on each shape

- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as descriptors

Toy application (unsupervised shape segmentation)

14
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note that blue and green are not contiguous after MDS, however they are in signatures space because they are on the shape and the mapping to signatures space is Lipschitz continuous

Experimental results:

mapping to R3 via MDS

k-means in R3

Toy application (unsupervised shape segmentation)
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Application to supervised shape segmentation

15

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Foot

Head Torso

Hand

Label = ?

Training Test



Application to supervised shape segmentation

15

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)



Application to supervised shape segmentation

15

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Accuracies (%) using TDA descriptors (kernels on barcodes):

TDA geometry TDA + geometry

Human 74.0 78.7 88.7
Airplane 72.6 81.3 90.7
Ant 92.3 90.3 98.5
FourLeg 73.0 74.4 84.2
Octopus 85.2 94.5 96.6
Bird 72.0 75.2 86.5
Fish 79.6 79.1 92.3
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Application to non-rigid shape matching



the two given shapes X,Y (seen as measured spaces) are replaced by the functional spaces L2(X), L2(Y ), and correspondences m : X → Y are replaced by linear maps L2(Y )→ L2(X) via the pullback m−1. The spaces L2(X) and L2(Y ) are assign bases from the Laplace-Beltrami operator → reduction to finite dimensions by tail-cutting. Then, every linear map is a matrix in these bases.

16

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

- compute an optimal linear map that best preserves a set of signatures (vectors)

- derive a point-to-point correspondence from this map (via indicator functions)

- evaluate the quality of the correspondence

Application to non-rigid shape matching

Given a point-to-point map m : X → Y (seen as measured spaces), consider

the linear map m∗ : L2(Y )→ L2(X) induced by pre-composition with m

- reduce the dimensionality by taking the first k eigenfunctions

of the Laplace-Beltrami operator
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Approach: use framework of functional maps [Ovsjanikov et al. 2012]

topological signatures (last 30 indices) have a high influence on the choice of optimal map

Application to non-rigid shape matching



each plot corresponds to a particular class of shapes - blue curve = ground truth (derived from the optimal correspondence) → not perfect because of tail-cutting in Laplace-Beltrami eigenbasis - yellow curve = optimum w/o topological signatures - red curve = optimal adding in the topological signatures

16

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

distance to ground-truth correspondence
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Application to non-rigid shape matching



16

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

correspondences in flat regions are improved by topological signatures

Application to non-rigid shape matching
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Applications on other types of data

cav
ity

bottleneck

network

sampling

classification/retrieval of
zeolites conformations

parameter inference
in dynamical systems

texture classification

uni-/multivariate time series
analysis (periodicity,
anomaly detection)



The preimage problem in the data Sciences
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This is an important trend in current AI research, and one that is particularly difficult on graphs, time series, etc.

The preimage problem in the data Sciences
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(
feature design
or learning

)

· · ·

bag of words, word2vec

node2vec, Laplacian fact., rand. walks

dim. reduction, auto-encoders, etc.

shape contexts, heat kernels

∈ R
n

Data Features

Can the feature map be inverted?

- Right inverse (∃ preimage): interpretable AI

- Left inverse (∃! preimage): reliable interpretation

Scenarios: dictionaries, deep layers, stats, etc.

?



(inference)

TDA and the preimage problem

18

Descriptor(s)

Model

(sampling)

(TDA)

Data

(decoding)



- many subsequent questions, e.g. can we infer the model from the descriptor of a finite sampling?

(inference)

TDA and the preimage problem

18

Descriptor(s)

Model

(sampling)

(TDA)

Data

left inverse: characterize isom. class uniquely

Lipschitz continuous

right inverse: realize barcode as the PH of some isom. class

(decoding)

compact metric space



M decomposes as a direct sum of interval modules, each of which is realized as the PH of a constant map fj on a sphere of appropriate dimension, bounding a ball over the interior of which fj is extended to a constant function with appropriate value. Then take the wedge sum of these balls, assigning the mimimum value to the basepoint Note: the tilda over H means ”reduced homology” Note: the non-persistent equivalent is to realize a (graded) vector space as the homology of a bouquet of spheres of various dimensions. More generally, realizing f.g. graded abelian groups as wedge sums of Moore spaces

Right inverses for TDA

19

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group)
can be realized as the (graded) H̃ of a CW-complex
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Right inverses for TDA

19

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group)
can be realized as the (graded) H̃ of a CW-complex

Fact: [Folklore] Any (graded) persistence barcode/diagram can be realized as
the (graded) PH̃ of a piecewise-constant function on a bouquet of spheres.



note: bars are ordered arbitrarily n points ⇒ 2n − 1 simplices (empty simplex excluded) trivial reduced essential homology ⇒ 2n − 2 simplices are paired, 1 is not ⇒ 2n − 1 coordinates

Right inverses (local) for TDA

20

point cloud Čech / Rips filtration diagram

u ∈ Rnd v ∈ R2n−1

Thm: [Gameiro, Hiraoka, Obayashi]

(i) Generic point cloud⇒ ∃Ω 3 u in Rnd over which the correspondence u 7→ v
can be extended to a map f : Ω→ R2n−1 computing persistence barcodes.

Observation: pairing given by order of distances is constant in small enough O.

(ii) For Ω small enough, f is of class C∞.



note: bars are ordered arbitrarily n points ⇒ 2n − 1 simplices (empty simplex excluded) trivial reduced essential homology ⇒ 2n − 2 simplices are paired, 1 is not ⇒ 2n − 1 coordinates

Right inverses (local) for TDA

20

point cloud Čech / Rips filtration diagram

u ∈ Rnd v ∈ R2n−1

Thm: [Gameiro, Hiraoka, Obayashi]

(i) Generic point cloud⇒ ∃Ω 3 u in Rnd over which the correspondence u 7→ v
can be extended to a map f : Ω→ R2n−1 computing persistence barcodes.

(ii) For Ω small enough, f is of class C∞.

→ adapt Newton-Raphson continuation method to build right inverse of f in f(Ω)

(Jacobian matrix of f can be singular  use pseudo-inverse)



Left inverses?

21

• Unions of (open) balls — Čech/Rips/Delaunay filtrations

α ≥ π/21 1

dgmR(P, `2) = {(0,+∞)} t {(0, 1)} t {(0, 1)}

⇒ diagrams for different values of α are indistinguishable

dgm C(P, `2) = {(0,+∞)} t {(0, 1
2
)} t {(0, 1

2
)}



Left inverses?
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• Unions of (open) balls — Čech/Rips/Delaunay filtrations

Prop: [Folklore]

For any metric tree (X,dX):

dgmR(X,dX) = dgm C(X,dX) = {(0,+∞)}

X is 0-hyperbolic

⇒ metric balls are convex

⇒ geodesic triangles are tripods

⇒ no information on the metric



Left inverses?

21

• Unions of (open) balls — Čech/Rips/Delaunay filtrations

• Reeb graphs

⇒ Reeb graphs are indistinguishable from their diagrams



Left inverses?

21

• Unions of (open) balls — Čech/Rips/Delaunay filtrations

• Reeb graphs

• Real-valued functions

Prop: [Folklore]

Given f : X → R and h : Y → X homeomorphism,

dgm f ◦ h = dgm f

Too large a group of transformations...



Left inverses?

21

• Unions of (open) balls — Čech/Rips/Delaunay filtrations

• Reeb graphs

• Real-valued functions

possible solutions:

• richer topological invariants (e.g. persistent homotopy)

• use multiple filter functions (aggregation vs multipersistence)



note: here, as before, dgm f contains the diagrams of f of all dimensions, overlaid with labels

implicit: PHT(X) = PHT(X,F)

(X, dX) (compact)

R

· · · F = {fw}w∈W

(diagrams, dB)

dgm fw

PHT(X)={dgm fw | w ∈W}

PHT(X)

Persistent Homology Transform (PHT)

22



Notes: - semialgebraic sets are finite unions of solution sets of systems of polynomial equalities and inequalities - The result holds more generally for constructible sets in Rd
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Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018]

[Ghrist, Levanger, Mai 2018]

Let F = {〈·, w〉}w∈Sd−1 , where d is fixed. Then, PHT
is injective on the class of semialgebraic sets in Rd.

w

Sd−1X

Still true for a fixed finite set of directions
(of size exponential in d). [Curry, Mukherjee, Turner]
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Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018]

[Ghrist, Levanger, Mai 2018]

Let F = {〈·, w〉}w∈Sd−1 , where d is fixed. Then, PHT
is injective on the class of semialgebraic sets in Rd.

w

Sd−1X

Still true for a fixed finite set of directions
(of size exponential in d). [Curry, Mukherjee, Turner]

Corollary: PHT is a sufficient statistic for such sets
⇒ parametric inference



PHT for length spaces

23

Given a compact length space (X, dX), take F = {dX(·, x)}x∈X



this construction holds for general metric spaces, however it makes sense mostly for compact length spaces, where the balls are geodesic balls

PHT for length spaces
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Given a compact length space (X, dX), take F = {dX(·, x)}x∈X

Thm (local stability): [Carrière, O., Ovsjanikov 2015]

Let (X, dX) and (Y, dY ) be compact length spaces with
positive convexity radius (%(X), %(Y ) > 0). Let x ∈ X and y ∈ Y .
If dGH((X,x), (Y, y)) ≤ 1

20
min{%(X), %(Y )}, then

dB(dgm dX(·, x),dgm dY (·, y)) ≤ 20 dGH((X,x), (Y, y)).
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Given a compact length space (X, dX), take F = {dX(·, x)}x∈X

Thm (local stability): [Carrière, O., Ovsjanikov 2015]

Let (X, dX) and (Y, dY ) be compact length spaces with
positive convexity radius (%(X), %(Y ) > 0). Let x ∈ X and y ∈ Y .
If dGH((X,x), (Y, y)) ≤ 1

20
min{%(X), %(Y )}, then

dB(dgm dX(·, x),dgm dY (·, y)) ≤ 20 dGH((X,x), (Y, y)).

Corollary (local stability of PHT):

Let (X, dX) and (Y, dY ) be compact length spaces with
positive convexity radius (%(X), %(Y ) > 0).
If dGH(X,Y ) ≤ 1

20
min{%(X), %(Y )}, then

dH(PHT(X),PHT(Y )) ≤ 20 dGH((X,x), (Y, y)).



PHT for length spaces

23

Given a compact length space (X, dX), take F = {dX(·, x)}x∈X

a

a

bb

dGH(T,X)
#X→∞−→ 0

dH(PHT2(T ),PHT2(X)) is bounded away from 0

Corollary (local stability of PHT):

Let (X, dX) and (Y, dY ) be compact length spaces with
positive convexity radius (%(X), %(Y ) > 0).
If dGH(X,Y ) ≤ 1

20
min{%(X), %(Y )}, then

dH(PHT(X),PHT(Y )) ≤ 20 dGH((X,x), (Y, y)).



Note: this result does not extend to the class of compact length spaces. Indeed, a graph approximating a surface has no 2-homology in its barcodes. So, even the density result below does not help.

from now on we will focus on compact metric graphs, which are length spaces that admit a (finite) 1-dimensional stratification
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Focus: compact metric graphs (1-dimensional stratified length spaces)

Thm (global stability): [Dey, Shi, Wang 2015]

For any compact metric graphs X,Y ,

dH(PHT(X),PHT(Y )) ≤ 18 dGH(X,Y ).

PHT: F = {dX(·, x)}x∈X , dgm = extended persistence diagram

Thm (density): [Gromov]

Compact metric graphs are GH-dense
among the compact length spaces.
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Focus: compact metric graphs (1-dimensional stratified length spaces)

Thm (global stability): [Dey, Shi, Wang 2015]

For any compact metric graphs X,Y ,

dH(PHT(X),PHT(Y )) ≤ 18 dGH(X,Y ).

PHT: F = {dX(·, x)}x∈X , dgm = extended persistence diagram

Thm (density): [Gromov]

Compact metric graphs are GH-dense
among the compact length spaces.

Q: injectivity of PHT on metric graphs? [O., Solomon 2017]



PHT for metric graphs

24

Bad news: PHT is not injective on all compact metric graphs

X Y

PHT(X) = PHT(Y ) while X 6' Y



So, maybe there is a connection between ΨX being injective and PHTitself being injective... this is precisely what our results show
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Bad news: PHT is not injective on all compact metric graphs

X Y

PHT(X) = PHT(Y ) while X 6' Y

Note: Aut(X) is non-trivial, hence ΨX : x 7→ dgm dX(·, x) is not injective



Thus, InjΨ is a strict subset of the graphs with trivial automorphism group
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Let InjΨ = {X compact metric graph s.t. ΨX is injective}

Thm 1:

PHT is injective on InjΨ.

Thm 2:

InjΨ is GH-dense among the compact metric graphs.
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Note: ΨX injective Aut(X) trivial

dgm dX (·, p) = dgm dX (·, q)

⇒6⇒
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Thus, InjΨ is a strict subset of the graphs with trivial automorphism group
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Let InjΨ = {X compact metric graph s.t. ΨX is injective}

Thm 1:

PHT is injective on InjΨ.

Thm 2:

InjΨ is GH-dense among the compact metric graphs.

Corollary:

There is a GH-dense subset of the compact length
spaces on which PHT is injective.
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Let InjΨ = {X compact metric graph s.t. ΨX is injective}

Thm 1:

PHT is injective on InjΨ.

Thm 2:

InjΨ is GH-dense among the compact metric graphs.

Corollary:

There is a GH-dense subset of the compact length
spaces on which PHT is injective.

Thm 3:

PHT is GH-locally injective on compact metric graphs.



this is a countable space (for each fixed numbers of vertices and edges there are only finitely many possible combinatorial graphs) ⇒ we can put a probability mass function on that space. That probability mass function can be derived e.g. from the Erdos-Renyi model

Generic injectivity
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Generative model:
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proba. mass function proba. measure with density on R|E|+

metric graph ≡ combinatorial graph (V,E) + edge weights E → R+

mixture ( , )



this is a countable space (for each fixed numbers of vertices and edges there are only finitely many possible combinatorial graphs) ⇒ we can put a probability mass function on that space. That probability mass function can be derived e.g. from the Erdos-Renyi model

Generic injectivity

25

Generative model:

proba. mass function proba. measure with density on R|E|+

metric graph ≡ combinatorial graph (V,E) + edge weights E → R+

Thm 4:

Under this model, there is a full-measure subset of the
metric graphs on which PHT is injective.

mixture ( , )



Thank you


