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Features

e

bag of words, word2vec

shape contexts, heat kernels
node2vec, Laplacian fact., rand. walks
sliding-window embeddings

metric embeddings, auto-encoders1



Features for data

Data Features f’f

TXT

feature design
or learning

Is the feature map stable? | Can the feature map be inverted?

- continuity - Right inverse (3 preimage): interpretable Al
- Lipschitz continuity - Left inverse (3! preimage): reliable interpretation

- differentiability Scenarios: dictionaries, deep layers, stats, etc.



Mathematical framework

e data set / underlying space = compact metric / (dis-)similarity space

ambient / extrinsic distance

Intrinsic distance




Mathematical framework

e data set / underlying space = compact metric / (dis-)similarity space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance




Mathematical framework

e data set / underlying space = compact metric / (dis-)similarity space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

Euclidean distance

dgH =
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e data set / underlying space = compact metric / (dis-)similarity space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

Euclidean distance

dey > 0




Mathematical framework

e data set / underlying space = compact metric / (dis-)similarity space

e distance between compact metric spaces = Gromov-Hausdorff (GH) distance

geodesic distance

dgH =
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Persistent homology in a nutshell

Ra
X topological space

f: X—-R

persistence

\/
dgm f

signature: persistence diagram

encodes the topological structure of the pair (X, f)




Persistent homology in a nutshell

e Nested family (filtration) of sublevel-sets f~1((—o0, t]) for ¢ ranging from —oo to 400

e Track the evolution of the topology (homology) throughout the family

R A
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Persistent homology in a nutshell

o Nested family (filtration) of sublevel-sets f~1((—o0, t]) for t ranging from —oo to +oo

e Track the evolution of the topology (homology) throughout the family

e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset
of points in the plane (diagram).




Persistent homology in a nutshell

o Nested family (filtration) of sublevel-sets f~1((—o0, t]) for t ranging from —oo to +oo

e Track the evolution of the topology (homology) throughout the family

e Finite set of intervals (barcode) encodes births/deaths of topological features

e Alternate representation as a multiset

Ra of points in the plane (diagram).
f What if f is slightly perturbed?
g oo

<V



Persistent homology in a nutshell

partial matching M : dgm f <> dgmg
cost of a matched pair (p,q) € M: ||p — ql|co

cost of an unmatched point s € dgm f Udgmg: ||s — §||co

o< —ee

cost of a matching:

max{ sup ||p_Q||o<>7 Sup ||S_5||OO}

(p, q) matched s unmatched

bottleneck distance:

dg’ (dgm f,dgmg) = M:dgmi?f—)dgm , cost(M)
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Example: Distance Function
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Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2
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Example: Distance Function

fp X RQ — R
T — min,ep ||z — pl|2
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G

lobal topological descriptors

Input: a compact metric space (X,dx)

Descriptor:
X derived from dx (proxy for union of balls)
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Union of balls / Cech / Rips filtration

dgm F(X,dx), where F(X,dx) is some simplicial filtration over

persistence diagram



Global topological descriptors

Input: a compact metric space (X, dx)

Descriptor: dgm F(X,dx), where F(X,dx) is some simplicial filtration over
X derived from dx (proxy for union of balls)

Ct(X7 dX)

Rat (X, dx)



Some examples

Descriptors of some elementary shapes (approximated from finite samples):
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Some examples

Descriptors of some elementary shapes (approximated from finite samples):
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Stabilit

Theorem: [Chazal, de Silva, O. 2013]
For any compact metric spaces (X,dx) and (Y,dy),
d]%o(dng(X, dx), dng(Y, dy)) S QdGH(X, Y)

The bound is worst-case tight:

1 4 2¢

dGH(X, Y) — &
dgm R(X,dx) = {(0,00), (0,1)}

dem R(Y,dy ) = {(0,00), (0,1 + 2¢)}

= d2°(dgm R(X, dx), dgmR(Y,dy)) = 2¢

10



TOY application (unsupervised shape classification)

camels
cats

elephants

faces | =+
heads _

horses _
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® camel

® cat
elephant

® face
head

® horse
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Local topological descriptors

Goal: associate PD to every point

choice of filtration(s)?

stability guarantees?

Se

12



Local topological descriptors

Input: a compact length space (X,dx), a basepoint x € X
Construction: filtration of the sublevel sets of dx (x, -)
Descriptor: persistence diagram of the filtration

In practice: compute descriptor from point cloud using a pair of Rips complexes

[Chazal et al. 2009]
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den(T, X) 7220

dB(dgde(',HJ), dgmdx(,m)) >0
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TOY application (unsupervised shape segmentation)

Experimental results:

- input: shapes from the TOSCA database, in mesh form (triangulated)
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as descriptors

\j
b ™

14



To application (unsupervised shape segmentation

Experimental results:
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To

application

(

unsupervised shape segmentation

)

Experimental results:
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To applicatiOn (unsupervised shape segmentation)

Experimental results:

mapping to R3 via MDS

k-means in R3
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Experimental results:

mapping to R3 via MDS

k-means in R3
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Application to supervised shape segmentation

Goal: segment 3d shapes based on examples
Approach:
- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Torso

¥ 0

—_

Foot Hand

Training Test
15



Application to supervised shape segmentation

Goal: segment 3d shapes based on examples
Approach:
- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape
(training data)
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Application to supervised shape segmentation

Goal: segment 3d shapes based on examples

Approach:

- train a (multiclass) classifier on PDs extracted from the training shapes

- apply classifier to PDs extracted from query shape

Accuracies (%) using TDA descriptors (kernels on barcodes):

TDA | geometry | TDA + geometry
Human 74.0 | 78.7 88.7
Airplane | 72.6 | 81.3 90.7
Ant 92.3 | 90.3 98.5
FourLeg | 73.0 | 744 84.2
Octopus | 85.2 | 94.5 96.6
Bird 72.0 | 75.2 86.5
Fish 79.6 | 79.1 92.3

15



Application to non-rigid shape matching
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Application to non-rigid shape matching

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

Given a point-to-point map m : X — Y (seen as measured spaces), consider

the linear map m* : L*(Y) — L?(X) induced by pre-composition with m
- compute an optimal linear map that best preserves a set of signatures (vectors)

- derive a point-to-point correspondence from this map (via indicator functions)

evaluate the quality of the correspondence

reduce the dimensionality by taking the first k eigenfunctions
of the Laplace-Beltrami operator

16



Application to non-rigid shape matching

Approach: use framework of functional maps [Ovsjanikov et al. 2012]
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Application to non-rigid shape matching

Approach: use framework of functional maps [Ovsjanikov et al. 2012]
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Application to non-rigid shape matchin

Approach: use framework of functional maps [Ovsjanikov et al. 2012]

W Fy

correspondences in flat regions are improved by topological signatures

Y ™ e
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Applications on other types of data

parameter inference
in dynamical systems
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The preimage problem in the data Sciences

Features é?rf

feature design .

or learning . .

bag of words, word2vec
shape contexts, heat kernels

node2vec, Laplacian fact., rand. walks

dim. reduction, auto-encoders, etc.
17




The preimage problem in the data Sciences

Features f’f

feature design .
or learning . .

Can the feature map be inverted?

- Right inverse (3 preimage): interpretable Al
- Left inverse (3! preimage): reliable interpretation

Scenarios: dictionaries, deep layers, stats, etc.



T

DA and the preimage problem

—— > Descriptor(s)
(TDA)

18



TDA and the preimage problem

> Desc;i“ptor(s)
(TDA)

Lipschitz continuous

right inverse: realize barcode as the PH of some isom. class

compact metric space left inverse: characterize isom. class uniquely

18



Right inverses for TDA

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group)
can be realized as the (graded) H of a CW-complex

&

19



R

icht inverses for TDA

Fact: [Folklore] Any (graded) finite-dim. vector space (f.g. abelian group)
can be realized as the (graded) H of a CW-complex

Fact: [Folklore] Any (graded) persistence barcode/diagram can be realized as
the (graded) PH of a piecewise-constant function on a bouquet of spheres.

s

19



Right inverses (local) for TDA

. A= a -
& =L i =
iy ".I ik : .
y JE H e rS - -
g e
& [} . W r E o

LR |
i ¢‘E ' °
point cloud Cech / Rips filtration diagram
u € R™ | veR? !

A\

Thm: [Gameiro, Hiraoka, Obayashi]

(i) Generic point cloud = 3 3 u in R™® over which the correspondence u — v
can be extended to a map f: Q) — R? ~' computing persistence barcodes.

(ii) For € small enough, f is of class C°.

Observation: pairing given by order of distances is constant in small enough O.

20



Right inverses (local) for TDA

‘i %j

point cloud Cech / Rips filtration diagram

u € R | v e RZ L

A\

Thm: [Gameiro, Hiraoka, Obayashi]

(i) Generic point cloud = 3 3 u in R™® over which the correspondence u — v
can be extended to a map f: Q) — R? ~' computing persistence barcodes.

(ii) For € small enough, f is of class C°.

— adapt Newton-Raphson continuation method to build right inverse of f in f(2)

(Jacobian matrix of f can be singular ~ use pseudo-inverse) 20



| eft inverses?

e Unions of (open) balls — Cech/Rips/Delaunay filtrations

a > /2

dgm C(P, £2) = {(0,+00)} L {(0,5)} L {(0,3)}

dgm R(P, £2) = {(0, +00)} U {(0,1); L1(0, 1)}

= diagrams for different values of « are indistinguishable

21



| eft inverses?

e Unions of (open) balls — Cech/Rips/Delaunay filtrations

X is O-hyperbolic

= metric balls are convex

— geodesic triangles are tripods

21



| eft inverses?

e Unions of (open) balls — Cech/Rips/Delaunay filtrations

e Reeb graphs

= Reeb graphs are indistinguishable from their diagrams

21



| eft inverses?

e Unions of (open) balls — Cech/Rips/Delaunay filtrations

e Reeb graphs

e Real-valued functions

Prop: [Folklore]

Given f: X - R and Ah: Y — X homeomorphism,

dgm f oh =dgm f

Too large a group of transformations...

21



| eft inverses?

e Unions of (open) balls — Cech/Rips/Delaunay filtrations
e Reeb graphs

e Real-valued functions

possible solutions:
e richer topological invariants (e.g. persistent homotopy)

e use multiple filter functions (aggregation vs multipersistence)

21



Persistent Homolo

(X,dx) (compact)

F = {fw}wEW

Transform (PHT

)

PHT(X)={dgm f, | w € W}

(diagrams, dp)

22



ersistent Homolo

Transform (PHT

(X,dx) (compact)

>

PHT(X)={dgm f, | w € W}

R

Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018]
[Ghrist, Levanger, Mai 2018]

Let F = {(:, w)},esi—1, Wwhere d is fixed. Then, PHT
is injective on the class of semialgebraic sets in R?.

Still true for a fixed finite set of directions

(of size exponential in d). [Curry, Mukherjee, Turner]
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ersistent Homology Transform (PHT

(X,dx) (compact)

-
R

PHT(X)={dgm f, | w € W}

Thm: [Boyer, Curry, Mukherjee, Turner 2014, 2018]
[Ghrist, Levanger, Mai 2018]

Let F = {(:, w)},esi—1, Wwhere d is fixed. Then, PHT
is injective on the class of semialgebraic sets in R?.
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Corollary: PHT is a sufficient statistic for such sets

—> parametric inference
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PHT for length spaces

Given a compact length space (X,dx), take F = {dx (-, x)}zex

23




PHT for length spaces

Given a compact length space (X,dx), take F = {dx (-, x)}zex

Thm (local stability): [Carriere, O., Ovsjanikov 2015]

Let (X,dx) and (Y,dy) be compact length spaces with
positive convexity radius (g( ),0Y)>0). Letx e X andy €Y.
f dan((X, ), (Y,9)) < 2 min{o(X), o(Y)}, then

de(dgmdx (-, z),dgmdy (-, y)) < 20 dau((X, z), (Y, y)).

23



PHT for length spaces

Given a compact length space (X,dx), take F = {dx (-, x)}zex

Corollary (local stability of PHT):

Let (X,dx) and (Y, dy) be compact length spaces with
positive convexity radius (o(X), o(Y) > 0).
If dgu(X,Y) < 55 min{p(X), o(Y)}, then

dir(PHT(X), PHT(Y)) < 20 deu((X, z), (Y, v)).

Thm (local stability): [Carriere, O., Ovsjanikov 2015]
Let (X,dx) and (Y,dy) be compact length spaces with

positive convexity radius (o(X),0(Y) >0). Letz € X andy €Y.

f dan((X,2), (Y.y)) < 2 min{o(X), oY)}, then

de(dgmdx (-, z),dgmdy (-, y)) < 20 deu((X, z), (Y,y)).

23



PHT for length spaces

Given a compact length space (X,dx), take F = {dx (-, x)}zex

Corollary (local stability of PHT):

Let (X,dx) and (Y, dy) be compact length spaces with
positive convexity radius (o(X), o(Y) > 0).
If dgu(X,Y) < 55 min{o(X), o(Y)}, then

di(PHT(X), PHT(Y)) < 20 der((X, ), (Y, ).

den(T, X) 722 0
b

du(PHT2(T),PHT2(X)) is bounded away from 0

a 23



PHT for metric graphs

Focus: compact metric graphs (1-dimensional stratified length spaces)

PHT: F = {dx(-,z)}zex, dgm = extended persistence diagram

Thm (global stability): [Dey, Shi, Wang 2015]
For any compact metric graphs X, Y,

du(PHT(X),PHT(Y)) < 18deu(X,Y).

Thm (density): [Gromov]

Compact metric graphs are GH-dense
among the compact length spaces.

24



PHT for metric graphs

Focus: compact metric graphs (1-dimensional stratified length spaces)

PHT: F = {dx(-,z)}zex, dgm = extended persistence diagram

Thm (global stability): [Dey, Shi, Wang 2015]
For any compact metric graphs X, Y,

du(PHT(X),PHT(Y)) < 18deu(X,Y).

Thm (density): [Gromov]

Compact metric graphs are GH-dense
among the compact length spaces.

Q: injectivity of PHT on metric graphs? [O., Solomon 2017]
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P

HT for metric graphs

Bad news: PHT is not injective on all compact metric graphs

PHT(X) = PHT(Y) while X 2 Y

24



P

HT for metric graphs

Bad news: PHT is not injective on all compact metric graphs

PHT(X) = PHT(Y) while X 2 Y

Note: Aut(X) is non-trivial, hence Vx : x — dgmdx (-, x) is not injective

24



PHT for metric graphs

Let Injg = {X compact metric graph s.t. Ux is injective}

Thm 1:

PHT is injective on Injy.

Thm 2:

Injy is GH-dense among the compact metric graphs.

10

Note: W x injective ~7 Aut(X) trivial

e

dgde(7p):dgde(7Q) 1

24



PHT for metric graphs

Let Injg = {X compact metric graph s.t. Ux is injective}

Thm 1:
PHT is injective on Injy.

Thm 2:
Injy is GH-dense among the compact metric graphs.

— Corollary:

There is a GH-dense subset of the compact length
spaces on which PHT is injective.

+ Gromov's density result

10

Note: U x injective z Aut(X) trivial

mdx (-, p) = dgmdx (-, 1
dgmdx (-, p) = dgmdx (-, q) 24



PHT for metric graphs

Let Injg = {X compact metric graph s.t. Ux is injective}

+ Gromov's density result

Thm 1:

PHT is injective on Injy.

Thm 2:
Injy is GH-dense among the compact metric graphs.

— Corollary:

There is a GH-dense subset of the compact length
spaces on which PHT is injective.

Thm 3:
PHT is GH-/ocally injective on compact metric graphs.

24
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Generative model:

metric graph = combinatorial graph (V, E) + edge weights £ — R
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mixture ( proba. mass function , proba. measure with density on R'f| )
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Generic injectivity

Generative model:

metric graph = combinatorial graph (V, E) + edge weights £ — R

/ !

mixture ( proba. mass function , proba. measure with density on R'f| )

Thm 4:

Under this model, there is a full-measure subset of the
metric graphs on which PHT s injective.
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Thank you



