Sophia-Antipolis, July 2018

# Stable and Interpretable Features for Data using Topology

#### Steve Oudot

DataShape team, Inria Saclay

### Features for data



## Features for data



• data set / underlying space  $\equiv$  compact metric / (dis-)similarity space



- data set / underlying space  $\equiv$  compact metric / (dis-)similarity space
- distance between compact metric spaces  $\equiv$  Gromov-Hausdorff (GH) distance



- data set / underlying space  $\equiv$  compact metric / (dis-)similarity space
- distance between compact metric spaces  $\equiv$  Gromov-Hausdorff (GH) distance



- data set / underlying space  $\equiv$  compact metric / (dis-)similarity space
- distance between compact metric spaces  $\equiv$  Gromov-Hausdorff (GH) distance



- data set / underlying space  $\equiv$  compact metric / (dis-)similarity space
- distance between compact metric spaces  $\equiv$  Gromov-Hausdorff (GH) distance



# TDA for feature design



# TDA for feature design





- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features



- Nested family (filtration) of sublevel-sets  $f^{-1}((-\infty,t])$  for t ranging from  $-\infty$  to  $+\infty$
- Track the evolution of the topology (homology) throughout the family
- Finite set of intervals (barcode) encodes births/deaths of topological features



• Alternate representation as a multiset of points in the plane (**diagram**).

What if f is slightly perturbed?



**Theorem (Stability):** [Cohen-Steiner et al. 2005, Chazal, O. et al. 2009] For any *tame* functions  $f, g: X \to \mathbb{R}$ ,  $d_B^{\infty}(\operatorname{dgm} f, \operatorname{dgm} g) \leq ||f - g||_{\infty}$ .

partial matching  $M : \operatorname{dgm} f \leftrightarrow \operatorname{dgm} g$ 

cost of a matched pair  $(p,q) \in M$ :  $||p-q||_{\infty}$ 

cost of an unmatched point  $s \in \operatorname{dgm} f \sqcup \operatorname{dgm} g$ :  $||s - \bar{s}||_{\infty}$ 









 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$  $x \mapsto \min_{p \in P} \|x - p\|_2$ 





 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$  $x \mapsto \min_{p \in P} \|x - p\|_2$ 





 $f_P: \quad \mathbb{R}^2 \to \mathbb{R}$  $x \mapsto \min_{p \in P} \|x - p\|_2$ 









# Global topological descriptors

Input: a compact metric space  $(X, d_X)$ 

Descriptor: dgm  $\mathcal{F}(X, d_X)$ , where  $\mathcal{F}(X, d_X)$  is some simplicial filtration over X derived from  $d_X$  (proxy for union of balls)



## Global topological descriptors

Input: a compact metric space  $(X, d_X)$ 

Descriptor: dgm  $\mathcal{F}(X, d_X)$ , where  $\mathcal{F}(X, d_X)$  is some simplicial filtration over X derived from  $d_X$  (proxy for union of balls)



# Some examples

Descriptors of some elementary shapes (approximated from finite samples):



# Some examples

Descriptors of some elementary shapes (approximated from finite samples):



# Some examples

Descriptors of some elementary shapes (approximated from finite samples):


### Stability

**Theorem:** [Chazal, de Silva, O. 2013] For any compact metric spaces  $(X, d_X)$  and  $(Y, d_Y)$ ,  $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$ 



### Stability

**Theorem:** [Chazal, de Silva, O. 2013] For any compact metric spaces  $(X, d_X)$  and  $(Y, d_Y)$ ,  $d_B^{\infty}(\operatorname{dgm} \mathcal{R}(X, d_X), \operatorname{dgm} \mathcal{R}(Y, d_Y)) \leq 2d_{\operatorname{GH}}(X, Y).$ 

The bound is worst-case tight:



 $d_{\mathrm{GH}}(X, Y) = \varepsilon$  $dgm \mathcal{R}(X, d_X) = \{(0, \infty), (0, 1)\}$  $dgm \mathcal{R}(Y, d_Y) = \{(0, \infty), (0, 1 + 2\varepsilon)\}$  $\Rightarrow d_{\mathrm{B}}^{\infty}(dgm \mathcal{R}(X, d_X), dgm \mathcal{R}(Y, d_Y)) = 2\varepsilon$ 

### Toy application (unsupervised shape classification)







### Local topological descriptors



### Local topological descriptors

Input: a compact *length space*  $(X, d_X)$ , a basepoint  $x \in X$ 

Construction: filtration of the sublevel sets of  $d_X(x, \cdot)$ 

Descriptor: persistence diagram of the filtration

In practice: compute descriptor from point cloud using a pair of Rips complexes [Chazal et al. 2009]



### Stability

Thm (local stability): [Carrière, O., Ovsjanikov 2015] Let  $(X, d_X)$  and  $(Y, d_Y)$  be compact length spaces with positive convexity radius  $(\varrho(X), \varrho(Y) > 0)$ . Let  $x \in X$  and  $y \in Y$ . If  $d_{GH}((X, x), (Y, y)) \leq \frac{1}{20} \min\{\varrho(X), \ \varrho(Y)\}$ , then

 $d_{\mathrm{B}}(\operatorname{dgm} d_X(\cdot, x), \operatorname{dgm} d_Y(\cdot, y)) \le 20 \, d_{\mathrm{GH}}((X, x), (Y, y)).$ 



$$d_{\mathrm{GH}}(T, X) \xrightarrow{\#X \to \infty} 0$$

 $d_{\mathcal{B}}(\operatorname{dgm} d_{T}(\cdot, x), \operatorname{dgm} d_{X}(\cdot, x)) > 0$ 

Experimental results:

- input: shapes from the TOSCA database, in *mesh* form (triangulated)
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph
- use the PDs of the PL interpolations over the meshes as descriptors









Experimental results:



Experimental results:



## Application to supervised shape segmentation

**Goal**: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape



## Application to supervised shape segmentation

**Goal**: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

(training data)



### Application to supervised shape segmentation

**Goal**: segment 3d shapes based on examples Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes
- apply classifier to PDs extracted from query shape

| Accuracies | (%) | using | TDA | descriptors | (kernels | on | barcodes | ): |
|------------|-----|-------|-----|-------------|----------|----|----------|----|
|------------|-----|-------|-----|-------------|----------|----|----------|----|

|          | TDA  | geometry | TDA + geometry |
|----------|------|----------|----------------|
| Human    | 74.0 | 78.7     | 88.7           |
| Airplane | 72.6 | 81.3     | 90.7           |
| Ant      | 92.3 | 90.3     | <b>98.5</b>    |
| FourLeg  | 73.0 | 74.4     | <b>84.2</b>    |
| Octopus  | 85.2 | 94.5     | 96.6           |
| Bird     | 72.0 | 75.2     | 86.5           |
| Fish     | 79.6 | 79.1     | 92.3           |



Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]

Given a point-to-point map  $m : X \to Y$  (seen as measured spaces), consider the **linear map**  $m^* : L^2(Y) \to L^2(X)$  induced by pre-composition with m

- compute an optimal linear map that best preserves a set of signatures (vectors)
- derive a point-to-point correspondence from this map (via indicator functions)
- evaluate the quality of the correspondence
- reduce the dimensionality by taking the first k eigenfunctions of the Laplace-Beltrami operator



Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]



Approach: use framework of *functional maps* [Ovsjanikov et al. 2012]



correspondences in flat regions are improved by topological signatures



## Applications on other types of data

parameter inference in dynamical systems





#### texture classification



### The preimage problem in the data Sciences



### The preimage problem in the data Sciences



### TDA and the preimage problem



## TDA and the preimage problem



compact metric space

left inverse: characterize isom. class uniquely

### Right inverses for TDA

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group) can be realized as the (graded)  $\tilde{H}$  of a CW-complex



### Right inverses for TDA

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group) can be realized as the (graded)  $\tilde{H}$  of a CW-complex

**Fact:** [Folklore] Any (graded) persistence barcode/diagram can be realized as the (graded)  $P\tilde{H}$  of a piecewise-constant function on a bouquet of spheres.



# Right inverses (local) for TDA



**Thm:** [Gameiro, Hiraoka, Obayashi] (i) *Generic* point cloud  $\Rightarrow \exists \Omega \ni u$  in  $\mathbb{R}^{nd}$  over which the correspondence  $u \mapsto v$  can be extended to a map  $f : \Omega \to \mathbb{R}^{2^n - 1}$  computing persistence barcodes. (ii) For  $\Omega$  small enough, f is of class  $C^{\infty}$ .

Observation: pairing given by order of distances is constant in small enough O.

# Right inverses (local) for TDA



**Thm:** [Gameiro, Hiraoka, Obayashi] (i) *Generic* point cloud  $\Rightarrow \exists \Omega \ni u$  in  $\mathbb{R}^{nd}$  over which the correspondence  $u \mapsto v$  can be extended to a map  $f : \Omega \to \mathbb{R}^{2^n - 1}$  computing persistence barcodes. (ii) For  $\Omega$  small enough, f is of class  $C^{\infty}$ .

 $\rightarrow$  adapt Newton-Raphson continuation method to build right inverse of f in  $f(\Omega)$ (Jacobian matrix of f can be singular  $\rightsquigarrow$  use pseudo-inverse) 20

• Unions of (open) balls — Čech/Rips/Delaunay filtrations



 $\operatorname{dgm} \mathcal{C}(P, \ell_2) = \{(0, +\infty)\} \sqcup \{(0, \frac{1}{2})\} \sqcup \{(0, \frac{1}{2})\}$  $\operatorname{dgm} \mathcal{R}(P, \ell_2) = \{(0, +\infty)\} \sqcup \{(0, 1)\} \sqcup \{(0, 1)\}$ 

 $\Rightarrow$  diagrams for different values of  $\alpha$  are indistinguishable

• Unions of (open) balls — Čech/Rips/Delaunay filtrations

```
Prop: [Folklore]
For any metric tree (X, d_X):
\operatorname{dgm} \mathcal{R}(X, d_X) = \operatorname{dgm} \mathcal{C}(X, d_X) = \{(0, +\infty)\}\Rightarrow \text{ no information on the metric}
```



- Unions of (open) balls Čech/Rips/Delaunay filtrations
- Reeb graphs



 $\Rightarrow$  Reeb graphs are indistinguishable from their diagrams

- Unions of (open) balls Čech/Rips/Delaunay filtrations
- Reeb graphs
- Real-valued functions

Prop: [Folklore] Given  $f:X \to \mathbb{R}$  and  $h:Y \to X$  homeomorphism,  $\operatorname{dgm} f \circ h = \operatorname{dgm} f$ 

Too large a group of transformations...

- Unions of (open) balls Čech/Rips/Delaunay filtrations
- Reeb graphs
- Real-valued functions

possible solutions:

- richer topological invariants (e.g. persistent homotopy)
- use multiple filter functions (aggregation vs multipersistence)

### Persistent Homology Transform (PHT)



## Persistent Homology Transform (PHT)



## Persistent Homology Transform (PHT)


Given a compact length space  $(X, d_X)$ , take  $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$ 



Given a compact length space  $(X, d_X)$ , take  $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$ 



Thm (local stability): [Carrière, O., Ovsjanikov 2015] Let  $(X, d_X)$  and  $(Y, d_Y)$  be compact length spaces with positive convexity radius  $(\varrho(X), \varrho(Y) > 0)$ . Let  $x \in X$  and  $y \in Y$ . If  $d_{GH}((X, x), (Y, y)) \leq \frac{1}{20} \min\{\varrho(X), \ \varrho(Y)\}$ , then

 $d_{\mathrm{B}}(\operatorname{dgm} d_X(\cdot, x), \operatorname{dgm} d_Y(\cdot, y)) \le 20 \, d_{\mathrm{GH}}((X, x), (Y, y)).$ 

Given a compact length space  $(X, d_X)$ , take  $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$ 

#### **Corollary (local stability of PHT):**

Let  $(X, d_X)$  and  $(Y, d_Y)$  be compact length spaces with positive convexity radius  $(\varrho(X), \varrho(Y) > 0)$ . If  $d_{GH}(X, Y) \leq \frac{1}{20} \min\{\varrho(X), \ \varrho(Y)\}$ , then

 $d_{\mathrm{H}}(\mathsf{PHT}(X),\mathsf{PHT}(Y)) \le 20 \ d_{\mathrm{GH}}((X,x),(Y,y)).$ 

Thm (local stability): [Carrière, O., Ovsjanikov 2015] Let  $(X, d_X)$  and  $(Y, d_Y)$  be compact length spaces with positive convexity radius  $(\varrho(X), \varrho(Y) > 0)$ . Let  $x \in X$  and  $y \in Y$ . If  $d_{GH}((X, x), (Y, y)) \leq \frac{1}{20} \min\{\varrho(X), \ \varrho(Y)\}$ , then

 $d_{\mathrm{B}}(\operatorname{dgm} d_X(\cdot, x), \operatorname{dgm} d_Y(\cdot, y)) \le 20 \, d_{\mathrm{GH}}((X, x), (Y, y)).$ 

Given a compact length space  $(X, d_X)$ , take  $\mathcal{F} = \{d_X(\cdot, x)\}_{x \in X}$ 

#### **Corollary (local stability of PHT):**

Let  $(X, d_X)$  and  $(Y, d_Y)$  be compact length spaces with positive convexity radius  $(\varrho(X), \varrho(Y) > 0)$ . If  $d_{GH}(X, Y) \leq \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$ , then

 $d_{\mathrm{H}}(\mathsf{PHT}(X),\mathsf{PHT}(Y)) \le 20 \ d_{\mathrm{GH}}((X,x),(Y,y)).$ 



$$\mathrm{d}_{\mathrm{GH}}(T, X) \stackrel{\#X \to \infty}{\longrightarrow} 0$$

 $d_{\mathrm{H}}(\mathsf{PHT}_2(T),\mathsf{PHT}_2(X))$  is bounded away from 0

**Focus:** compact metric graphs (1-dimensional stratified length spaces)

**PHT:**  $\mathcal{F} = \{ d_X(\cdot, x) \}_{x \in X}$ , dgm = extended persistence diagram

Thm (global stability): [Dey, Shi, Wang 2015] For any compact metric graphs X, Y,

 $d_{\mathrm{H}}(\mathsf{PHT}(X),\mathsf{PHT}(Y)) \le 18 d_{\mathrm{GH}}(X,Y).$ 

Thm (density): [Gromov]

Compact metric graphs are GH-dense among the compact length spaces.

**Focus:** compact metric graphs (1-dimensional stratified length spaces)

**PHT:**  $\mathcal{F} = \{ d_X(\cdot, x) \}_{x \in X}$ , dgm = extended persistence diagram

Thm (global stability): [Dey, Shi, Wang 2015] For any compact metric graphs X, Y,

 $d_{\mathrm{H}}(\mathsf{PHT}(X),\mathsf{PHT}(Y)) \le 18 d_{\mathrm{GH}}(X,Y).$ 

Thm (density): [Gromov]

Compact metric graphs are GH-dense among the compact length spaces.

**Q:** injectivity of PHT on metric graphs? [O., Solomon 2017]

Bad news: PHT is not injective on all compact metric graphs



 $\mathsf{PHT}(X) = \mathsf{PHT}(Y) \text{ while } X \not\simeq Y$ 

Bad news: PHT is not injective on all compact metric graphs



 $\mathsf{PHT}(X) = \mathsf{PHT}(Y)$  while  $X \not\simeq Y$ 

**Note:** Aut(X) is non-trivial, hence  $\Psi_X : x \mapsto \operatorname{dgm} \operatorname{d}_X(\cdot, x)$  is not injective

Let  $Inj_{\Psi} = \{X \text{ compact metric graph s.t. } \Psi_X \text{ is injective}\}$ 

Thm 1: PHT is injective on  $Inj_{\Psi}$ .

Thm 2:

 $Inj_{\Psi}$  is GH-dense among the compact metric graphs.



$$\stackrel{\Rightarrow}{\not\models} \operatorname{Aut}(X) \operatorname{trivial}$$

Let  $Inj_{\Psi} = \{X \text{ compact metric graph s.t. } \Psi_X \text{ is injective}\}$ 

Thm 1: PHT is injective on Inj<sub>Ψ</sub>.
Thm 2: Inj<sub>Ψ</sub> is GH-dense among the compact metric graphs.
Corollary: There is a GH-dense subset of the compact length spaces on which PHT is injective.



+ Gromov's density result

Note: 
$$\Psi_X$$
 injective  $\rightleftharpoons \ \mathsf{Aut}(X)$  trivial

Let  $Inj_{\Psi} = \{X \text{ compact metric graph s.t. } \Psi_X \text{ is injective}\}$ 

Thm 1:

PHT is injective on  $\text{Inj}_{\Psi}.$ 

#### Thm 2:

 $Inj_{\Psi}$  is GH-dense among the compact metric graphs.

#### Corollary:

There is a GH-dense subset of the compact length spaces on which PHT is injective.

#### Thm 3:

PHT is GH-*locally* injective on compact metric graphs.

#### **Generative model:**





#### **Generative model:**



#### Thm 4:

Under this model, there is a full-measure subset of the metric graphs on which PHT is injective.

Thank you